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Interface Problems

� Interface problems appears in many fields such as 

fluid dynamics, solid mechanics, electrodynamics, 

material sciences, biochemistry, and etc..
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Interface Problems: Two examples

� Molecules in ionic solution: 

Poisson-Boltzmann Equation

� Surface plasmon:

Maxwell’s Equations

quoted from the article: Nature, vol. 424, p. 824, 2003.
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Molecules in ionic solution

� A continuum model 

for computing the 

electrostatic 

potential in an ionic 

solution.

� Based on Gauss’ law 

and Boltzmann 

distribution law.
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Poisson-Boltzmann Equation
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� r : location

� ε : dielectric coefficient

� ψ : electrostatic potential (unknown)

� ci : concentration of the i-th ion at a distance of infinity

� zi, zj : the number of charges of the i-th ion, j-th point charge

� q : charge of a proton

� kB : Boltzmann constant

� T : temperature

� λ : accessibility to the ions in the solution. 1 in the solution.

� δ : delta function

ions molecules
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Linearized Poisson-Boltzmann Equation

� Debye-Hückel approximation: when ziqψ << kBT

� Electro-neutrality:
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Model problem

� Governing equation:

� Dielectric coefficient:

� Interface conditions:

� No ion-exclusion layer
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Some approaches

� Body-fitting approaches
� W. Wang, A jump condition capturing finite difference scheme for elliptic  interface 

problems

� Finite element approaches
� Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite 

element formulation

� J. Huang, J. Zou, A mortar element method for elliptic problems with discontinuous 
coefficients

� Finite difference approaches
� A. Tornberg, B. Engquist, Regularization techniques for numerical approximation of 

PDEs with singularities

� C. Peskin, The immersed boundary method

� R. Leveque, Z. Li, The immersed interface method for elliptic equations with 
discontinuous coefficients and singular sources

� Y. Zhou, S. Zhao, M. Feig, G. Wei, High order matched interface and boundary method 
for elliptic equations with discontinuous coefficients and singular sources
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What are the problems?

� Regularization techniques: simple but they are only 

first-order accurate.

� Immersed interface method: The discretization may 

not exist even the maximum principal preserving 

scheme is used.

� High order matched interface and boundary method: 

The stencil is large. It is not suitable for complex 

interfaces.
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Immersed interface method (2D)

� Second order Taylor expansion at an interface point 

with a local coordinate (ξ, η). (12 unknowns)

� Rewrite the derivatives in one side
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Immersed interface method (2D)

� With 6 grid values, the immersed interface method  

solve a 6x6 matrix to make the truncation error of uxx

+ uyy to be O(h). However, the matrix may not be 

solvable in some cases.
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Immersed interface method (2D)

� Maximum principle preserving scheme: They use 9 

grid values to find better coefficients. However, they 

need to solve a linear programming problem and the 

coefficients are not feasible in some cases.
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Our approach: coupling interface method

� Finite difference approach on Cartesian grid. 

� Dimension-by-dimension approach. 

� The information of each dimension is coupled by the interface 

conditions.

� Advantages:

� Accuracy: second-order in maximum norm.

� Simplicity: smaller size of stencil, easy to program.

� Robustness: capable to handle complex interfaces.

� Speed: linear computational complexity
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� Introduction of Interface problems

� Coupling Interface Method for elliptic interface 

problem

� Coupling Interface Method for wave-guide modes of 

surface plasmon

� Concluding Remarks



Department of Surgery, National Taiwan University Hospital

� Governing equation:

� Suppose the interface is located in [xj, xj+1)

� Standard finite difference method on interior points.

Coupling Interface Method (CIM2): 1D
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� Quadratic approximations on both side of the 
interface.

Coupling Interface Method (CIM2): 1D
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� A linear system of the second order derivatives are 
given by two interface conditions:

Coupling Interface Method (CIM2): 1D
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� The second order derivatives can be approximated 
by the linear combination of four grid values and two 
interface conditions.

Coupling Interface Method (CIM2): 1D
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The determinant is positive and bounded when ε ε ε ε is positive
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� Governing equation:

Coupling Interface Method (CIM2): 2D
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Coupling Interface Method (CIM2): 2D

� Interior points (orange and 

pink disks): standard finite 

difference method.

� On-front points (blue and 

red disks): Coupling 

interface method.

� Interface conditions at the 

intersection of grid lines and 

the interface are needed. x

y
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Coupling Interface Method (CIM2): 2D

� Dimension-by-dimension approach

� Decomposition of the interface condition

� Approximation of one-side gradient

( ) ( ) [ ] ( )hO
x

u
huuuuu

hx

u
jijijiji +





















∂

∂
++=

∂

∂
++−

1

1

ˆ

1ˆ1,2,1,,11,22

2

,,,
1

r

rjjr εστL

[ ] ( ) [ ] [ ] ( )( )( )1111ˆˆ111ˆ1

ˆ

ˆ
111

1

ettrtenn rrr

r

⋅⋅∇+⋅∇+⋅⋅∇=






∂

∂ −+ uuu
x

u
εεεε

( )
( ) ( ) ( )

( )( ) ( )( ) ( )

















+−−−+

+
∂

∂








++−

=∇

−−+−−+

−

2

1,11,11,1.

2

2

2

,1,

1

1
2

1

2

11

ˆ

hOuuuu
h

hO
x

u
huu

h
u

jijijiji

jiji

αα

α jr

r

∫∫∫ −−=−= xexexexexexe xxxxxx sincossincossinsinThe trick is similar to

It can be derived from [u]

x

y

1
r̂

1
n

1
t

j
r

−Ω

+Ω



Department of Surgery, National Taiwan University Hospital

Coupling Interface Method (CIM2): 2D

� We get a equation for the second order partial derivative for x:
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Coupling Interface Method (CIM2): 2D

� A complicated case: there 

are intersections in x- and y-

directions.
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Coupling Interface Method (CIM2): 2D

� Dimension-by-dimension approach

� Decomposition of the interface conditions
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Coupling Interface Method (CIM2): 2D

� One-side gradients and cross derivative
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Coupling Interface Method (CIM2): 2D

� A coupling system for principal second order 

derivatives:
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CIM2: d dimensions

� Dimension-by-dimension approach

� Project the interface condition on the normal and the 
selected tangential directions:

� The one side gradient is approximated by the grid 
values and the second order derivatives (principal 
and cross):
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A coupled system for principal derivatives

� A coupled system for principal second order 

derivatives

� where

�

� : collection of grid values in the second and third steps.

� : collection of the terms of interface conditions.
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Comparisons with other methods (2D)

� The ratio of the dielectric coefficient is 1000

CIM for Elliptic Interface Problems
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Comparisons with other methods (2D)

� The ratio of the dielectric coefficient is 10

CIM for Elliptic Interface Problems

1:10

1:10
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Comparisons with other methods (3D)

� The ratio of the dielectric coefficient is 1, 10, 1000

CIM for Elliptic Interface Problems

1:1
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Complex interface

� If the interface is complex, CIM2 may not be applicable at some 

points.

� Exceptional points are those points that CIM2 cannot be applied.

� First order approximations (CIM1) of u at those exceptional 

points are used.

� Due to the number of the exceptional points are O(1) in 

practice, second order convergence of the solution can be 

maintained.
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Complex interfaces

CIM for Elliptic Interface Problems
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Number of exceptional points



Department of Surgery, National Taiwan University Hospital

Convergence, with CIM1 and CIM2

CIM for Elliptic Interface Problems

Black: CIM1 

Red: CIM1 at exceptional points, CIM2 at normal on-front points
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Outline

� Introduction of Interface problems

� Coupling Interface Method for elliptic interface 

problem

� Coupling Interface Method for wave-guide modes of 

surface plasmon

� Concluding Remarks
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Surface plasmon

� Electromagnetic wave 

propagating along the 

interface between two 

different materials 

(dielectric and metal)

� Applications: magneto-optic 

data storage, microscopy, 

solar cells, sensors for 

detecting biological 

molecules, and plasmonic

crystals

http://www.fz-juelich.de/isb/isb-1/protein-protein_interaction

CIM for wave-guide modes of SP
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Wave-guide modes

� Suppose the waveguide is 

homogeneous in the z 

direction

� Maxwell’s equations
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Assumptions

� We assume that no charges 

and no currents.

� Constitutive relations:  

isotropic and linear material.

� Permittivity ε and 

permeability µ do not 

depend on the location in 

each material but may 

depend on the frequency.

0,0 == Jρ

HBED µ== ,ε

CIM for wave-guide modes of SP
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Governing equations for z-component

� z-component:

in x-y plane

� Interface conditions:

� Boundary conditions:
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Eigenvalue problem

� Simple eigenvalue problem ( )
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Some approaches

� Plane wave expansion: most common used

� Search in the frequency such that the zero-determinant of 
the matrix occurs for a given wave number.

� Finite difference time domain method

�Calculate the dipole spectrum for each wave number and its 
resonance peaks gives frequencies after enough cycles.

� Multiple-scattering method

� Solve a non-linear eigenvalue problem and search for a 
minimum of a cost function

They are not direct approaches.
CIM for wave-guide modes of SP
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Augmented Coupling Interface Method

� Direct approach: 

� Gives (all) wave number for a given frequency without searching.

� Integrate with interfacial operator approach:

� Reduce the original problem to a quadratic eigenvalue problem by

introducing an interfacial variable.

� Adaptive-order strategy:

� Interpolating polynomials of different orders on different sides of 

interfaces are used to avoid the singularity of the local linear

system. It also enables us to handle complex interfaces.

Solve the problem with sign-changed coefficients

Solve the problem with complicated interface conditions

CIM for wave-guide modes of SP
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Interfacial operator approach

� Re-arrange the above interface conditions to the following form:

�where 

� LHS: interfacial operator

� interfacial variable: 

[ ]

[ ] Hzzzz
z

z

Ezzzz
z

z

JkHkE
k

H

JkEkH
k

E

22

22

:
11

:
11

=⋅∇=

















⋅∇−





⋅∇Λ

=⋅∇=

















⋅∇+








⋅∇Λ

Γ

ΓΓ

Γ

ΓΓ

nsn

nsn

µ
εµωε

ε
εµωµ

−+−+=Λ µµεεω2

HE JJ ,

0

0

222222

222222

=







⋅∇

−
−








⋅∇

−

=







⋅∇

−
+








⋅∇

−

ΓΓ

ΓΓ

sn

sn

z

z

z
z

z

z

z

z
z

z

E
k

k
H

k

H
k

k
E

k

εµωεµω

ωε

εµωεµω

ωε

CIM for wave-guide modes of SP



Department of Surgery, National Taiwan University Hospital

Simplified equations

� Governing equation:

� Interface conditions:

� Boundary conditions:
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We still have the problem: sign-changed coefficient: ε
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Different signs in dielectric and metal!

� Permittivity of metal : Drude

model. 

ωp : plasma frequency; 

ωτ : electron collision rate.

� When ω < ωp, the 

permittivity of metal is 

negative. (That is why metal 

can be a good mirror). 
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One dimension

� E and H are decoupled: 

TM modes                               TE modes
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What is the problem in computation?

� Traditional numerical methods, for example, using 

harmonic mean of ε as a new coefficient, possibly fail 

when ε changes its sign.
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Solution: adaptive order strategy

� One dimension:

�Different order approximation on different sides of the 

interface.

� Left: order p; right: order q.

�These two polynomials are solved by using 

grid values uj-p+1 to uj+q and 

two jump conditions [u] = [εu’] = 0.
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Determinant when solving polynomials

When ε–ε+ < 0, the determinant would be zero!!
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Root of zero determinant

� Normalized determinant:

� Example:

� Root of zero determinant:

� We claim: 
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Proof when p = q = 2

� The relation between α2,2 and ρ

� Since 0 < α2,2 < 1

� Asymptotic behavior:

CIM for wave-guide modes of SP
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Adaptive order strategy

� Choose the orders p and q to approximate u on 

different sides of the interface.

� If the determinant is smaller than a prescribed 

tolerance, then the order in the region with  

larger absolute value of ε is increased by 1.

Solve the problem with sign-changed coefficients

CIM for wave-guide modes of SP
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Condition number

� The log-log plot of the 

scaled condition number 

versus the number of 

meshes.

� The tolerance: 0.15.

� The condition number is 

under controlled.

Numerical Results
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Two dimensions:

� Dimension-by-dimension approach: adaptive-order

approximation on both sides of the interface.

� Project the interface condition on the normal and tangential 

directions.

� The one side gradient is approximated by the grid values and 

second order derivatives (principal and cross).

� It will deduce a coupling system of principal second order 

derivatives. Adaptive order strategy is also used when the 

determinant of the coupling system is almost zero.

CIM for wave-guide modes of SP



Department of Surgery, National Taiwan University Hospital

Other problem

� The location of the introduced interfacial variable:

�CIM use the jump conditions at the intersection of the 

interface and the grid lines. However, they cannot be too 

closed otherwise they will be dependent.

� We need to locate them uniformly on the interface. 

CIM for wave-guide modes of SP
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Solution for the problem

� We project the jump 

condition JE to the grid lines 

by Taylor expansion.

� Different locations of 

different jump conditions 

are used in the dimension-

by-dimension approach.

� The remaining terms are 

approximated by nearby 

grid values.
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The modifications

� Suppose the interfacial variable is located at (xi + ξh, yj + ηh), 

then

� The projection is

� The dimension-by-dimension approaches

� The one side gradient

CIM for wave-guide modes of SP
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The approximation of interfacial operator

� The interfacial operators are approximated by the interfacial 

variables and the one-side gradient
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A quadratic eigenvalue problem

� Finally, we arrive at

�where

� We solve this quadratic eigenvalue problem by 

doubling the matrix

CIM for wave-guide modes of SP
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Numerical results

� One dimensional test.

� Band structure of a layer structure.

� Two dimensional test with exact solution.

� Two dimensional test without exact solution.

� Band structure of two dimensional strutures

CIM for wave-guide modes of SP
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One dimensional test 

� The dimensionless 
frequency is 0.7.

� Ω = [-π, π]. The filling 
ratio is 40%, i.e., the 
interfaces are located at 
-2π/5 and 2π/5.

� The convergence of worst 
cases is second order.

� Due to the symmetry, the 
convergence of the best 
cases is about third order.
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One dimensional result

� Band structure of a layer structure

Without damping With damping
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Two dimensional test with exact solution

� The exact solution 

can be found from 

the one dimensional 

case. The wave 

vector kz changes 

with different Bloch 

wave vector ky. 

ky = 2

ky , 2D

kz , 2D
kz, , 1D
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Two dimensional test with exact solution

� The convergence slightly decreases when the 

oscillatory along the interface (ky) increases.
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Two dimensional test without exact solution

� No analytical solution 

is available.

� We use a fine grid result 

(640 × 640) as our 

referenced solution for 

comparison.
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Two dimensional result

� Band structures of box and wavy structures (2D, 

periodic)
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Two dimensional result

� Eigenmode for a split-ring structure. It is widely used 

in metamaterial with negative refractive index.

E H
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� Introduction of Interface problems

� Coupling Interface Method for elliptic interface 

problem

� Coupling Interface Method for wave-guide modes of 

surface plasmon

� Concluding Remarks
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Concluding remarks

� Coupling interface method has its potential for 

interface problems:

� It is simple to program.

� Second order accurate for the solution.

� It can handle complex interfaces. 

�Computational complexity is linear. 

� It is the first direct approach for wave-guide mode of 

surface plasmon.
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Future works

� Non-linear Poisson-Boltzmann Equation

� Drug design, molecular dynamics, surface potential calculations

� Anisotropic materials

� Chemical anisotropic filter, medical ultrasound imaging, MEMS

� Moving interface problems

� Stefan problem, Debris flow, red blood cells in blood

� Band gap optimization (2D and 3D).

� Light filter, solar cell

Filamentation, wiki Solar cell, wiki

Debris flow, google

Viagra, 1UDT, PDB
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Thank you for your 
attention


