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Range test methods

Idea: For nonlinear inverse scattering problem, design an
ill-posed linear integral equation of the form

Aϕ = fz or AΓϕ = f

with a right hand side f depending on a point z or an operator A
depending on a closed curve Γ.

Via solvability of this equation
decide on whether

the point z belongs to the unknown scatterer or not
or the scatterer lies in the interior of the curve Γ or not.
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Scattering from point sources

S1

S2

D

Ν

Incident Wave:

ui(x) =
n∑

j=1

cjΦ(x , sj)

D bounded smooth domain in R2

us ∈ C(R2\D) ∩ C2(R2\D)

Helmholtz equation:

∆us + k2us = 0 in R2\D

Boundary condition:

us = −ui on ∂D

Sommerfeld radiation condition:

∂us

∂r
− ikus = o

(
1√
r

)
, r = |x | → ∞
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Fundamental solution

Φ(x , y) =
i
4

H(1)
0

(
k |x − y |

)
, x 6= y

−∆Φ(., y)− k2Φ(., y) = δy
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Scattering from point sources

S1

S2

D

Ν

Incident Wave:

ui(x) =
n∑

j=1

cjΦ(x , sj)

D bounded smooth domain in R2

us ∈ C(R2\D) ∩ C2(R2\D)

Helmholtz equation (u := ui + us):

−∆u − k2u =
n∑

j=1

cjδsj in R2\D

Boundary condition:

u = 0 on ∂D

Sommerfeld radiation condition:

∂u
∂r

− iku = o
(

1√
r

)
, r = |x | → ∞
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The inverse problem



−∆u − k2u =
n∑

j=1

cjδsj in R2\D

u = 0 on ∂D

∂u
∂r

− iku = o
(

1√
r

)
, r = |x | → ∞

Inverse source problem
Given:

the domain D

the normal derivative
∂u
∂ν

= g on ∂D

Find:
positions sj and intensities cj of the sources
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Inverse Problem

Identifiability
The positions sj and intensities cj of the sources are uniquely

determined by the normal derivative
∂u
∂ν

= g on ∂D.
(Follows from Holmgren’s theorem.)

Non-linearity
The inverse problem is non-linear with respect to the
positions sj of the sources.

Ill-posedness
The solution of the inverse problem does not depend
continuously on the data.
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Reciprocity relation

Total field: 
−∆u − k2u =

∑n
j=1 cjδsj in R2\D

u = 0,
∂u
∂ν

= g on ∂D
∂u
∂r

− iku = o
(

1√
r

)
, r = |x | → ∞

Green’s theorem:
For any solution v of the Helmholtz equation in R2\D satisfying
the radiation condition we have

n∑
j=1

cjv(sj) =

∫
∂D

vg ds
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Reciprocity relation

Reciprocity relation

For any radiating solution v to the Helmholtz equation in R2\D
we have

n∑
j=1

cjv(sj) =

∫
∂D

vg ds

Choose test functions v1, . . . vm with m ≥ 3n to obtain
overdetermined system of equations

n∑
j=1

cjv`(sj) =

∫
∂D

v`g ds, ` = 1, . . . ,m.

Solve iteratively via linearization, i.e., by Newton iterations.
Questions:

How to choose the test functions v`?
How to obtain an initial guess?
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Initial guess via range test method

Denote by N the Neumann-to-Dirichlet operator for the exterior
domain R2\D, that is,

N :
∂v
∂ν

∣∣∣∣
∂D
7→ v |∂D ,

for solutions v to Helmholtz equation in R2\D satysfying the
radiation condition.

Denote by u0 be the solution to the exterior Neumann problem
with boundary condition

∂u0

∂ν
= g on ∂D,

that is, Ng = u0|∂D.
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Initial guess via range test method

D

G

G

We can represent as a single-layer potential

u(x)−u0(x) =

∫
∂D

Φ(x , y)ψ(y)ds(y)+

∫
Γ
Φ(x , y)ϕ(y)ds(y), x ∈ G,

if and only if sj /∈ G for j = 1,2, . . . ,n.

Use boundary conditions u − u0 = −Ng and ∂νu − ∂νu0 = 0 on
∂D to derive integral equation of the first kind for ϕ.
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Initial guess via range test method

Define compact operators V ,W ,A : L2(Γ) → L2(∂D) by

(Vϕ)(x) :=

∫
Γ
Φ(x , y)ϕ(y) ds(y), x ∈ ∂D,

and
(Wϕ)(x) :=

∫
Γ

∂Φ(x , y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D.

and A := −V + NW .

Theorem

Assume that k2 is not a Dirichlet eigenvalue of the negative
Laplacian neither for G nor for D. Then the ill-posed linear
operator equation

Aϕ = Ng

is solvable for ϕ if and only if sj /∈ G for j = 1,2, . . . ,n.

Question: How to check solvability numerically?
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Tikohonov regularization

Approximate the ill-posed equation

Aϕ = f

by the well-posed equation

αϕα + A∗Aϕα = A∗f

Assume that A and A∗ are injective. Then the limit

lim
α→0

ϕα

exists if and only if the ill-posed equation is solvable.
Check solvability:

Perform Tikhonov regularization for a couple of small
regularization parameters.
If the solution ϕα changes only slightly, then the equation is
considered solvable.
Otherwise, the equation is considered unsolvable.
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Injectivity and Dense Range

Theorem

The operator A = −V + NW is injective provided k2 is not a
Dirichlet eigenvalue of the negative Laplacian for D ∪G.

Theorem

The operator A := −V + NW has dense range provided k2 is
not a Dirichlet eigenvalue of the negative Laplacian for D.
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Check solvability

D

G

G

Aϕ = Ng
αϕα + A∗Aϕα = A∗Ng

Start with a circle Γ close to ∂D.
Enlarge the circle while the equation is solvable.
When it becomes unsolvable, use a circle with a bump
for Γ and rotate it while testing solvability.
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Integral equation of the second kind

ϕ(x) +

∫ 1

0
K (x , y)ϕ(y) dy = f (x), 0 ≤ x ≤ 1

Approximate solution via trapezoidal rule:

ϕ` + h
n∑

j=0

′K (`h, jh)ϕj = f (`h), ` = 0,1, . . . ,n

Linear system for approximations ϕ` ≈ ϕ(`h).
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Integral equation of the second kind

ϕ(x)− 1
2

∫ 1

0
(x + 1)e−xyϕ(y)dy = e−x − 1

2
+

1
2

e−(x+1)

has solution ϕ(x) = e−x

Trapezoidal rule

n x = 0 x = 0.5 x = 1

4 -0.007146 -0.010816 -0.015479
8 -0.001788 -0.002711 -0.003882

16 -0.000447 -0.000678 -0.000971
32 -0.000112 -0.000170 -0.000243
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Integral equation of the second kind

ϕ(x)− 1
2

∫ 1

0
(x + 1)e−xyϕ(y)dy = e−x − 1

2
+

1
2

e−(x+1)

has solution ϕ(x) = e−x

Simpson rule

n x = 0 x = 0.5 x = 1

4 -0.00006652 -0.00010905 -0.00021416
8 -0.00000422 -0.00000692 -0.00001366

16 -0.00000026 -0.00000043 -0.00000086
32 -0.00000002 -0.00000003 -0.00000005

Rainer Kress A range test method for an inverse source problem



Integral equation of the first kind

∫ 1

0
K (x , y)ϕ(y) dy = f (x), 0 ≤ x ≤ 1

Approximate solution via trapezoidal rule:

h
n∑

j=0

′K (`h, jh)ϕj = f (`h), ` = 0,1, . . . ,n

Linear system for approximations ϕ` ≈ ϕ(`h).
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Integral equation of the first kind

∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1)

has solution ϕ(x) = e−x

Trapezoidal rule

n x = 0 x = 0.5 x = 1

4 0.4057 0.3705 0.1704
8 -4.5989 14.6094 -4.4770

16 -8.5957 2.2626 -153.4805
32 3.8965 -32.2907 22.5570
64 -88.6474 -6.4484 -182.6745
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Integral equation of the first kind

∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1)

has solution ϕ(x) = e−x

Simpson rule

n x = 0 x = 0.5 x = 1

4 0.0997 0.2176 0.0566
8 -0.5463 6.0868 -1.7274

16 -15.4796 50.5015 -53.8837
32 24.5929 -24.1767 67.9655
64 23.7868 -17.5992 419.4284
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Tikhonov regularization∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1) has solution ϕ(x) = e−x

α = 10−8 n x = 0 x = 0.5 x = 1

16 -0.000359 -0.000002 0.000209
32 -0.000193 -0.000014 0.000149
64 -0.000183 0.000015 0.000145

128 -0.000182 -0.000015 0.000145

α = 10−10 n x = 0 x = 0.5 x = 1

16 -0.000455 -0.000022 0.000277
32 -0.000042 -0.000001 0.000017
64 -0.000011 -0.000000 -0.000001

128 -0.000008 -0.000002 0.000002
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Tikhonov regularization

∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1) has solution ϕ(x) = e−x

α = 10−8 n x = 0 x = 0.5 x = 1

32 0.999806 0.606516 0.368028
64 0.999816 0.606515 0.368024

128 0.999817 0.606515 0.368024

α = 10−10 n x = 0 x = 0.5 x = 1

32 0.999957 0.606528 0.367896
64 0.999988 0.606529 0.367878

128 0.999991 0.606527 0.367881
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Tikhonov regularization

∫ 1

0
(x + 1)e−xyϕ(y)dy =

1
2
−

∣∣∣∣1
2
− x

∣∣∣∣ has no solution

α = 10−8 n x = 0 x = 0.5 x = 1

32 12.3108 61.1597 -178.454
64 12.2942 61.1537 -178.438

128 12.2931 61.1533 -178.437

α = 10−10 n x = 0 x = 0.5 x = 1

32 1180.66 419.818 514.502
64 1181.06 419.593 513.926

128 1181.09 419.579 513.891
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Tikhonov regularization

∫ 1

0
(x + 1)e−xyϕ(y)dy = 1 ???

α = 10−8 n x = 0 x = 0.5 x = 1

32 -24.1059 -8.0327 45.9362
64 -24.1052 -8.0314 45.9311

128 -24.1052 -8.0314 45.9308

α = 10−10 n x = 0 x = 0.5 x = 1

32 -84.0948 -10.3093 131.5763
64 -84.1591 -10.3218 131.5725

128 -84.1632 -10.3226 131.5722
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Example for inverse source problem
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Example for inverse source problem
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