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N
THE PROBLEM

We are concerned with the following general "nonlocal" curvature flow of
smooth convex closed curves:

%’: (¢.t) = [F (k (¢, ) — A (£)] Nin (0, 1)

X(9.0) =Xo(p), ¢€S,

which is a parabolic IVP. Here:
e Xo (¢): S — 7, is a parametrization of the initial (convex) curve 7.
e k(¢,t) = curvature of v, = 7 (-, t) (parametrized by

X (g,t):S1x [0, T) — R?).
e Nj, (¢, t) = inward normal of -,.
e F'(z) > 0 for all z € domain of F (parabolic condition).
@ A (t) = a function of time, which may depend on global

quantities, say L (t) or A(t) of 7, or others. If A (t) depends on
7, then it is not known beforehand.

(*)
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We note the following:

@ Many interesting physical models are nonlocal in nature.

@ If 774 is not convex, then it may develop self-intersections. This will
make (*) uncontrollable. Also, the 1/k-type flows (see below) will be
undefined.

@ The RHS of (*) has no tangential component because it has NO
essential effect at all.

@ (*)is a 2 x 2 nonlinear degenerate parabolic system. We can
overcome the degeneracy by looking at geometric quantities like
"curvature" or "support function" to guarantee the existence of a
smooth solution for short time.

@ The goal is to study the asymptotic behavior of the flow.
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Basic evolution formulas

Let X (¢, t) : S x [0, T) — R? be a family of smooth time-dependent
simple closed curves with time variation

X
= (@) =W (g 1) € R?,

then its length L (t) and enclosed area A (t) satisfy the following:

30 =—/% (W, kNgds, (1) = —A W, Npyds (1)

where s is the arc length parameter of the curve X (¢, t). Moreover,
d

Gl @—amaw) = 2L [ (W, (k=5 )Ny @)
7 Aw) = 2o /%< (x ;f{i))wcﬂg)
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Remark

By (1), (2), and (3), one can talk about the "gradient flow" of the length
functional, the area functional (under suitable function space setting), or
others.

Q@ W(p,t)=k(ep t)N t) (CSF; the gradient flow of L) .

in (9,
Q@ W(gpt)— (9.1) < the gradient flow of A, )

the unit speed inward normal flow

@ W(g.t)= (k(p.t)— 5

N—

Nin (¢, t) (gradient flow of L? — 47A) .

O W(gpt)= (k (p.t) — QLA((?)) Nin (¢, t) (gradient flow of [2/47A) .
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Also its curvature k (¢, t) satisfies

%((P, £ = <a;;'2", N,-,,> _2k<aavsv’ T> (4)

where T = T (¢, t) is the unit tangent vector of X (¢, t).

Note that here the operator 9/9s = |X, (¢, t)|_1 d/0¢ is
time-dependent, which is usually not preferable.
Remark

When the curve has self-intersections, the above formulas for dL/dt and
ok /0dt remain correct but not for dA/dt.
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Some examples of nonlocal flow

Recall that 1, is convex with k > 0 everywhere.

@ For k-type flows, there are:

_, 2r A-preserving,
(1) F k)= A(t) =k L(t) ( gradient flow of L% — 47TA >
B L(t) L-decreasing, A-increasing,
(). F k) =A(t) = k- 2A(t) < gradient flow of L?/47A
1
(). F (k) —A(t)=k— = k%®ds (L-preserving),
N 21t Tt

studied by Gage (1986), Jiang-Pan (2008) and Ma-Zhu (2008)

respectively.

Yu-Chu Lin( joint with Prof. Dong-Ho Tsai)

Using Geometric Inequality to Prove the Cony

February 23, 2011 7 /31



@ For 1/k-type flows, there are:

( (IV). F(k)—A(t) = (1)/ %ds — % (A-preserving)
t

(V). F(k)—A(t) = (71) % (L-preserving),

(VI). F (k) —A(r) = A1) 1

[k (the dual flow of (I1)),

studied by Ma-Cheng (2009), Pan-Yang (2008), and Lin-Tsai (2010)
respectively.
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A dual relation

@ There is a dual relation between k-type flows and 1/ k-type flows.

For k-type flows with curvature speed (k — p (t)) Nip, we have

dL dA

—(t)=— | Kds+2mp(t), —(t)=—-2m+p(t)L(t)

dt v, dt
and for 1/ k-type flows with curvature speed (g (t) — 1/k) Nj,, we
have

dL dA 1

()= -2 L )= —q(t)L ~ds.

(=2 +L(0). O =-a@re)+ [ Lo
When p(t) =1/q(t), there is a "dual relation" between the above
two, i.e.,

1 dL dA
70 d (t) (for 1/k-type flows) = pr (t) (for k-type flows).

Hence in the above, flows (/) and (V) are dual.
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e Motivated by the dual relation, we (Lin-T. (2010)) study the
following:

(VI). F(k)—A(t)= - (L-increasing, A-increasing)
which is dual to the flow (//).

@ Furthermore, we study the existence of a general linear nonlocal
curvature flow

oX 1

@0 = (HLOAW) - o )Nl )
where H (p, q) : (0,00) x (0,00) — R is a given (but arbitrary) smooth
function of two variables.
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Short time existence of the solution

Theorem

Let 7y, be smooth and convex. Then for each of the flows (1)-(VI) there

exists a unique convex smooth solution 7y, on S' x [0, T) for short time
T >0.

Proof

@ Uniqueness: The uniqueness is due to the maximum principle.
@ Existence:

For k-type flows, consider the evolution equation of the curvature in
terms of normal angle 9:

KO =R OO 0.0 +k(0.0)-A(0] ()

and one can use the argument as in Section 2 of Gage-Hamilton
(1986) to prove the short time existence.
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For 1/ k-type flows, one can give a direction proof since, using the
"support function" u (6, t), where 0 is the outward normal angle, it gives
rise to a "linear" equation

g: (0,t) = ugg (6, t) +u(6,t)—A(t) on Stx [0, 7). (7)

Remark

The support function u (0, t) of a convex curve 7y, is defined by
u(0,t)=(X(0,t), (cosb,sinf)), 6¢cS' (8)

where X (60, t) is the position vector of the unique point 7y, with outward
normal Noy: = (cos,sinf). Using u (6, t), we have

1

k(GYt) - Uge (9,1‘) +U(9,t),

L(¢) :/Omu(G,t) o, A(t) = ;/Omu((?, ) [ugo (6, £) + u (6, £)] db.

v
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N
Remark (short time existence of a general linear nonlocal curvature flow)

In fact, for a general linear nonlocal curvature flow (5) this PDE problem
can be resolved using an ODE method, together with the help of
representation formula for solutions to a linear heat equation. Consider

d

o7 (6.) = ug (6.£) +u (8. £) — H(L() A(2)). (9)

Since
dL

(1) = L() —2mH (L (1), A(1)).
let w(6,t) = u(0,t) — L(t) /27 and it satisfies the linear heat equation

ow

at (9 t)—W99+W

and thus by the representation formula we have

v(@0) -2 ae (o)
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The evolution of L (t) satifies the ODE

() = L(t) —2mH (L(t), 52+ E (1) - 52e)
L (0) = length of 74 > 0,

where E (t) is a time function determined by 7, given by

a0

1 27T
E(t)zE/O |

) & db
NG f—oo e 4t [UQQ (9—6,0) + U(G—g, 0)] d€>

and u (6,0) is the support function of 7.

The ODE (11) is now self-contained and by standard ODE theory there is
a unique positive solution defined on interval [0, T*) for some T* > 0.
Thus we have short time existence of the solutions for (5) .
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.
Some useful inequalities related to L and A

To obtain the long time convergence of the flow, we need to rely on some
useful geometric inequalities:

@ General inequalities:

Holder inequality, Jensen inequality, Poincaré inequality, etc.

o Classical isoperimetric inequality:

2A A L
T E< —
L T2
where " =" holds if and only if the curve is a circle.
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@ Andrews inequality:
Let M be a compact Riemannian manifold with a volume form dy,
and let ¢ be a continuous function on M. Then for any increasing
continuous function F : R — R, we have

[ edu [ F@du< [ du[ eF@an

If F is strictly increasing, then equality holds if and only if ¢ is a
constant function on M.

Remark

In case M = 7y is a convex closed curve with volume form ds, where s is
arc length parameter, then the above becomes

AédsLF(C) ds < /st/ng (&) ds, (12)

where ¢ : v — R is a continuous function.

4
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o Gage inequality:
For any convex closed curve 7, we have

[ K (s)ds > L (note that [ k(s)ds = 2)
Y A Y

where s is arc length parameter. The equality holds if and only if 7 is
a circle.
@ Curvature inequalities:

27 2A 27
/ K9 (0) do < T/ K91 (9)df, g >0 a constant,
0 0

where 6 is the outward normal angle of v and the equality holds if
and only if « is a circle;
or

L 21 1 21

1
0 [ dd a2 tant
2 Jo k9 (0) — Jo ketL ()" g > 0 a constant,

where for ¢ > 0 the equality holds if and only if < is a circle.
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@ Green-Osher inequality:
Let Q(z) : (0,00) — R be a function with Q" (z) > 0 everywhere.
Then for convex 7y with outward normal angle 6 and curvature
k (0), we have

ek @ (iw)*

0 (L—\/LQ —471A> o <L+\/é2n—4nA>] 3)

1
> —
- 2 27T

o Taking Q (z) = 1, we get Gage's inequality

:E’
21
/kz(s)ds:/ k(0)do > L.
v 0 A

e Taking Q(z) = 72, we have

1 2 q 12 —27A
g :/ do > . 14
/ms)s o O n (14)
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@ Bonnesen inequality:
For any convex closed curve 7, we have

[2—47A > 7% (Rout — rin)* (15)

12 r; 2
— -1 > g 1
A7A = 7 ( Rout> (16)

where rj, and R,,; are the inradius and circumradius of 7y respectively.

Remark

(i) For a family of embedded closed curves vy,, if L (t) /4tA(t) — 1 as
t — T, then ri, (t) /Rout (t) — 1 as t — T. Hence vy, evolves to become
more and more circular and we say that 7y, converges to a circle in Cy
convergence.

(ii) As A (t) is bounded away from zero, L2 (t) — 47A (t) — 0 iff

L2 (t) /4mA(t) — L.
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|
The decreasing of isoperimetric difference

Lemma

Assume F' > 0 everywhere (parabolic condition) and consider the flow

% (¢, t) =[F(k(g,t)) —A(t)]Nip (o, t) (17)

where A (t) is a time function which depends on L or A of y,. As long as
v (-, t) stays embedded on [0, T), then the isoperimetric difference
L2 (t) — 47A(t) for y (-, t) is decreasing on [0, T).

Proof The idea is to use Andrews's inequality. Compute

L2 (t) — 47tA(t)]

kds[r F(k)ds—[nds/7
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Corollary

If flow (17) is A-preserving, then it is L-decreasing.

If it is L-preserving, then it is A-increasing.

In particular, if it preserves either A or L, then L2/47TA is decreasing.

Theorem
All flows (1)-(VI) are both L> — 47tA and L% /47A decreasing.

Theorem

(roughly) For flows (1)-(VI) we have smooth convex solution 7y, defined on
S x [0,00) and 7y, converges in C* to round circle.

v
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Andrews's affine k!/3 flow: Blaschke's Theorem
For the curve contracting flow (7, is convex)

aa)t( ((Pv t) = k" (90: t) -Nij, (90, t) .« >0 a constant

X(9.0)=Xo (@), ¢S,
Ben Andrews has proved the following:

Theorem

For any « > 0, the curve 7y, contracts to a point in finite time.

(i) If 0 < a < 1/3, then for generic initial data there is no limit of the
curves rescaled about the final point (limsup,_ 1, [?/47TA = 0); and
the exceptional ones where the isoperimetric ratio remains bounded
converge to homothetic solutions, which have been classified.

(if) For a > 1/3, the rescaled solutions converge to circles and for
a = 1/3, they converge to ellipses.

v
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A flow problem

Motivated by Andrews's theorem, it is interesting to consider a k®-type
nonlocal flow of the form:

oX

5, (9.t) = [k (9. £) = A ()] Nin (¢, 1) (18)
where & > 0 is a constant and A (t) is chosen by

A(t) = 1 kds  (A-preserving)

L(t) Tt
or )
_ = a+1 _ :
A(t) = o [n k**ds  (L-preserving) .
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Consider a 1/ k“-type nonlocal flow of the flow

aa): (go, t) = |:_k”‘(1§0,t) —A (t)j| N, ((P, t) (19)

where & > 0 is a constant and A (t) is chosen by

A(t /—ds (A-preserving)
Ve

or

-1 1
A(t) = / pr= ——ds (L-preserving) .
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Applying Andrews's inequality, Gage's inequality and Green-Osher's
inequality, we have the following (here the variable 6 is the outward normal
angle of ):

o
2A A L
— <3/ =< —
L — Vo~ 2r (20)
o 2 L 2
kP7lde < — kPd® for any p>0. (21)
0 27 Jo
o
21 2A 2w
/ kP (0) df < T/ KPL(0)dO, p > 0. (22)
0 0
° L 27 1 9 27 1 0
— —— _dh < — > 0.
27'[/0 (@) —/o gy % P20 (23)
° [2—271A 27 1 A |
< S > 1. 24
r b @k wr@? P (24)
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Area-preserving k* flow

Theorem

Assume a > 1 and the area-preserving flow (18) has a smooth and convex
solution defined on St x [0, 00). Then the isoperimetric difference of y,:

L% (t) — 4mA(t) \, 0

exponentially as t — oo. In particular, by the Bonnesen's inequality, 7y,

converges to a round circle with radius @.
Proof Compute
% (2 (6) — 47A(8) = —2L () [ (K" = A(8)) kot

e
_ 471/02” K10, 1) db — 2L (1) /02" K (0,6)d0 <0, A(t)=A(0)
(25)

due to (21).
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Since & > 1, (22) gives

27T
/ K10, £) df <
0
and then

471/027r K1 (8, t) d6 — 2L (¢) /Om K* (8, t) d6
L_(; (L% (t) — 47A(1)) /Ozn K% (6, t) db
-2 21

< L(O)(L2(t)—47TA(t))/O k¥ (6, t) d,

<

where by Gage's inequality and Hdélder inequality, we also have

1
2y < ) < (279 1) df < ( 27 g (6, ) de)“ Qn)"F, a> 1.

A(0) — AD)
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Therefore there exists a positive constant C > 0 independent of time (C
depends on « and <) such that

27
/ K¥(6,t)d0 > C forall te [0 00)
0

and then

92y —ana@) < -2 (20 —amAr) (1)
dt — L(0)
for all time. Hence L2 (t) — 47tA (t) decreases and decays to zero
exponentially as t — oo.
Finally, by the classical Bonnesen inequality

L2 (t) —4mA(t) > 2 (R (t) — r (1))?, (28)

where r (t) is the inradius of 7y, and R (t) is the circumradius of 7,, 7,
must converge to a round circle with
A
lim R(t) = lim r(t) = ﬂ

t—oo t—o00 7T

td
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-
Area-preserving 1/k* flow

Theorem

Assume « > 1 andthe area-preserving flow (19) has a smooth and convex
solution defined on S* x [0, 00). Then the isoperimetric difference of y,:

L2 (t) — 4rA(t) \, 0

exponentially as t — oo. In particular, by the Bonnesen's inequality, 7y,

. ) . A(0
converges to a round circle with radius %

Proof Compute
d
7 (L2 (t) — 4mA(t))
4 27r71 do + 2L 27{71 do <0 (2
- _”/o i@t <t)/o =0 (29

due to (23).
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As o > 1, by (24) we also have

[2—27A (27 1 21 1
do0< [ —=_dp, a>1
i b e o®s) wrtep®® =t (0

which implies

d
212 (1)~ 4mA (D)
2 27 2m
< ank LinA - (z,t)d9+2L(t)/0 ,mde (31)
— —% (12 — 47A) /Ozn m é)’ 5 do. (32)
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By Holder inequality, we know that

L o L do < 2n71 do ‘ 27Td9 “ >
O=) *o0 —<o N ) (/0 ) cest

Hence there exists a constant C independent of time so that

27

1
——df >
A k“(@,t)de_c for all t € [0, 00)

and we have estimate same as (27) and the proof is done. U

Yu-Chu Lin( joint with Prof. Dong-Ho Tsai) (VShf-EleInISdelel It TIE[iaV el igei7 I T @re]) 1N February 23, 2011 31 /31



