

Coupling Interface Method for Interface Problems

Yu-Chen Shu

¹Department of Surgery, National Taiwan University Hospital, Taiwan ²Research Center for Applied Sciences, Academia Sinica, Taiwan

Outline

- Introduction of Interface problems
- Coupling Interface Method for elliptic interface problems

• • • • • • • • • •

Coupling Interface Method for wave-guide modes of surface plasmon

Concluding Remarks

Outline

- Introduction of interface problems
- Coupling Interface Method for elliptic interface problem

• • • • • • • • • •

Coupling Interface Method for wave-guide modes of surface plasmon

Concluding Remarks

Interface Problems

Interface problems appears in many fields such as fluid dynamics, solid mechanics, electrodynamics, material sciences, biochemistry, and etc..

Interface Problems: Two examples

Molecules in ionic solution:Poisson-Boltzmann Equation

Surface plasmon: Maxwell's Equations

quoted from the article: Nature, vol. 424, p. 824, 2003.

Molecules in ionic solution

- A continuum model for computing the electrostatic potential in an ionic solution.
- Based on Gauss' law and Boltzmann distribution law.

Poisson-Boltzmann Equation

$$\nabla \cdot (\boldsymbol{\varepsilon}(\mathbf{r}) \nabla \boldsymbol{\psi}(\mathbf{r})) = -\sum_{i} c_{i} z_{i} q \lambda(\mathbf{r}) \exp\left(\frac{-z_{i} q \boldsymbol{\psi}(\mathbf{r})}{k_{B} T}\right) - \sum_{j} z_{j} q \delta(\mathbf{r} - \mathbf{r}_{j})$$

r : location

molecules

- *E* : dielectric coefficient
 - ψ : electrostatic potential (unknown)
- c_i : concentration of the *i*-th ion at a distance of infinity
- z_i, z_j : the number of charges of the *i*-th ion, *j*-th point charge
- \blacksquare q : charge of a proton
- *k_B*: Boltzmann constant
- T: temperature
- λ : accessibility to the ions in the solution. 1 in the solution.

• • • • • • • •

• δ : delta function

Linearized Poisson-Boltzmann Equation

$$\nabla \cdot (\boldsymbol{\varepsilon}(\mathbf{r}) \nabla \boldsymbol{\psi}(\mathbf{r})) = -\sum_{i} c_{i} z_{i} q \lambda(\mathbf{r}) \exp\left(\frac{-z_{i} q \boldsymbol{\psi}(\mathbf{r})}{k_{B} T}\right) - \sum_{j} z_{j} q \delta(\mathbf{r} - \mathbf{r}_{j})$$

Debye-Hückel approximation: when $z_i q \psi << k_B T$

sufficiently low concentrations of ions

$$\exp\left(\frac{-z_i q \psi(\mathbf{r})}{k_B T}\right) \approx 1 - \frac{z_i q \psi(\mathbf{r})}{k_B T}$$

Electro-neutrality: $\sum_{i} c_i z_i q \lambda(\mathbf{r}) = 0$

• • • • •

$$\nabla \cdot \left(\boldsymbol{\varepsilon}(\mathbf{r}) \nabla \boldsymbol{\psi}(\mathbf{r}) \right) = \left(\sum_{i} \frac{c_{i} z_{i}^{2} q^{2}}{k_{B} T} \lambda(\mathbf{r}) \right) \boldsymbol{\psi}(\mathbf{r}) - \sum_{j} z_{j} q \, \delta(\mathbf{r} - \mathbf{r}_{j})$$

•

Model problem

- Governing equation: $-\nabla \cdot (\varepsilon(\mathbf{r})\nabla u(\mathbf{r})) + Ku(\mathbf{r}) = f$
- Dielectric coefficient: $\varepsilon(\mathbf{r}) = \begin{cases} \varepsilon^{-}, \mathbf{r} \in \Omega^{-} \\ \varepsilon^{+}, \mathbf{r} \in \Omega^{+} \end{cases}$
- Interface conditions: $[u]_{\Gamma} = 0, [\mathcal{E}\nabla u \cdot \mathbf{n}]_{\Gamma} = 0$

No ion-exclusion layer

Some approaches

Body-fitting approaches

 W. Wang, A jump condition capturing finite difference scheme for elliptic interface problems

Finite element approaches

- Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite element formulation
- J. Huang, J. Zou, A mortar element method for elliptic problems with discontinuous coefficients

Finite difference approaches

- A. Tornberg, B. Engquist, Regularization techniques for numerical approximation of PDEs with singularities
- C. Peskin, The immersed boundary method

 R. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources

Y. Zhou, S. Zhao, M. Feig, G. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

What are the problems?

• •

- Regularization techniques: simple but they are only first-order accurate.
- Immersed interface method: The discretization may not exist even the maximum principal preserving scheme is used.
- High order matched interface and boundary method: The stencil is large. It is not suitable for complex interfaces.

Immersed interface method (2D)

Second order Taylor expansion at an interface point with a local coordinate (ξ , η). (12 unknowns)

$$\begin{cases} \xi = (x - \hat{x})\cos\theta + (y - \hat{y})\sin\theta\\ \eta = -(x - \hat{x})\sin\theta + (y - \hat{y})\cos\theta \end{cases}$$

Rewrite the derivatives in one side

Immersed interface method (2D)

With 6 grid values, the immersed interface method solve a 6x6 matrix to make the truncation error of u_{xx} + u_{yy} to be O(h). However, the matrix may not be solvable in some cases.

Immersed interface method (2D)

Maximum principle preserving scheme: They use 9 grid values to find better coefficients. However, they need to solve a linear programming problem and the coefficients are not feasible in some cases.

Our approach: coupling interface method

- Finite difference approach on Cartesian grid.
- Dimension-by-dimension approach.
- The information of each dimension is coupled by the interface conditions.

Advantages:

- Accuracy: second-order in maximum norm.
- Simplicity: smaller size of stencil, easy to program.
- Robustness: capable to handle complex interfaces.
- Speed: linear computational complexity

Introduction of Interface problems

Coupling Interface Method for elliptic interface problem

• • • • • • • • • •

Coupling Interface Method for wave-guide modes of surface plasmon

Concluding Remarks

Coupling Interface Method (CIM2): 1D

- **Governing equation:** $-\varepsilon u'' = f$
- Suppose the interface is located in $[x_j, x_{j+1})$
- Standard finite difference method on interior points.

$$u''(x_{i}) = \lim_{h \to 0} \frac{1}{h^{2}} (u(x_{i} - h) - 2u(x_{i}) + u(x_{i} + h))$$

$$= \frac{1}{h^{2}} (u(x_{i} - h) - 2u(x_{i}) + u(x_{i} + h)) + O(h^{2})$$

$$\approx \frac{1}{h^{2}} (u_{i-1} - 2u_{i} + u_{i+1}) \quad \text{when } i \neq j, j + 1$$

 u_{j-1} u_{j} αh βh u_{j+1} u_{j+2} ε^{-} \hat{x} ε^{+}

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 1D

Quadratic approximations on both side of the interface.

$$u(x) = \begin{cases} u_{j} + \frac{(u_{j} - u_{j-1})}{h} (x - x_{j}) + \frac{1}{2} u_{j}''(x - x_{j}) (x - x_{j-1}) + O(h^{3}), x < \hat{x} \\ u_{j+1} + \frac{(u_{j+2} - u_{j+1})}{h} (x - x_{j+1}) + \frac{1}{2} u_{j+1}''(x - x_{j+1}) (x - x_{j+2}) + O(h^{3}), x > \hat{x} \end{cases}$$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 1D

$$u(x) = \begin{cases} u_{j} + \frac{(u_{j} - u_{j-1})}{h} (x - x_{j}) + \frac{1}{2} u_{j}''(x - x_{j}) (x - x_{j-1}) + O(h^{3}), x < \hat{x} \\ u_{j+1} + \frac{(u_{j+2} - u_{j+1})}{h} (x - x_{j+1}) + \frac{1}{2} u_{j+1}''(x - x_{j+1}) (x - x_{j+2}) + O(h^{3}), x > \hat{x} \end{cases}$$

A linear system of the second order derivatives are given by two interface conditions:

$$\begin{cases} [u]_{\hat{x}} = u(\hat{x}^{+}) - u(\hat{x}^{-}) \\ [\varepsilon u']_{\hat{x}} = \varepsilon^{+}u'(\hat{x}^{+}) - \varepsilon^{-}u'(\hat{x}^{-}) \end{cases}$$

$$\begin{cases} \frac{1}{2}(\alpha + \alpha^{2})u_{j}^{"} - \frac{1}{2}(\beta + \beta^{2})u_{j+1}^{"} = \frac{1}{h^{2}}(\alpha u_{j-1} - (1 + \alpha)u_{j} + (1 + \beta)u_{j+1} - \beta u_{j+2} - [u]_{\hat{x}}) + O(h) \\ \left(\frac{1}{2} + \alpha\right)\varepsilon^{-}u_{j}^{"} + \left(\frac{1}{2} + \beta\right)\varepsilon^{+}u_{j+1}^{"} = \frac{1}{h^{2}}(\varepsilon^{-}u_{j-1} - \varepsilon^{-}u_{j} - \varepsilon^{+}u_{j+1} + \varepsilon^{+}u_{j+2} - h[\varepsilon u']_{\hat{x}}) + O(h) \end{cases}$$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 1D

The second order derivatives can be approximated by the linear combination of four grid values and two interface conditions.

$$\begin{cases} \frac{1}{2}(\alpha + \alpha^2)u_j^{"} - \frac{1}{2}(\beta + \beta^2)u_{j+1}^{"} = \frac{1}{h^2}(\alpha u_{j-1} - (1 + \alpha)u_j + (1 + \beta)u_{j+1} - \beta u_{j+2} - [u]_{\hat{x}}) + O(h) \\ (\frac{1}{2} + \alpha)\varepsilon^{-}u_j^{"} + (\frac{1}{2} + \beta)\varepsilon^{+}u_{j+1}^{"} = \frac{1}{h^2}(\varepsilon^{-}u_{j-1} - \varepsilon^{-}u_j - \varepsilon^{+}u_{j+1} + \varepsilon^{+}u_{j+2} - h[\varepsilon u']_{\hat{x}}) + O(h) \\ = \frac{1}{h^2}(\varepsilon^{-}u_{j-1} - \varepsilon^{-}u_j - \varepsilon^{+}u_{j+1} + \varepsilon^{+}u_{j+2} - h[\varepsilon u']_{\hat{x}}) + O(h) \\ = \frac{1}{h^2}(\varepsilon^{-}u_{j-1} - \varepsilon^{-}u_j - \varepsilon^{+}u_{j+1} + \varepsilon^{+}u_{j+2} - h[\varepsilon u']_{\hat{x}}) + O(h) \end{cases}$$

$$\begin{aligned} u_{j}^{"} &= \frac{1}{h^{2}} \Big(c_{j,-1} u_{j-1} + c_{j,0} u_{j} + c_{j,1} u_{j+1} + c_{j,2} u_{j+2} + \tau_{j} [u]_{\hat{x}} + \sigma_{j} h[\varepsilon u']_{\hat{x}} \Big) + O(h) \\ &= \frac{1}{h^{2}} \Big(\mathcal{L}_{j} \Big(u_{j-1}, u_{j}, u_{j+1}, u_{j+2} \Big) + \tau_{j} [u]_{\hat{x}} + \sigma_{j} h[\varepsilon u']_{\hat{x}} \Big) + O(h) \\ u_{j+1}^{"} &= \frac{1}{h^{2}} \Big(c_{j+1,-1} u_{j-1} + c_{j+1,0} u_{j} + c_{j+1,1} u_{j+1} + c_{j+1,2} u_{j+2} + \tau_{j+1} [u]_{\hat{x}} + \sigma_{j+1} h[\varepsilon u']_{\hat{x}} \Big) + O(h) \\ &= \frac{1}{h^{2}} \Big(\mathcal{L}_{j+1} \Big(u_{j-1}, u_{j}, u_{j+1}, u_{j+2} \Big) + \tau_{j+1} [u]_{\hat{x}} + \sigma_{j+1} h[\varepsilon u']_{\hat{x}} \Big) + O(h) \end{aligned}$$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

Governing equation: $-\varepsilon \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

- Interior points (orange and pink disks): standard finite difference method.
- On-front points (blue and red disks): Coupling interface method.
- Interface conditions at the intersection of grid lines and the interface are needed.

CIM for Elliptic Interface Problems

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

A complicated case: there are intersections in x- and ydirections.

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

Dimension-by-dimension approach

$$\frac{\partial^2 u}{\partial x^2} (\mathbf{r}_{\mathbf{j}}) = \frac{1}{h^2} \left(\mathcal{L}_{\mathbf{j},1} (u_{i-1,j}, u_{i,j}, u_{i+1,j}, u_{i+2,j}) + \tau_1 [u]_{\mathbf{\hat{r}}_1} + \sigma_1 h \left[\varepsilon \frac{\partial u}{\partial x} \right]_{\mathbf{\hat{r}}_1} \right) + O(h)$$
$$\frac{\partial^2 u}{\partial y^2} (\mathbf{r}_{\mathbf{j}}) = \frac{1}{h^2} \left(\mathcal{L}_{\mathbf{j},2} (u_{i,j-1}, u_{i,j}, u_{i,j+1}, u_{i,j+2}) + \tau_2 [u]_{\mathbf{\hat{r}}_2} + \sigma_2 h \left[\varepsilon \frac{\partial u}{\partial y} \right]_{\mathbf{\hat{r}}_2} \right) + O(h)$$

Decomposition of the interface conditions $\begin{bmatrix} \varepsilon \frac{\partial u}{\partial x} \end{bmatrix}_{\hat{\mathbf{r}}_1} = [\varepsilon \nabla u \cdot \mathbf{n}_1]_{\hat{\mathbf{r}}_1} (\mathbf{n}_1 \cdot \mathbf{e}_1) + (\varepsilon^+ [\nabla u \cdot \mathbf{t}_1]_{\hat{\mathbf{r}}_1} + [\varepsilon]_{\hat{\mathbf{r}}_1} \nabla u^- (\hat{\mathbf{r}}_1) \cdot \mathbf{t}_1) (\mathbf{t}_1 \cdot \mathbf{e}_1)$ $\begin{bmatrix} \varepsilon \frac{\partial u}{\partial y} \end{bmatrix}_{\hat{\mathbf{r}}_2} = [\varepsilon \nabla u \cdot \mathbf{n}_2]_{\hat{\mathbf{r}}_2} (\mathbf{n}_2 \cdot \mathbf{e}_2) + (\varepsilon^+ [\nabla u \cdot \mathbf{t}_2]_{\hat{\mathbf{r}}_2} + [\varepsilon]_{\hat{\mathbf{r}}_2} \nabla u^- (\hat{\mathbf{r}}_2) \cdot \mathbf{t}_2) (\mathbf{t}_2 \cdot \mathbf{e}_2)$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

One-side gradients and cross derivative

$$\nabla u(\hat{\mathbf{r}}_{1}) = \begin{bmatrix} \frac{1}{h} (u_{i,j} - u_{i-1,j}) + (\frac{1}{2} + \alpha_{1}) h \frac{\partial^{2} u}{\partial x^{2}} (\mathbf{r}_{j}) + O(h^{2}) \\ \frac{1}{h} (u_{i,j} - u_{i,j-1}) + \frac{1}{2} h \frac{\partial^{2} u}{\partial y^{2}} (\mathbf{r}_{j}) + \alpha_{1} h \frac{\partial^{2} u}{\partial x \partial y} (\mathbf{r}_{j}) + O(h^{2}) \\ \nabla u(\hat{\mathbf{r}}_{2}) = \begin{bmatrix} \frac{1}{h} (u_{i,j} - u_{i-1,j}) + \frac{1}{2} h \frac{\partial^{2} u}{\partial x^{2}} (\mathbf{r}_{j}) + \alpha_{2} h \frac{\partial^{2} u}{\partial x \partial y} (\mathbf{r}_{j}) O(h^{2}) \\ \frac{1}{h} (u_{i,j} - u_{i,j-1}) + (\frac{1}{2} + \alpha_{2}) h \frac{\partial^{2} u}{\partial y^{2}} (\mathbf{r}_{j}) + O(h^{2}) \\ \end{bmatrix} \\ \frac{\partial^{2} u}{\partial x \partial y} (\mathbf{r}_{j}) = \frac{1}{h^{2}} (u_{i,j} - u_{i-1,j} - u_{i,j-1} + u_{i-1,j-1}) + O(h) \end{bmatrix}$$

CIM for Elliptic Interface Problems

Coupling Interface Method (CIM2): 2D

A coupling system for principal second order derivatives:

$$\begin{bmatrix} 1 - \left(\frac{1}{2} + \alpha_{1}\right)\sigma_{1}[\varepsilon]_{\hat{\mathbf{r}}_{1}}(\mathbf{t}_{1} \cdot \mathbf{e}_{1})^{2} & -\frac{1}{2}\sigma_{1}[\varepsilon]_{\hat{\mathbf{r}}_{1}}(\mathbf{t}_{1} \cdot \mathbf{e}_{1})(\mathbf{t}_{1} \cdot \mathbf{e}_{2}) \\ -\frac{1}{2}\sigma_{2}[\varepsilon]_{\hat{\mathbf{r}}_{2}}(\mathbf{t}_{2} \cdot \mathbf{e}_{1})(\mathbf{t}_{2} \cdot \mathbf{e}_{2}) & 1 - \left(\frac{1}{2} + \alpha_{2}\right)\sigma_{2}[\varepsilon]_{\hat{\mathbf{r}}_{2}}(\mathbf{t}_{2} \cdot \mathbf{e}_{2})^{2} \end{bmatrix} \begin{bmatrix} \frac{\partial^{2}u}{\partial x^{2}}(\mathbf{r}_{j}) \\ \frac{\partial^{2}u}{\partial x^{2}}(\mathbf{r}_{j}) \end{bmatrix} \\ = \frac{1}{h^{2}} \begin{bmatrix} (\mathcal{L}_{\mathbf{j},1} + \mathcal{J}_{\mathbf{j},1})u + \mathcal{J}_{\mathbf{j},1} \\ (\mathcal{L}_{\mathbf{j},2} + \mathcal{J}_{\mathbf{j},2})u + \mathcal{J}_{\mathbf{j},2} \end{bmatrix} + \begin{bmatrix} O(h) \\ O(h) \end{bmatrix}$$

The determinant is positive and bounded when *ɛ* is positive and mesh size is fine enough.
 (*Kh* < *C*)

•

CIM for Elliptic Interface Problems

CIM2: d dimensions

- Dimension-by-dimension approach $\partial^2 u(\cdot) = 1$ or $(\cdot) = 1$
 - $\frac{\partial^2 u}{\partial x_k^2} (\mathbf{r}_{\mathbf{j}}) = \frac{1}{h^2} \mathcal{L}_{\mathbf{j},k} (u_{\mathbf{j}-\mathbf{e}_k}, u_{\mathbf{j}}, u_{\mathbf{j}+\mathbf{e}_k}, u_{\mathbf{j}+2\mathbf{e}_k}) + \tau_k [u]_{\hat{\mathbf{r}}_k} + \sigma_k [\mathcal{E} \nabla u \cdot \mathbf{e}_k]_{\hat{\mathbf{r}}_k}$
- Project the interface condition on the normal and the selected tangential directions:

 $\left[\boldsymbol{\mathcal{E}} \nabla \boldsymbol{u} \cdot \mathbf{e}_{k} \right]_{\hat{\mathbf{r}}_{k}} = \left[\boldsymbol{\mathcal{E}} \nabla \boldsymbol{u} \cdot \mathbf{n}_{k} \right]_{\hat{\mathbf{r}}_{k}} \mathbf{n}_{k} \cdot \mathbf{e}_{k} + \left(\boldsymbol{\mathcal{E}}^{+} \left[\nabla \boldsymbol{u} \cdot \mathbf{t}_{k} \right]_{\hat{\mathbf{r}}_{k}} + \left[\boldsymbol{\mathcal{E}} \right]_{\hat{\mathbf{r}}_{k}} \nabla \boldsymbol{u}_{\hat{\mathbf{r}}_{k}}^{-} \cdot \mathbf{t}_{k} \right) \mathbf{t}_{k} \cdot \mathbf{e}_{k}$

The one side gradient is approximated by the grid values and the second order derivatives (principal and cross):

$$\nabla u_{\hat{\mathbf{r}}_{k}}^{-} = \frac{1}{h} \left[u_{\mathbf{j}} - u_{\mathbf{j}-\mathbf{e}_{k}} + \frac{h^{2}}{2} \frac{\partial^{2} u}{\partial x_{k}^{2}} (\mathbf{r}_{\mathbf{j}}) + \alpha_{k} \frac{\partial^{2} u}{\partial x_{k} \partial x_{\ell}} (\mathbf{r}_{\mathbf{j}}) \right]_{\ell=1}^{d}$$

Approximated by near-by grid values

CIM for Elliptic Interface Problems

A coupled system for principal derivatives

A coupled system for principal second order derivatives

$$\mathbf{M}\left[\frac{\partial^2 u}{\partial x_k^2}(\mathbf{r}_{\mathbf{j}})\right]_{k=1}^d = \frac{1}{h^2} \left[\left(\boldsymbol{\mathcal{L}}_{\mathbf{j},k} + \boldsymbol{\mathcal{I}}_{\mathbf{j},k}\right) \mathbf{u} + \boldsymbol{\mathcal{J}}_{\mathbf{j},k} \right]_{k=1}^d$$

where

• • •

$$\mathbf{M}_{k,\ell} = \delta_{k,\ell} - \sigma_k [\varepsilon]_{\mathbf{\hat{r}}_k} \left(\frac{1}{2} + \alpha_k \delta_{k,\ell}\right) (\mathbf{t}_k \cdot \mathbf{e}_k) (\mathbf{t}_k \cdot \mathbf{e}_\ell)$$

 $\mathcal{I}_{\mathbf{j},k}$: collection of grid values in the second and third steps.

 $\mathbf{J}_{\mathbf{j},k}$: collection of the terms of interface conditions.

Determinant of M is positive and bounded when ε is positive and the mesh size is fine enough.

CIM for Elliptic Interface Problems

Department of Surgery, National Taiwan University Hospital

• •

 Ω^+

Comparisons with other methods (2D)

The ratio of the dielectric coefficient is 1000

	CIM2			DIIM	MIIM	
	N	CPU	$\ \nabla u - \nabla u_e\ _{\infty,\Gamma}$	$\ u - u_e\ _{\infty}$	$\ u-u_e\ _{\infty}$	$\ u-u_e\ _\infty$
1.10	32	0.04	$6.841 imes 10^{-3}$	$2.732 imes10^{-4}$	$2.083 imes10^{-4}$	$5.136 imes10^{-4}$
1:10	UU 64	0.19	$1.920 imes10^{-3}$	$3.875 imes10^{-5}$	$5.296 imes10^{-5}$	$8.235 imes10^{-5}$
	128	1.03	$5.156 imes10^{-4}$	$5.337 imes10^{-6}$	$1.330 imes10^{-5}$	$1.869 imes10^{-5}$
	256	4.84	$1.345 imes10^{-4}$	$7.241 imes10^{-7}$	$3.330 imes10^{-6}$	$4.026 imes10^{-6}$
	512	22.52	$3.463 imes10^{-5}$	$9.891 imes10^{-8}$	_	$9.430 imes10^{-7}$
			CIM2		DIIM	MIIM
1.0 0		CPU	$\ \nabla u - \nabla u_e\ _{\infty,\Gamma}$	$\ u-u_e\ _\infty$	$\ u-u_e\ _\infty$	$\ u-u_e\ _{\infty}$
1.0.0	32	0.03	$8.030 imes10^{0}$	4.278×10^{-1}	$4.971 imes10^{0}$	$9.346 imes10^{0}$
	64	0.18	$1.829 imes10^{0}$	1.260×10^{-1}	$1.176 imes10^{0}$	$2.006 imes10^{0}$
	128	1.03	$4.658 imes10^{-1}$	$3.773 imes10^{-2}$	$2.900 imes 10^{-1}$	$5.808 imes10^{-1}$
	256	5.3	$1.254 imes10^{-1}$	$1.365 imes10^{-2}$	$7.086 imes10^{-2}$	$1.374 imes10^{-1}$
	512	23.48	$4.141 imes10^{-2}$	2.446×10^{-3}	—	$3.580 imes10^{-2}$
Ω^{-}						
		O(N ²)	O(h²)	O(h²)		
	•	•	• •	•	• •	•

CIM for Elliptic Interface Problems

Comparisons with other methods (2D)

The ratio of the dielectric coefficient is 10

			CIM2		DIIM	EJIIM	MIIM
	N	CPU	$\ abla u - abla u_e\ _{\infty,\Gamma}$	$\ u-u_e\ _{\infty}$	$\ u-u_e\ _\infty$	$\ u-u_e\ _{\infty}$	$\ u-u_e\ _\infty$
- 1:10	20	0.00	$1.557 imes10^{-2}$	$1.259 imes10^{-3}$	$5.378 imes10^{-4}$	$7.6 imes10^{-4}$	_
	40	0.02	$4.714 imes10^{-3}$	$2.565 imes10^{-4}$	$1.378 imes10^{-4}$	$2.4 imes10^{-4}$	$4.864 imes10^{-4}$
	80	0.17	$1.305 imes10^{-3}$	$5.215 imes10^{-5}$	$3.470 imes10^{-5}$	$7.9 imes10^{-5}$	$1.448 imes 10^{-4}$
	160	0.74	$3.462 imes 10^{-4}$	$1.142 imes 10^{-5}$	$8.704 imes10^{-6}$	$2.2 imes10^{-5}$	$3.012 imes10^{-5}$
	320	3.65	$8.948 imes10^{-5}$	$2.725 imes 10^{-6}$	$2.177 imes10^{-6}$	$5.3 imes10^{-6}$	$8.226 imes10^{-6}$
	640	15.86	$2.276 imes10^{-5}$	$6.740 imes10^{-7}$	_	_	$2.060 imes10^{-6}$
							•
	1		CIM	1	MID		

		CIM	MIB	IIM	
n	CPU	$\ abla u - abla u_e\ _{\infty,\Gamma}$	$\ u-u_e\ _\infty$	$\ u-u_e\ _\infty$	$\ u-u_e\ _\infty$
20	0.01	$1.471 imes10^{-3}$	$3.158 imes10^{-4}$	$2.852 imes10^{-4}$	$2.167 imes 10^{-3}$
40	0.04	$3.087 imes10^{-4}$	$7.622 imes 10^{-5}$	$7.707 imes10^{-5}$	$5.000 imes10^{-4}$
80	0.16	$9.474 imes10^{-5}$	$2.036 imes10^{-5}$	$2.069 imes10^{-5}$	$1.131 imes10^{-4}$
160	0.83	$2.001 imes10^{-5}$	$4.973 imes10^{-6}$	$5.131 imes10^{-6}$	$2.748 imes10^{-5}$
320	4.14	$7.054 imes10^{-6}$	$1.329 imes 10^{-6}$	$1.257 imes10^{-6}$	$6.781 imes10^{-6}$
	n 20 40 80 160 320	$\begin{array}{c c} n & CPU \\ \hline 20 & 0.01 \\ 40 & 0.04 \\ 80 & 0.16 \\ 160 & 0.83 \\ 320 & 4.14 \\ \end{array}$	$\begin{array}{c c c c c c c c c } & & & & & & & & & \\ \hline n & & & & & & & & \\ \hline n & & & & & & & \\ \hline 20 & & & & & & & & \\ \hline 20 & & & & & & & & \\ \hline 40 & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 40 & & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 80 & & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 80 & & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & & \\ \hline 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & & \\ 10 & & & & & \\ 10 & & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & & & \\ 10 & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CIM for Elliptic Interface Problems

Comparisons with other methods (3D)

The ratio of the dielectric coefficient is 1, 10, 1000

			(MIIM, 27 points			
	N	CPU	$\ abla u - abla u_e\ _{\infty,\Gamma}$	$\ u_a - u_e\ _{\infty} / \ u_e\ _{\infty}$	Order	$\ u_a - u_e\ _{\infty} / \ u_e\ _{\infty}$	Order
-	26	1.52	$1.005 imes10^{-2}$	$1.822 imes 10^{-4}$		1.247×10^{-3}	
1.1	52	20.5	$3.685 imes10^{-3}$	$4.153 imes10^{-5}$	2.133	$3.979 imes10^{-3}$	1.648
1.1	104	212	$9.729 imes10^{-4}$	$9.529 imes10^{-6}$	2.124	$9.592 imes10^{-4}$	2.052
	208	2355	2.540×10^{-4}	$2.230 imes10^{-6}$	2.095	_	_
			(MIIM, 27 points			
-	N	CPU	$\ abla u - abla u_e\ _{\infty,\Gamma}$	$\ u_a - u_e\ _\infty / \ u_e\ _\infty$	Order	$\ u_a-u_e\ _\infty/\ u_e\ _\infty$	Order
	26	1.45	$7.174 imes10^{-3}$	$4.332 imes10^{-4}$		$1.525 imes10^{-3}$	
1:10	52	19.14	$2.693 imes10^{-3}$	$9.240 imes10^{-5}$	2.229	$5.240 imes10^{-4}$	1.541
	104	161	$7.401 imes10^{-4}$	$1.636 imes10^{-5}$	2.498	$1.010 imes10^{-4}$	2.375
	208	1867	1.979×10^{-4}	$3.330 imes10^{-6}$	2.297	-	
	1		(CIM2	MIIM, 27 points		
	N	CPU	$\ abla u - abla u_e\ _{\infty,\Gamma}$	$\ u_a - u_e\ _{\infty} / \ u_e\ _{\infty}$	Order	$\ u_a-u_e\ _{\infty}/\ u_e\ _{\infty}$	Order
4 4 9 9 9	26	1.48	$6.825 imes10^{-3}$	$9.133 imes10^{-4}$		$3.845 imes 10^{-3}$	
1:1000	52	24.54	$2.594 imes10^{-3}$	$2.466 imes10^{-4}$	1.889	$1.111 imes 10^{-3}$	1.649
	104	209	$7.183 imes10^{-4}$	$3.447 imes 10^{-5}$	2.839	$1.605 imes10^{-4}$	2.791
•	208	3299	1.925×10^{-4}	$4.727 imes 10^{-6}$	2.866	—	
					and the second second	D	

CIM for Elliptic Interface Problems

0

Complex interface

0

- If the interface is complex, CIM2 may not be applicable at some points.
- Exceptional points are those points that CIM2 cannot be applied.
 First order approximations (CIM1) of u at those exceptional points are used.
- Due to the number of the exceptional points are O(1) in practice, second order convergence of the solution can be maintained.

Complex interfaces

CIM for Elliptic Interface Problems

Number of exceptional points

Convergence, with CIM1 and CIM2

CIM for Elliptic Interface Problems

Outline

- Introduction of Interface problems
- Coupling Interface Method for elliptic interface problem

• • • • • • • • • •

Coupling Interface Method for wave-guide modes of surface plasmon

Concluding Remarks

Surface plasmon

- Electromagnetic wave propagating along the interface between two different materials (dielectric and metal)
- Applications: magneto-optic data storage, microscopy, solar cells, sensors for detecting biological molecules, and plasmonic crystals

CIM for wave-guide modes of SP

Wave-guide modes

- Suppose the waveguide is homogeneous in the z direction
 - $\mathbf{E}(x, y, z, t) = (E_x, E_y, E_z)e^{i(k_z z \omega t)}$ $\mathbf{H}(x, y, z, t) = (H_x, H_y, H_z)e^{i(k_z z \omega t)}$
- Maxwell's equations

CIM for wave-guide modes of SP

۲.

•

Assumptions

We assume that no charges and no currents.

 $\rho = 0, \mathbf{J} = 0$

- Constitutive relations: isotropic and linear material.
- Permittivity *ɛ* and permeability *µ* do not depend on the location in each material but may depend on the frequency.

• •

 $\mathbf{D} = \varepsilon \mathbf{E}, \mathbf{B} = \boldsymbol{\mu} \mathbf{H}$

CIM for wave-guide modes of SP

Department of Surgery, National Taiwan University Hospital

Governing equations for z-component

z-component: in x-y plane $\nabla_2 = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$

$$\nabla_{2} \cdot \left(\frac{\omega \varepsilon \nabla_{2} E_{z}}{\omega^{2} \varepsilon \mu - k_{z}^{2}}\right) + \nabla_{2} \times \left(\frac{k_{z} \nabla_{2} H_{z}}{\omega^{2} \varepsilon \mu - k_{z}^{2}}\right) = \omega \varepsilon E_{z}$$
$$\nabla_{2} \cdot \left(\frac{\omega \mu \nabla_{2} H_{z}}{\omega^{2} \varepsilon \mu - k_{z}^{2}}\right) - \nabla_{2} \times \left(\frac{k_{z} \nabla_{2} E_{z}}{\omega^{2} \varepsilon \mu - k_{z}^{2}}\right) = \omega \mu H_{z}$$

Interface conditions: $[E_z]_{\Gamma} = 0, [H_z]_{\Gamma} = 0$

 $\begin{bmatrix} \frac{\omega\varepsilon}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}E_{z} \cdot \mathbf{n} \end{bmatrix}_{\Gamma} = -\begin{bmatrix} \frac{k_{z}}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}H_{z} \cdot \mathbf{s} \end{bmatrix}_{\Gamma}$ $\begin{bmatrix} \frac{\omega\varepsilon}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}H_{z} \cdot \mathbf{n} \end{bmatrix}_{\Gamma} = \begin{bmatrix} \frac{k_{z}}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}E_{z} \cdot \mathbf{s} \end{bmatrix}_{\Gamma}$ Boundary conditions: $E_{z}(x + a_{x}, y + a_{y}) = e^{i(k_{x}x + k_{y}y)}E_{z}$ $H_{z}(x + a_{x}, y + a_{y}) = e^{i(k_{x}x + k_{y}y)}H_{z}$

CIM for wave-guide modes of SP

Eigenvalue problem

Simple eigenvalue problem?

 $(\nabla_2^2 + \omega^2 \varepsilon \mu) E_z = k_z^2 E_z$ $(\nabla_2^2 + \omega^2 \varepsilon \mu) H_z = k_z^2 H_z$

With complicated interface conditions: the eigenvalue involves in the interface conditions.

$$\begin{bmatrix} \frac{\omega\varepsilon}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}E_{z} \cdot \mathbf{n} \end{bmatrix} + \begin{bmatrix} \frac{k_{z}}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}H_{z} \cdot \mathbf{s} \end{bmatrix} = 0$$
$$\begin{bmatrix} \frac{\omega\varepsilon}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}H_{z} \cdot \mathbf{n} \end{bmatrix} - \begin{bmatrix} \frac{k_{z}}{\omega^{2}\varepsilon\mu - k_{z}^{2}} \nabla_{2}E_{z} \cdot \mathbf{s} \end{bmatrix} = 0$$

CIM for wave-guide modes of SP

Some approaches

- Plane wave expansion: most common used
 - Search in the frequency such that the zero-determinant of the matrix occurs for a given wave number.

Finite difference time domain method

 Calculate the dipole spectrum for each wave number and its resonance peaks gives frequencies after enough cycles.

Multiple-scattering method

- Solve a non-linear eigenvalue problem and search for a minimum of a cost function
- They are not direct approaches.

CIM for wave-guide modes of SP

Augmented Coupling Interface Method

Direct approach:

Gives (all) wave number for a given frequency without searching.

Integrate with interfacial operator approach:

Reduce the original problem to a quadratic eigenvalue problem by introducing an interfacial variable.

Solve the problem with complicated interface conditions

Adaptive-order strategy:

Interpolating polynomials of different orders on different sides of interfaces are used to avoid the singularity of the local linear system. It also enables us to handle complex interfaces.

Solve the problem with sign-changed coefficients

CIM for wave-guide modes of SP

Interfacial operator approach

$$\begin{bmatrix} \frac{\omega \varepsilon}{\omega^2 \varepsilon \mu - k_z^2} \nabla_2 E_z \cdot \mathbf{n} \end{bmatrix}_{\Gamma} + \begin{bmatrix} \frac{k_z}{\omega^2 \varepsilon \mu - k_z^2} \nabla_2 H_z \cdot \mathbf{s} \end{bmatrix}_{\Gamma} = 0$$
$$\begin{bmatrix} \frac{\omega \varepsilon}{\omega^2 \varepsilon \mu - k_z^2} \nabla_2 H_z \cdot \mathbf{n} \end{bmatrix}_{\Gamma} - \begin{bmatrix} \frac{k_z}{\omega^2 \varepsilon \mu - k_z^2} \nabla_2 E_z \cdot \mathbf{s} \end{bmatrix}_{\Gamma} = 0$$

Re-arrange the above interface conditions to the following form:

$$\Lambda \left(\left\lfloor \frac{1}{\mu} \nabla E_z \cdot \mathbf{n} \right\rfloor_{\Gamma} + \frac{k_z}{\omega} \left\lfloor \frac{1}{\varepsilon \mu} \nabla H_z \cdot \mathbf{s} \right\rfloor_{\Gamma} \right) = k_z^2 \left[\varepsilon \nabla E_z \cdot \mathbf{n} \right]_{\Gamma} \coloneqq k_z^2 J_E$$

$$\Lambda \left[\left[\frac{1}{\varepsilon} \nabla H_z \cdot \mathbf{n} \right]_{\Gamma} - \frac{\kappa_z}{\omega} \left[\frac{1}{\varepsilon \mu} \nabla E_z \cdot \mathbf{s} \right]_{\Gamma} \right] = k_z^2 \left[\mu \nabla H_z \cdot \mathbf{n} \right]_{\Gamma} \coloneqq k_z^2 J_H$$

• where
$$\Lambda = \omega^2 \varepsilon^+ \varepsilon^- \mu^+ \mu^-$$

LHS: interfacial operator

• • interfacial variable:
$$J_E, J_H$$

CIM for wave-guide modes of SP

Department of Surgery, National Taiwan University Hospital

• •

a

 Ω^{-}

 Ω^{+}

s n

Simplified equations

Governing equation: $(\nabla_2^2 + \omega^2 \epsilon \mu) E = k^2 E$ $(\nabla_2^2 + \omega^2 \epsilon \mu) H = k^2 H$

We still have the problem: sign-changed coefficient: arepsilon

CIM for wave-guide modes of SP

Different signs in dielectric and metal!

- Permittivity of metal : Drude model.
 - ω_p : plasma frequency;
 - ω_{τ} : electron collision rate.

$$\varepsilon_r = 1 - \frac{\omega_p^2}{\omega(\omega + i\omega_\tau)}$$

When $\omega < \omega_p$, the permittivity of metal is negative. (That is why metal can be a good mirror).

• •

CIM for wave-guide modes of SP

One dimension

E and H are decoupled: TM modes $E''+\omega^2 \varepsilon \mu E = k^2 E$ $[E]_{\Gamma} = 0, \ \Lambda \left[\frac{1}{\mu}E'\right]_{\Gamma} = k^2 [\varepsilon E']_{\Gamma}$ $E(a) = e^{ik_x a} E(0)$ TE modes $H''+\omega^2 \varepsilon \mu H = k^2 H$ $[H]_{\Gamma} = 0, \ \Lambda \left[\frac{1}{\varepsilon}H'\right]_{\Gamma} = k^2 [\mu H']_{\Gamma}$ $H(a) = e^{ik_x a} H(0)$

What is the problem in computation?

Traditional numerical methods, for example, using harmonic mean of *ɛ* as a new coefficient, possibly fail when *ɛ* changes its sign.

Solution: adaptive order strategy

One dimension:

- Different order approximation on different sides of the interface.
- Left: order p; right: order q.
- These two polynomials are solved by using grid values u_{j-p+1} to u_{j+q} and two jump conditions [u] = [ɛu'] = 0.

CIM for wave-guide modes of SP

Determinant when solving polynomials

 $p \quad q$ The determinant $D_{p,q}$ of the linear system

CIM1 \rightarrow 1 1 $\varepsilon^{-}\beta + \varepsilon^{+}\alpha$

• • • • •

- 2 1 $\varepsilon^{-}\beta(1+2\alpha)+\varepsilon^{+}\alpha(1+\alpha)$
- 1 2 $\varepsilon^{-}\beta(1+\beta)+\varepsilon^{+}\alpha(1+2\beta)$
- CIM2 \rightarrow 2 2 $\varepsilon^{-}\beta(1+\beta)(1+2\alpha)+\varepsilon^{+}\alpha(1+\alpha)(1+2\beta)$
 - 3 2 $\varepsilon^{-}\beta(1+\beta)(3\alpha^{2}+6\alpha+2)+\varepsilon^{+}\alpha(1+\alpha)(2+\alpha)(1+2\beta)$
 - 2 3 $\varepsilon^{-}\beta(1+\beta)(2+\beta)(1+2\alpha)+\varepsilon^{+}\alpha(1+\alpha)(3\beta^{2}+6\beta+2)$

When $\mathcal{E}^{-}\mathcal{E}^{+} < 0$, the determinant would be zero!!

CIM for wave-guide modes of SP

Root of zero determinant

Normalized determinant: $f_{p,q}\left(\alpha, \rho = \frac{\varepsilon^+}{\varepsilon^-}\right) = \frac{D_{p,q}}{\varepsilon^-}$ • Example: $f_{2,2}(\alpha, \rho) = (1 - \alpha)(2 - \alpha)(1 + 2\alpha) + \rho\alpha(1 + \alpha)(3 - 2\alpha)$ Root of zero determinant: $\alpha_{p,q}(\rho) : f_{p,q}(\alpha_{p,q}(\rho), \rho) = 0$

• We claim: $f_{p+1,q}(\alpha_{p,q}(\rho),\rho) \neq 0, f_{p,q+1}(\alpha_{p,q}(\rho),\rho) \neq 0$

• • • • • • • •

CIM for wave-guide modes of SP

Proof when p = q = 2

CIM for wave-guide modes of SP

Adaptive order strategy

- Choose the orders p and q to approximate u on different sides of the interface.
- If the determinant is smaller than a prescribed tolerance, then the order in the region with larger absolute value of *E* is increased by 1.

Solve the problem with sign-changed coefficients

CIM for wave-guide modes of SP

Condition number

- The log-log plot of the scaled condition number versus the number of meshes.
- The tolerance: 0.15.
- The condition number is under controlled.

• • •

Numerical Results

Department of Surgery, National Taiwan University Hospital

Two dimensions:

- Dimension-by-dimension approach: adaptive-order approximation on both sides of the interface.
- Project the interface condition on the normal and tangential directions.
- The one side gradient is approximated by the grid values and second order derivatives (principal and cross).
- It will deduce a coupling system of principal second order derivatives. Adaptive order strategy is also used when the determinant of the coupling system is almost zero.

CIM for wave-guide modes of SP

Other problem

The location of the introduced interfacial variable:

CIM use the jump conditions at the intersection of the interface and the grid lines. However, they cannot be too closed otherwise they will be dependent.

We need to locate them uniformly on the interface.

CIM for wave-guide modes of SP

Solution for the problem

- We project the jump condition J_E to the grid lines by Taylor expansion.
- Different locations of different jump conditions are used in the dimensionby-dimension approach.
- The remaining terms are approximated by nearby grid values.

CIM for wave-guide modes of SP

The modifications

- Suppose the interfacial variable is located at $(x_i + \xi h, y_j + \eta h)$, then
 - The projection is

$$\left[\varepsilon\frac{\partial E}{\partial x}\right]_{(x_i+\xi h, y_j)} = \left[\varepsilon\frac{\partial E}{\partial x}\right]_{\hat{\mathbf{r}}_{\ell}} - \eta h \left[\varepsilon\frac{\partial^2 E}{\partial x \partial y}\right]_{\hat{\mathbf{r}}_{\ell}} + O(h^2).$$

- The dimension-by-dimension approaches $\frac{\partial^2 E_{i,j}}{\partial x^2} = \frac{1}{h^2} \mathcal{L}_x(E_{i-p_1+1:i+q_1,j}) + \frac{\sigma_1}{h} \left(\left[\varepsilon \frac{\partial E}{\partial x} \right]_{\hat{\mathbf{r}}_{\ell}} - \eta h \left[\varepsilon \frac{\partial^2 E}{\partial x \partial y} \right]_{\hat{\mathbf{r}}_{\ell}} \right) + O(h),$ $\frac{\partial^2 E_{i,j}}{\partial y^2} = \frac{1}{h^2} \mathcal{L}_y(E_{i,j-p_2+1:j+q_2}) + \frac{\sigma_2}{h} \left(\left[\varepsilon \frac{\partial E}{\partial y} \right]_{\hat{\mathbf{r}}_{\ell}} - \xi h \left[\varepsilon \frac{\partial^2 E}{\partial x \partial y} \right]_{\hat{\mathbf{r}}_{\ell}} \right) + O(h)$
- The one side gradient

$$\nabla E(\hat{\mathbf{r}}_{\ell}^{-}) = \begin{bmatrix} \frac{1}{h}(E_{i,j} - E_{i-1,j}) + (\frac{1}{2} + \xi)h\frac{\partial^2 E_{i,j}}{\partial x^2} + \eta h\frac{\partial^2 E_{i,j}}{\partial x \partial y} \\ \frac{1}{h}(E_{i,j} - E_{i,j-1}) + (\frac{1}{2} + \eta)h\frac{\partial^2 E_{i,j}}{\partial y^2} + \xi h\frac{\partial^2 E_{i,j}}{\partial x \partial y} \end{bmatrix} + O(h^2).$$

CIM for wave-guide modes of SP

The approximation of interfacial operator

$$\Lambda\left(\left[\frac{1}{\mu}\nabla E_{z}\cdot\mathbf{n}\right]+\frac{k_{z}}{\omega}\left[\frac{1}{\varepsilon\mu}\nabla H_{z}\cdot\mathbf{t}\right]\right)=k_{z}^{2}\left[\varepsilon\nabla E_{z}\cdot\mathbf{n}\right]:=k_{z}^{2}J_{E}$$
$$\Lambda\left(\left[\frac{1}{\varepsilon}\nabla H_{z}\cdot\mathbf{n}\right]-\frac{k_{z}}{\omega}\left[\frac{1}{\varepsilon\mu}\nabla E_{z}\cdot\mathbf{t}\right]\right)=k_{z}^{2}\left[\mu\nabla H_{z}\cdot\mathbf{n}\right]:=k_{z}^{2}J_{H}$$

The interfacial operators are approximated by the interfacial variables and the one-side gradient

$$\begin{bmatrix} \frac{1}{\mu} \nabla E \cdot \hat{\mathbf{n}} \end{bmatrix}_{\hat{\mathbf{r}}_{\ell}} = \frac{1}{\varepsilon_{+}\mu_{+}} J_{E,\ell} + \frac{\varepsilon_{-}\mu_{-} - \varepsilon_{+}\mu_{+}}{\varepsilon_{+}\mu_{+}\mu_{-}} \nabla E(\hat{\mathbf{r}}_{\ell}^{-}) \cdot \hat{\mathbf{n}},$$
$$\begin{bmatrix} \frac{1}{\varepsilon_{\mu}} \nabla H \cdot \hat{\mathbf{t}} \end{bmatrix}_{\hat{\mathbf{r}}_{\ell}} = \frac{\varepsilon_{-}\mu_{-} - \varepsilon_{+}\mu_{+}}{\varepsilon_{+}\varepsilon_{-}\mu_{+}\mu_{-}} \nabla H(\hat{\mathbf{r}}_{\ell}^{-}) \cdot \hat{\mathbf{t}},$$

CIM for wave-guide modes of SP

A quadratic eigenvalue problem

Finally, we arrive at

 $\mathbf{A}_{\mathrm{mix}}\mathbf{U}_{\mathrm{mix}} + k\mathbf{B}_{\mathrm{mix}}\mathbf{U}_{\mathrm{mix}} = k^2\mathbf{U}_{\mathrm{mix}}$

• where $\mathbf{U}_{\text{mix}} = [E_{1:N,1:N}, H_{1:N,1:N}, J_{E,1:N_J}, J_{H,1:N_J}]^T$

We solve this quadratic eigenvalue problem by doubling the matrix

.

 $\begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\text{mix}} \\ k\mathbf{U}_{\text{mix}} \end{bmatrix} = k \begin{bmatrix} \mathbf{U}_{\text{mix}} \\ k\mathbf{U}_{\text{mix}} \end{bmatrix}$

CIM for wave-guide modes of SP

Numerical results

One dimensional test.

• • • •

- Band structure of a layer structure.
- Two dimensional test with exact solution.
- Two dimensional test without exact solution.

Band structure of two dimensional strutures

CIM for wave-guide modes of SP

Department of Surgery, National Taiwan University Hospital

One dimensional test

- The dimensionless frequency is 0.7.
- $\Omega = [-\pi, \pi]$. The filling ratio is 40%, i.e., the interfaces are located at $-2\pi/5$ and $2\pi/5$.
- The convergence of worst cases is second order.
- Due to the symmetry, the convergence of the best cases is about third order.

CIM for wave-guide modes of SP

One dimensional result

Band structure of a layer structure

CIM for wave-guide modes of SP

Two dimensional test with exact solution

The exact solution
can be found from
the one dimensional
case. The wave
vector k_z changes
with different Bloch
wave vector k_y.

k_y, 2D

 k_z , 2D

 $k_{z,}$, 1D

CIM for wave-guide modes of SP

Two dimensional test with exact solution

The convergence slightly decreases when the oscillatory along the interface (k_y) increases.

CIM for wave-guide modes of SP

Two dimensional test without exact solution

No analytical solution is available.

We use a fine grid result (640 × 640) as our referenced solution for comparison.

CIM for wave-guide modes of SP

CIM for wave-guide modes of SP

Two dimensional result

Eigenmode for a split-ring structure. It is widely used in metamaterial with negative refractive index.

Introduction of Interface problems

Coupling Interface Method for elliptic interface problem

• • • • • • • • • •

Coupling Interface Method for wave-guide modes of surface plasmon

Concluding Remarks

Concluding remarks

- Coupling interface method has its potential for interface problems:
 - It is simple to program.
 - Second order accurate for the solution.

• • • • • •

- It can handle complex interfaces.
- Computational complexity is linear.
- It is the first direct approach for wave-guide mode of surface plasmon.

Future works

- Non-linear Poisson-Boltzmann Equation
 - Drug design, molecular dynamics, surface potential calculations
- Anisotropic materials
 - Chemical anisotropic filter, medical ultrasound imaging, MEMS
- Moving interface problems
 - Stefan problem, Debris flow, red blood cells in blood
- Band gap optimization (2D and 3D).
 - Light filter, solar cell

Filamentation, wiki

Department of Surgery, National Taiwan University Hospital

•

Thank you for your attention

.

Department of Surgery, National Taiwan University Hospital