Using Geometric Inequality to Prove the Convergence of Nonlocal Flows

Yu-Chu Lin
(joint with Prof. Dong-Ho Tsai)

February 23, 2011

THE PROBLEM

We are concerned with the following general "nonlocal" curvature flow of smooth convex closed curves:

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=[F(k(\varphi, t))-\lambda(t)] \mathbf{N}_{i n}(\varphi, t) \tag{}\\
\mathbf{X}(\varphi, 0)=\mathbf{X}_{0}(\varphi), \quad \varphi \in S^{1}
\end{array}\right.
$$

which is a parabolic IVP. Here:

- $X_{0}(\varphi): S^{1} \rightarrow \gamma_{0}$ is a parametrization of the initial (convex) curve γ_{0}.
- $k(\varphi, t)=$ curvature of $\gamma_{t}=\gamma(\cdot, t)$ (parametrized by $\left.X(\varphi, t): S^{1} \times[0, T) \rightarrow R^{2}\right)$.
- $N_{\text {in }}(\varphi, t)=$ inward normal of γ_{t}.
- $F^{\prime}(z)>0$ for all $z \in$ domain of F (parabolic condition).
- $\lambda(t)=$ a function of time, which may depend on global quantities, say $L(t)$ or $A(t)$ of γ_{t} or others. If $\lambda(t)$ depends on γ_{t}, then it is not known beforehand.

We note the following:

- Many interesting physical models are nonlocal in nature.
- If γ_{0} is not convex, then it may develop self-intersections. This will make $\left(^{*}\right)$ uncontrollable. Also, the $1 / k$-type flows (see below) will be undefined.
- The RHS of $(*)$ has no tangential component because it has NO essential effect at all.
- (*) is a 2×2 nonlinear degenerate parabolic system. We can overcome the degeneracy by looking at geometric quantities like "curvature" or "support function" to guarantee the existence of a smooth solution for short time.
- The goal is to study the asymptotic behavior of the flow.

Basic evolution formulas

Let $X(\varphi, t): S^{1} \times[0, T) \rightarrow R^{2}$ be a family of smooth time-dependent simple closed curves with time variation

$$
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=\mathbf{W}(\varphi, t) \in \mathbb{R}^{2}
$$

then its length $L(t)$ and enclosed area $A(t)$ satisfy the following:

$$
\begin{equation*}
\frac{d L}{d t}(t)=-\int_{\gamma_{t}}\left\langle\mathbf{W}, k \mathbf{N}_{i n}\right\rangle d s, \quad \frac{d A}{d t}(t)=-\int_{\gamma_{t}}\left\langle\mathbf{W}, \mathbf{N}_{i n}\right\rangle d s \tag{1}
\end{equation*}
$$

where s is the arc length parameter of the curve $X(\varphi, t)$. Moreover,

$$
\begin{align*}
\frac{d}{d t}\left[L^{2}(t)-4 \pi A(t)\right] & =-2 L(t) \int_{\gamma_{t}}\left\langle\mathbf{W},\left(k-\frac{2 \pi}{L(t)}\right) \mathbf{N}_{i n}\right\rangle d s \tag{2}\\
\frac{d}{d t}\left[\frac{L^{2}(t)}{4 \pi A(t)}\right] & =-\frac{L(t)}{2 \pi A(t)} \int_{\gamma_{t}}\left\langle\mathbf{W},\left(k-\frac{L(t)}{2 A(t)}\right) \mathbf{N}_{i n}\right\rangle(3)
\end{align*}
$$

Remark

By (1), (2), and (3), one can talk about the "gradient flow" of the length functional, the area functional (under suitable function space setting), or others.
(1) $\mathbf{W}(\varphi, t)=k(\varphi, t) \mathbf{N}_{i n}(\varphi, t) \quad$ (CSF; the gradient flow of $\left.L\right)$.
(2) $\mathbf{W}(\varphi, t)=\mathbf{N}_{i n}(\varphi, t) \quad\binom{$ the gradient flow of $A}{$, the unit speed inward normal flow } .
(3) $\mathbf{W}(\varphi, t)=\left(k(\varphi, t)-\frac{2 \pi}{L(t)}\right) \mathbf{N}_{\text {in }}(\varphi, t)$ (gradient flow of $\left.L^{2}-4 \pi A\right)$.
(1) $\mathbf{W}(\varphi, t)=\left(k(\varphi, t)-\frac{L(t)}{2 A(t)}\right) \mathbf{N}_{\text {in }}(\varphi, t)$ (gradient flow of $\left.L^{2} / 4 \pi A\right)$.

Also its curvature $k(\varphi, t)$ satisfies

$$
\begin{equation*}
\frac{\partial k}{\partial t}(\varphi, t)=\left\langle\frac{\partial^{2} \mathbf{W}}{\partial s^{2}}, \mathbf{N}_{i n}\right\rangle-2 k\left\langle\frac{\partial \mathbf{W}}{\partial s}, \mathbf{T}\right\rangle \tag{4}
\end{equation*}
$$

where $T=T(\varphi, t)$ is the unit tangent vector of $X(\varphi, t)$.
Note that here the operator $\partial / \partial s=\left|\mathbf{X}_{\varphi}(\varphi, t)\right|^{-1} \partial / \partial \varphi$ is time-dependent, which is usually not preferable.

Remark

When the curve has self-intersections, the above formulas for $d L / d t$ and $\partial k / \partial t$ remain correct but not for $d A / d t$.

Some examples of nonlocal flow

Recall that γ_{0} is convex with $k>0$ everywhere.

- For k-type flows, there are:

$$
\left\{\begin{array}{l}
(I) . F(k)-\lambda(t)=k-\frac{2 \pi}{L(t)}\binom{A \text {-preserving, }}{\text { gradient flow of } L^{2}-4 \pi A} \\
(I I) . F(k)-\lambda(t)=k-\frac{L(t)}{2 A(t)}\binom{L \text {-decreasing, } A \text {-increasing, }}{\text { gradient flow of } L^{2} / 4 \pi A} \\
(I I I) . F(k)-\lambda(t)=k-\frac{1}{2 \pi} \int_{\gamma_{t}} k^{2} d s \quad \text { (L-preserving), }
\end{array}\right.
$$

studied by Gage (1986), Jiang-Pan (2008) and Ma-Zhu (2008) respectively.

- For $1 / k$-type flows, there are:

$$
\left\{\begin{array}{l}
(I V) \cdot F(k)-\lambda(t)=\frac{1}{L(t)} \int_{\gamma_{t}} \frac{1}{k} d s-\frac{1}{k} \quad(A \text {-preserving) } \\
(V) \cdot F(k)-\lambda(t)=\frac{L(t)}{2 \pi}-\frac{1}{k} \quad(L \text {-preserving), } \\
\left.(V I) \cdot F(k)-\lambda(t)=\frac{2 A(t)}{L(t)}-\frac{1}{k} \quad \text { (the dual flow of }(I I)\right),
\end{array}\right.
$$

studied by Ma-Cheng (2009), Pan-Yang (2008), and Lin-Tsai (2010) respectively.

A dual relation

- There is a dual relation between k-type flows and $1 / k$-type flows.

For k-type flows with curvature speed $(k-p(t)) N_{i n}$, we have

$$
\frac{d L}{d t}(t)=-\int_{\gamma_{t}} k^{2} d s+2 \pi p(t), \quad \frac{d A}{d t}(t)=-2 \pi+p(t) L(t)
$$

and for $1 / k$-type flows with curvature speed $(q(t)-1 / k) N_{i n}$, we have

$$
\frac{d L}{d t}(t)=-2 \pi q(t)+L(t), \quad \frac{d A}{d t}(t)=-q(t) L(t)+\int_{\gamma_{t}} \frac{1}{k} d s .
$$

When $p(t)=1 / q(t)$, there is a "dual relation" between the above two, i.e.,

$$
\frac{1}{q(t)} \frac{d L}{d t}(t) \text { (for } 1 / k \text {-type flows) }=\frac{d A}{d t}(t) \text { (for } k \text {-type flows). }
$$

Hence in the above, flows (I) and (V) are dual.

- Motivated by the dual relation, we (Lin-T. (2010)) study the following:

$$
(V I) . F(k)-\lambda(t)=\frac{2 A(t)}{L(t)}-\frac{1}{k} \quad(\text { L-increasing, A-increasing })
$$

which is dual to the flow (II).

- Furthermore, we study the existence of a general linear nonlocal curvature flow

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=\left(H(L(t), A(t))-\frac{1}{k(\varphi, t)}\right) \mathbf{N}_{i n}(\varphi, t), \tag{5}
\end{equation*}
$$

where $H(p, q):(0, \infty) \times(0, \infty) \rightarrow R$ is a given (but arbitrary) smooth function of two variables.

Short time existence of the solution

Theorem

Let γ_{0} be smooth and convex. Then for each of the flows (I)-(VI) there exists a unique convex smooth solution γ_{t} on $S^{1} \times[0, T)$ for short time $T>0$.

Proof

- Uniqueness: The uniqueness is due to the maximum principle.
- Existence:

For k-type flows, consider the evolution equation of the curvature in terms of normal angle θ :

$$
\begin{equation*}
\frac{\partial k}{\partial t}(\theta, t)=k^{2}(\theta, t)\left[k_{\theta \theta}(\theta, t)+k(\theta, t)-\lambda(t)\right] \tag{6}
\end{equation*}
$$

and one can use the argument as in Section 2 of Gage-Hamilton (1986) to prove the short time existence.

For $1 / k$-type flows, one can give a direction proof since, using the "support function" $u(\theta, t)$, where θ is the outward normal angle, it gives rise to a "linear" equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}(\theta, t)=u_{\theta \theta}(\theta, t)+u(\theta, t)-\lambda(t) \quad \text { on } S^{1} \times[0, T) \tag{7}
\end{equation*}
$$

Remark

The support function $u(\theta, t)$ of a convex curve γ_{t} is defined by

$$
\begin{equation*}
u(\theta, t)=\langle X(\theta, t),(\cos \theta, \sin \theta)\rangle, \quad \theta \in S^{1} \tag{8}
\end{equation*}
$$

where $X(\theta, t)$ is the position vector of the unique point γ_{t} with outward normal $N_{\text {out }}=(\cos \theta, \sin \theta)$. Using $u(\theta, t)$, we have

$$
k(\theta, t)=\frac{1}{u_{\theta \theta}(\theta, t)+u(\theta, t)}
$$

$L(t)=\int_{0}^{2 \pi} u(\theta, t) d \theta, \quad A(t)=\frac{1}{2} \int_{0}^{2 \pi} u(\theta, t)\left[u_{\theta \theta}(\theta, t)+u(\theta, t)\right] d \theta$.

Remark (short time existence of a general linear nonlocal curvature flow) In fact, for a general linear nonlocal curvature flow (5), this PDE problem can be resolved using an ODE method, together with the help of representation formula for solutions to a linear heat equation. Consider

$$
\begin{equation*}
\frac{\partial u}{\partial t}(\theta, t)=u_{\theta \theta}(\theta, t)+u(\theta, t)-H(L(t), A(t)) . \tag{9}
\end{equation*}
$$

Since

$$
\frac{d L}{d t}(t)=L(t)-2 \pi H(L(t), A(t))
$$

let $w(\theta, t)=u(\theta, t)-L(t) / 2 \pi$ and it satisfies the linear heat equation

$$
\frac{\partial w}{\partial t}(\theta, t)=w_{\theta \theta}+w
$$

and thus by the representation formula we have

$$
\begin{equation*}
u(\theta, t)-\frac{L(t)}{2 \pi}=\frac{e^{t}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(\theta-\xi)^{2}}{4 t}}\left[u(\xi, 0)-\frac{L(0)}{2 \pi}\right] d \xi \tag{10}
\end{equation*}
$$

The evolution of $L(t)$ satifies the ODE

$$
\left\{\begin{array}{l}
\frac{d L}{d t}(t)=L(t)-2 \pi H\left(L(t), \frac{L^{2}(t)}{4 \pi}+E(t)-\frac{L^{2}(0)}{4 \pi} e^{2 t}\right) \tag{11}\\
L(0)=\text { length of } \gamma_{0}>0,
\end{array}\right.
$$

where $E(t)$ is a time function determined by γ_{0}, given by
$E(t)=\frac{1}{2} \int_{0}^{2 \pi}\left\{\begin{array}{l}\left(\frac{e^{t}}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{\tilde{\xi}^{2}}{4 t}} u(\theta-\xi, 0) d \xi\right) \times \\ \left(\frac{e^{t}}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{\tilde{\xi}^{2}}{4 t}}\left[u_{\theta \theta}(\theta-\xi, 0)+u(\theta-\xi, 0)\right] d \xi\right)\end{array}\right\} d \theta$
and $u(\theta, 0)$ is the support function of γ_{0}.
The ODE (11) is now self-contained and by standard ODE theory there is a unique positive solution defined on interval $\left[0, T^{*}\right)$ for some $T^{*}>0$.
Thus we have short time existence of the solutions for (5).

Some useful inequalities related to L and A

To obtain the long time convergence of the flow, we need to rely on some useful geometric inequalities:

- General inequalities:

Hölder inequality, Jensen inequality, Poincaré inequality, etc.

- Classical isoperimetric inequality:

$$
\frac{2 A}{L} \leq \sqrt{\frac{A}{\pi}} \leq \frac{L}{2 \pi}
$$

where " $=$ " holds if and only if the curve is a circle.

- Andrews inequality:

Let M be a compact Riemannian manifold with a volume form $d \mu$, and let ξ be a continuous function on M. Then for any increasing continuous function $F: R \rightarrow R$, we have

$$
\int_{M} \xi d \mu \int_{M} F(\xi) d \mu \leq \int_{M} d \mu \int_{M} \xi F(\xi) d \mu
$$

If F is strictly increasing, then equality holds if and only if ξ is a constant function on M.

Remark

In case $M=\gamma$ is a convex closed curve with volume form $d s$, where s is arc length parameter, then the above becomes

$$
\begin{equation*}
\int_{\gamma} \xi d s \int_{\gamma} F(\xi) d s \leq \int_{\gamma} d s \int_{\gamma} \xi F(\xi) d s \tag{12}
\end{equation*}
$$

where $\xi: \gamma \rightarrow \mathbb{R}$ is a continuous function.

- Gage inequality:

For any convex closed curve γ, we have

$$
\left.\int_{\gamma} k^{2}(s) d s \geq \frac{\pi L}{A}, \quad \text { (note that } \int_{\gamma} k(s) d s=2 \pi\right)
$$

where s is arc length parameter. The equality holds if and only if γ is a circle.

- Curvature inequalities:

$$
\int_{0}^{2 \pi} k^{q}(\theta) d \theta \leq \frac{2 A}{L} \int_{0}^{2 \pi} k^{q+1}(\theta) d \theta, \quad q \geq 0 \text { a constant }
$$

where θ is the outward normal angle of γ and the equality holds if and only if γ is a circle;
or

$$
\frac{L}{2 \pi} \int_{0}^{2 \pi} \frac{1}{k^{q}(\theta)} d \theta \leq \int_{0}^{2 \pi} \frac{1}{k^{q+1}(\theta)} d \theta, \quad q \geq 0 \text { a constant }
$$

where for $q>0$ the equality holds if and only if γ is a circle.

- Green-Osher inequality:

Let $Q(z):(0, \infty) \rightarrow R$ be a function with $Q^{\prime \prime}(z) \geq 0$ everywhere. Then for convex γ with outward normal angle θ and curvature $k(\theta)$, we have

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} Q\left(\frac{1}{k(\theta)}\right) d \theta \\
\geq & \frac{1}{2}\left[Q\left(\frac{L-\sqrt{L^{2}-4 \pi A}}{2 \pi}\right)+Q\left(\frac{L+\sqrt{L^{2}-4 \pi A}}{2 \pi}\right)\right] \tag{13}
\end{align*}
$$

- Taking $Q(z)=\frac{1}{z}$, we get Gage's inequality

$$
\int_{\gamma} k^{2}(s) d s=\int_{0}^{2 \pi} k(\theta) d \theta \geq \frac{\pi L}{A} .
$$

- Taking $Q(z)=z^{2}$, we have

$$
\begin{equation*}
\int_{\gamma} \frac{1}{k(s)} d s=\int_{0}^{2 \pi} \frac{1}{k^{2}(\theta)} d \theta \geq \frac{L^{2}-2 \pi A}{\pi} \tag{14}
\end{equation*}
$$

- Bonnesen inequality:

For any convex closed curve γ, we have

$$
\begin{align*}
L^{2}-4 \pi A & \geq \pi^{2}\left(R_{\text {out }}-r_{\text {in }}\right)^{2} \tag{15}\\
\frac{L^{2}}{4 \pi A}-1 & \geq \pi\left(1-\frac{r_{\text {in }}}{R_{\text {out }}}\right)^{2} \tag{16}
\end{align*}
$$

where $r_{\text {in }}$ and $R_{\text {out }}$ are the inradius and circumradius of γ respectively.

Remark

(i) For a family of embedded closed curves γ_{t}, if $L^{2}(t) / 4 \pi A(t) \rightarrow 1$ as $t \rightarrow T$, then $r_{\text {in }}(t) / R_{\text {out }}(t) \rightarrow 1$ as $t \rightarrow T$. Hence γ_{t} evolves to become more and more circular and we say that γ_{t} converges to a circle in C_{0} convergence.
(ii) As $A(t)$ is bounded away from zero, $L^{2}(t)-4 \pi A(t) \rightarrow 0$ iff $L^{2}(t) / 4 \pi A(t) \rightarrow 1$.

The decreasing of isoperimetric difference

Lemma

Assume $F^{\prime}>0$ everywhere (parabolic condition) and consider the flow

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=[F(k(\varphi, t))-\lambda(t)] \mathbf{N}_{i n}(\varphi, t) \tag{17}
\end{equation*}
$$

where $\lambda(t)$ is a time function which depends on L or A of γ_{t}. As long as $\gamma(\cdot, t)$ stays embedded on $[0, T)$, then the isoperimetric difference $L^{2}(t)-4 \pi A(t)$ for $\gamma(\cdot, t)$ is decreasing on $[0, T)$.

Proof The idea is to use Andrews's inequality. Compute

$$
\begin{aligned}
& \frac{d}{d t}\left[L^{2}(t)-4 \pi A(t)\right] \\
= & 2\left[\int_{\gamma_{t}} k d s \int_{\gamma_{t}} F(k) d s-\int_{\gamma_{t}} d s \int_{\gamma_{t}} k F(k) d s\right] \leq 0 .
\end{aligned}
$$

Corollary

If flow (17) is A-preserving, then it is L-decreasing.
If it is L-preserving, then it is A-increasing. In particular, if it preserves either A or L, then $L^{2} / 4 \pi A$ is decreasing.

Theorem
All flows (I)-(VI) are both $L^{2}-4 \pi A$ and $L^{2} / 4 \pi A$ decreasing.

Theorem

(roughly) For flows (I)-(VI) we have smooth convex solution γ_{t} defined on $S^{1} \times[0, \infty)$ and γ_{t} converges in C^{∞} to round circle.

Andrews's affine $k^{1 / 3}$ flow; Blaschke's Theorem For the curve contracting flow (γ_{0} is convex)

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=k^{\alpha}(\varphi, t) \cdot \mathbf{N}_{i n}(\varphi, t), \quad \alpha>0 \text { a constant } \\
\mathbf{X}(\varphi, 0)=\mathbf{X}_{0}(\varphi), \quad \varphi \in S^{1}
\end{array}\right.
$$

Ben Andrews has proved the following:

Theorem

For any $\alpha>0$, the curve γ_{t} contracts to a point in finite time.
(i) If $0<\alpha<1 / 3$, then for generic initial data there is no limit of the curves rescaled about the final point ($\lim \sup _{t \rightarrow T_{\max }} L^{2} / 4 \pi A=\infty$); and the exceptional ones where the isoperimetric ratio remains bounded converge to homothetic solutions, which have been classified.
(ii) For $\alpha>1 / 3$, the rescaled solutions converge to circles and for $\alpha=1 / 3$, they converge to ellipses.

A flow problem

Motivated by Andrews's theorem, it is interesting to consider a k^{α}-type nonlocal flow of the form:

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=\left[k^{\alpha}(\varphi, t)-\lambda(t)\right] \mathbf{N}_{i n}(\varphi, t) \tag{18}
\end{equation*}
$$

where $\alpha>0$ is a constant and $\lambda(t)$ is chosen by

$$
\lambda(t)=\frac{1}{L(t)} \int_{\gamma_{t}} k^{\alpha} d s \quad(A \text {-preserving })
$$

or

$$
\lambda(t)=\frac{1}{2 \pi} \int_{\gamma_{t}} k^{\alpha+1} d s \quad(L \text {-preserving }) .
$$

Consider a $1 / k^{\alpha}$-type nonlocal flow of the flow

$$
\begin{equation*}
\frac{\partial \mathbf{X}}{\partial t}(\varphi, t)=\left[-\frac{1}{k^{\alpha}(\varphi, t)}-\lambda(t)\right] \mathbf{N}_{i n}(\varphi, t) \tag{19}
\end{equation*}
$$

where $\alpha>0$ is a constant and $\lambda(t)$ is chosen by

$$
\lambda(t)=-\frac{1}{L(t)} \int_{\gamma_{t}} \frac{1}{k^{\alpha}} d s \quad(A \text {-preserving })
$$

or

$$
\lambda(t)=\frac{-1}{2 \pi} \int_{\gamma_{t}} \frac{1}{k^{\alpha-1}} d s \quad(L \text {-preserving }) .
$$

Applying Andrews's inequality, Gage's inequality and Green-Osher's inequality, we have the following (here the variable θ is the outward normal angle of γ):
(1)

$$
\begin{equation*}
\frac{2 A}{L} \leq \sqrt{\frac{A}{\pi}} \leq \frac{L}{2 \pi} . \tag{20}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\int_{0}^{2 \pi} k^{p-1} d \theta \leq \frac{L}{2 \pi} \int_{0}^{2 \pi} k^{p} d \theta \text { for any } p \geq 0 \tag{21}
\end{equation*}
$$

(3)

$$
\begin{equation*}
\int_{0}^{2 \pi} k^{p}(\theta) d \theta \leq \frac{2 A}{L} \int_{0}^{2 \pi} k^{p+1}(\theta) d \theta, \quad p \geq 0 \tag{22}
\end{equation*}
$$

(1)

$$
\begin{equation*}
\frac{L}{2 \pi} \int_{0}^{2 \pi} \frac{1}{k^{p}(\theta)} d \theta \leq \int_{0}^{2 \pi} \frac{1}{k^{p+1}(\theta)} d \theta, \quad p \geq 0 \tag{23}
\end{equation*}
$$

©

$$
\begin{equation*}
\frac{L^{2}-2 \pi A}{L \pi} \int_{0}^{2 \pi} \frac{1}{k^{p}(\theta)} d \theta \leq \int_{0}^{2 \pi} \frac{1}{k^{p+1}(\theta)} d \theta, \quad p \geq 1 \tag{24}
\end{equation*}
$$

Area-preserving k^{α} flow

Theorem

Assume $\alpha \geq 1$ and the area-preserving flow (18) has a smooth and convex solution defined on $S^{1} \times[0, \infty)$. Then the isoperimetric difference of γ_{t} :

$$
L^{2}(t)-4 \pi A(t) \searrow 0
$$

exponentially as $t \rightarrow \infty$. In particular, by the Bonnesen's inequality, γ_{t} converges to a round circle with radius $\sqrt{\frac{A(0)}{\pi}}$.

Proof Compute

$$
\begin{align*}
& \frac{d}{d t}\left(L^{2}(t)-4 \pi A(t)\right)=-2 L(t) \int_{\gamma_{t}}\left(k^{\alpha}-\lambda(t)\right) k d s \\
& =4 \pi \int_{0}^{2 \pi} k^{\alpha-1}(\theta, t) d \theta-2 L(t) \int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta \leq 0, \quad A(t)=A(0) \tag{25}
\end{align*}
$$

due to (21).

Since $\alpha \geq 1$, (22) gives

$$
\begin{equation*}
\int_{0}^{2 \pi} k^{\alpha-1}(\theta, t) d \theta \leq \frac{2 A(t)}{L(t)} \int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta, \quad \alpha \geq 1 \tag{26}
\end{equation*}
$$

and then

$$
\begin{aligned}
& 4 \pi \int_{0}^{2 \pi} k^{\alpha-1}(\theta, t) d \theta-2 L(t) \int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta \\
& \leq \frac{-2}{L(t)}\left(L^{2}(t)-4 \pi A(t)\right) \int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta \\
& \leq \frac{-2}{L(0)}\left(L^{2}(t)-4 \pi A(t)\right) \int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta
\end{aligned}
$$

where by Gage's inequality and Hölder inequality, we also have $\frac{2 \pi \sqrt{\pi}}{\sqrt{A(0)}} \leq \frac{\pi L(t)}{A(t)} \leq \int_{0}^{2 \pi} k(\theta, t) d \theta \leq\left(\int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta\right)^{\frac{1}{\alpha}}(2 \pi)^{1-\frac{1}{\alpha}}, \quad \alpha \geq 1$.

Therefore there exists a positive constant $C>0$ independent of time (C depends on α and γ_{0}) such that

$$
\int_{0}^{2 \pi} k^{\alpha}(\theta, t) d \theta \geq C \quad \text { for all } \quad t \in[0, \infty)
$$

and then

$$
\begin{equation*}
\frac{d}{d t}\left(L^{2}(t)-4 \pi A(t)\right) \leq-\frac{2 C}{L(0)}\left(L^{2}(t)-4 \pi A(t)\right) \tag{27}
\end{equation*}
$$

for all time. Hence $L^{2}(t)-4 \pi A(t)$ decreases and decays to zero exponentially as $t \rightarrow \infty$.
Finally, by the classical Bonnesen inequality

$$
\begin{equation*}
L^{2}(t)-4 \pi A(t) \geq \pi^{2}(R(t)-r(t))^{2} \tag{28}
\end{equation*}
$$

where $r(t)$ is the inradius of γ_{t} and $R(t)$ is the circumradius of γ_{t}, γ_{t} must converge to a round circle with

$$
\lim _{t \rightarrow \infty} R(t)=\lim _{t \rightarrow \infty} r(t)=\sqrt{\frac{A(0)}{\pi}}
$$

Area-preserving $1 / k^{\alpha}$ flow

Theorem
Assume $\alpha \geq 1$ andthe area-preserving flow (19) has a smooth and convex solution defined on $S^{1} \times[0, \infty)$. Then the isoperimetric difference of γ_{t} :

$$
L^{2}(t)-4 \pi A(t) \searrow 0
$$

exponentially as $t \rightarrow \infty$. In particular, by the Bonnesen's inequality, γ_{t} converges to a round circle with radius $\sqrt{\frac{A(0)}{\pi}}$.

Proof Compute

$$
\begin{align*}
& \frac{d}{d t}\left(L^{2}(t)-4 \pi A(t)\right) \\
= & -4 \pi \int_{0}^{2 \pi} \frac{1}{k^{\alpha+1}(\theta, t)} d \theta+2 L(t) \int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta \leq 0 \tag{29}
\end{align*}
$$

due to (23).

As $\alpha \geq 1$, by (24) we also have

$$
\begin{equation*}
\frac{L^{2}-2 \pi A}{L \pi} \int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta \leq \int_{0}^{2 \pi} \frac{1}{k^{\alpha+1}(\theta, t)} d \theta, \quad \alpha \geq 1 \tag{30}
\end{equation*}
$$

which implies

$$
\begin{align*}
& \frac{d}{d t}\left(L^{2}(t)-4 \pi A(t)\right) \\
& \leq-4 \pi \frac{L^{2}-2 \pi A}{L \pi} \int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta+2 L(t) \int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta \tag{31}\\
& =-\frac{2}{L}\left(L^{2}-4 \pi A\right) \int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta . \tag{32}
\end{align*}
$$

By Hölder inequality, we know that

$$
L(t)=\int_{0}^{2 \pi} \frac{1}{k(\theta, t)} d \theta \leq\left(\int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta\right)^{\frac{1}{\alpha}}\left(\int_{0}^{2 \pi} d \theta\right)^{\frac{\alpha-1}{\alpha}}, \quad \alpha \geq 1 .
$$

Hence there exists a constant C independent of time so that

$$
\int_{0}^{2 \pi} \frac{1}{k^{\alpha}(\theta, t)} d \theta \geq C \quad \text { for all } \quad t \in[0, \infty)
$$

and we have estimate same as (27) and the proof is done.

