Calculus II

No calculator is allowed. No credit will be given for an answer without reasoning Note that the total is more than 100 , but you can only get 100 if you score higher

1. (6 points) Show absolute, conditional convergence or divergence for the following series.

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{k^{2}}{(2 k)!}
$$

2. (14 points total)
(a) (2 points) Find the Taylor series of $g(t)=e^{t}$ at $t=0$.
(b) (4 points) Using your answer to (a), find the Taylor series of $f(t)=t e^{t}$ at $t=0$.
(c) (4 points) Using your answer to (b), find the Taylor series of

$$
F(x)=\int_{0}^{x} t e^{t} d t
$$

at $x=0$.
(d) (4 points) From your solution to (c), show that

$$
\sum_{k=0}^{\infty} \frac{1}{(k+2)(k!)}=1
$$

3. Given the position function of a particle

$$
\mathbf{r}(s)=<\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}>
$$

(a) (2 points) find the velocity, $\mathbf{v}(t)$,
(b) (3 points) show that the particle has unit speed,
(c) (5 points) find the unit tangent vector $\mathbf{T}(t)$ and the principal unit normal vector $\mathbf{N}(t)$
4. (8 points) For a differentiable function $g(u, v)=f(x(u, v), y(u, v))$ with $x(u, v)=u \cos v$ and $y(u, v)=u \sin v$ and where $f_{x y}$ and $f_{y x}$ are continuous, use the chain rule to find f_{u} and f_{v}.

$$
f(x, y)=4 x^{3} y^{2}
$$

5. (8 pts) Find local maximum and minimum values and saddle points of the function

$$
f(x, y)=2 x^{2}+y^{2}+2 x^{2} y+9
$$

6. (8 pts) Use Lagrange Multipliers to find the maximum and minimum values of the function $f(x, y)=e^{x y}$ subject to the constraint $x^{2}+y^{2}=8$
7. (8 pts) Evaluate the iterated integral by first changing the order of integration.

$$
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{2}} 3 e^{x^{2}} d x d y
$$

8. (8 pts) Evaluate the iterated integral by converting to polar coordinates.

$$
\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x
$$

9. (12 points) Q is the solid inside the sphere $x^{2}+y^{2}+z^{2}=4 z$ and inside the cone $z^{2}=\left(x^{2}+y^{2}\right) / 3$.
(a) Set up but Do Not Evaluate the triple iterated integral for the volume of Q in Cylindrical coordiantes.
(b) Set up but Do Not Evaluate the triple iterated integral for the volume of Q in Spherical coordiantes.

10. (8 points) Evaluate the integral $\iint_{R} y+3 x d A$, where R is the region bounded by $y=3-3 x$, $y=1-3 x, y=x-3$ and $y=x-1$, by changing variables.
11. (8 points) Use the Divergence Theorem compute $\iint_{\partial Q} \vec{F} \cdot \vec{n} d S$, wher Q is bounded by $z=\sqrt{4-x^{2}-y^{2}}$ and $z=0, \vec{F}=<z^{3}, x^{2} z, x y^{2}>$
12. Use Stokes' Theorem to evaluate
(a) (6 points) $\int_{C} \vec{F} \cdot d \vec{r}$.
where C is the circle $x^{2}+y^{2}=9$ on the $x y$-plane, oriented so that it is traversed counterclockwise when view from the positive z-axis and $\vec{F}=<x^{2}, y^{4}-x, z^{2} \sin z+x>$
(b) (4 points) $\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S$ where S is $z=9-x^{2}-y^{2}$ above the $x y$-plane with \vec{n} upward and $\vec{F}=<x^{2}, y^{4}-x, z^{2} \sin z+x>$.

- Double-Angle
$\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& \cos 2 \theta=2 \cos ^{2} \theta-1=1- \\
& 2 \sin ^{2} \theta
\end{aligned}
$$

- Spherical Coordinates:

- Curl and Divergence:

$$
\begin{gathered}
\operatorname{curl} \vec{F}=\nabla \times \vec{F}, \\
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}, \\
\nabla=\quad<\partial_{x}, \partial_{y}, \partial_{z}>
\end{gathered}
$$

- Divergence Theorem:

Suppose that $Q \subset R^{3}$ is bounded by the closed surface ∂Q and that $\vec{n}(x, y, z)$ denotes the exterior unit normal vector to ∂Q. Then, if the components of $\vec{F}(x, y, z)$ have continuous first partial derivatives in Q, we have

$$
\iint_{\partial Q} \vec{F} \cdot \vec{n} d s=\iiint_{Q} \nabla \cdot \vec{F}(x, y, z) d V
$$

- Surface Area Element (if the surface is given by $z=f(x, y)$:

$$
d s=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d A
$$

- Surface Area Element (if the surface is given by $\vec{r}(u, v)$):

$$
d s=\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d A
$$

- Stokes Theorem:

Suppose that \mathbf{S} is an oriented, piecewise-smooth surface, bounded by the simple closed, piecewise-smooth boundary curve $\partial \mathbf{S}$ having positive orientation. Let $\vec{F}(x, y, z)$ be a vector field whose components have continuous first partial derivatives in some open region containing \mathbf{S}. Then,

$$
\int_{\partial S} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S
$$

- For $\vec{r}(t)=<x(t), y(t), z(t)>$,

$$
d \vec{r}=<d x, d y, d z>=<x^{\prime}, y^{\prime}, z^{\prime}>d t
$$

