Name：
Student ID number：

Guidelines for the test：

－Put your name or student ID number on every page．
－There are 12 problems： 6 problems in Part I（ 7 points each）and 6 problems in Part II ．If you got more than 100 points，only 100 points were counted．（超過 100 分以 100 分計算）
－The exam is closed book；calculators are not allowed．
－There is no partial credit for problems in the Part I（multiple－choice（選擇）and fill－in（填充）problems）．
－For problems in the Part II（problem－solving（計算題）problems），please show all work，unless instructed otherwise．Partial credit will be given only for work shown．Write as legibly as possible－correct answers may have points taken off， if they＇re illegible．
－Mark the final answer．
\qquad

Part I：（7 points for each problem）
 Multiple Choice－Single Answer（選擇題－單選題）．

（1）Given $f(x, y)=x^{3}-3 x+y^{2}+9$ ，which of the following is correct？
A）$(-1,1)$ is a saddle point
B）$(2,0)$ is a local minimum
C）$(1,0)$ is a local minimum
D）all of the above
（2）R is a region bounded by $y=4 x+2, y=4 x+5, y=3-2 x$ and $y=1-2 x$ ， Given the transformation $u=y-4 x, v=2 x+y$ ，which of the following is equivalent to $\iint_{R} x^{2} d A$ ？
A） $\int_{2}^{5} \int_{1}^{3} x^{2} d u d v$ ，
B） $\int_{2}^{5} \int_{1}^{3}\left(\frac{(v-u)}{6}\right)^{2} d u d v$ ，
C） $\int_{2}^{5} \int_{1}^{3}\left(\frac{(v-u)}{6}\right)^{2}\left(-\frac{1}{3}\right) d u d v$
D） $\int_{2}^{5} \int_{1}^{3}\left(\frac{(v-u)}{6}\right)^{2} \frac{1}{3} d u d v$
E）None of the above．Ans＝？

Fill－In Problems（塤充）

（3）Find an equation of the plane containing the point $(3,2,1)$ with normal vector $<4,5,6>$ ．

$$
A n s=
$$

\qquad
（4）Given that $f(x, y)=x^{3}-3 x+y^{2}+9$ ，compute the directional derivative of f at $(1,2)$ in the direction of the vector $\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$

$$
A n s=
$$

\qquad ．
（5）Suppose that $g(t)=f(x(t), y(t))$ ，where f is a differentiable function of x and y and where $x=x(t)$ and $y=y(t)$ both have first－order derivatives．Given that

$$
\begin{array}{llll}
x^{\prime}(1)=2, & y^{\prime}(1)=3 & x(1)=4, & y(1)=5, \\
f(4,5)=6, & f_{x}(4,5)=7, & f_{y}(4,5)=8, &
\end{array}
$$

$$
g^{\prime}(1)=
$$

\qquad
（6）Find the equation of the tangent plane to the surface at the given point．

$$
z=x^{2}-y^{2}+1 \quad \text { at }(1,2,-2)
$$

$$
A n s=
$$

\qquad ．

Part II：
Problem－Solving Problems（計算題 Show all work）
（7）Given that $\mathbf{r}(t)=<t^{2}-t, e^{3 t}, 0>$ ，calculate
－ $\lim _{t \rightarrow 0} \mathbf{r}(t)=$ ？
－$\frac{d}{d t} \mathbf{r}(t)=$ ？
－ $\int \mathbf{r}(t) d t=$ ？
－ $\int_{0}^{1} \mathbf{r}(t) d t=$ ？
（8）Show that the limit does not exist．

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{12 x y^{2}}{x^{2}+y^{4}}
$$

(9) Given $f(x, y)=x^{3}-e^{x y}+y^{3}$, find the partial derivatives, $f_{x}, f_{y}, f_{x y}$ and $f_{x x}$.
(10) For a differentiable function $g(u, v)=f(x(u, v), y(u, v))$ with $f(x, y)=10 x^{1 / 4} y^{3 / 4}$, $x(u, v)=u+v$ and $y(u, v)=u-v$, use the chain rule to find $g_{u}(u, v)$ and $g_{v}(u, v)$.
(11) Find the maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}+6 y$ subject to the constraint $x^{2}+4 y^{2} \leq 4$
(12) Evaluate the iterated integral by first changing the order of integration.

$$
\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y
$$

