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Discovery of Superconductivity

In 1911, superconductivity was first discovered by H.
Kamerlingh Onnes in Leiden, just three years after he
had first liquefied helium.
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Perfect Conductivity

If the temperature is lower than a critical temperature
Tc, the electronic resistance completely drops to zero.
Once the current is set up, it can stay for very long
periods (years).
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Perfect Diamagnetism

Meissner effect

Perfect diamagnetism was found in 1933 by Meissner
and Ochsenfeld. They found a magnetic field is
excluded from entering a superconductor.
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Levitation: Meissner Effect

Click here to view the movie
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Features of Superconductivity
• Perfect Conductivity
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However, these two features can not be explained
under the classical Maxwell’s Electrodynamic at the
same time.
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Features of Superconductivity
• Perfect Conductivity
• Perfect Diamagnetism

However, these two features can not be explained
under the classical Maxwell’s Electrodynamic at the
same time.

Perfect Conductor Superconductor
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Theories for Superconductivity

In 1950, Ginzburg and Landau propose a
phenomenological theory about superconductivity.
This theory is based on Landau’s general theory of
second-order phase transitions.
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Theories for Superconductivity

In 1957, Bardeen, Cooper, and Schrieffer propose
their microscopic theory about superconductivity,
BCS theory. They introduce a idea of ’Cooper pairs’
of electrons.

Click here to view the movie
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The Glory of the GL Theory
In 1957, Abrikosov predicted the existence of a
periodic lattice structure of magnetic flux for Type II
superconductor under the framework of the GL
theory. Those structures was observed in lab in 1967.
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Type I and Type II
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BCS and GL Theory
In 1959, Gor’kov showed that the macroscopic GL
theory can be derived from microscopic BCS theory
in the appropriate limit.
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The BCS well explains the mechanism of the low
temperature of superconductivity. However, the BCS
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BCS and GL Theory
In 1959, Gor’kov showed that the macroscopic GL
theory can be derived from microscopic BCS theory
in the appropriate limit.

The BCS well explains the mechanism of the low
temperature of superconductivity. However, the BCS
theory cannot explains high temperature
superconductivity.

The GL theory can even be used to explain some
phenomenons for high temperature superconductivity.
The GL model is also simpler to handle.
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Ginzburg-Landau Model

G(ψ,A) =

∫

U

(

|(∇− iA)ψ|2 +
1

2

(

|ψ|2 − µ2
)2

)

dx

+

∫

R3

|∇ ×A−H
e|2 dx.

Hereψ : U → C, with
U : the domain occupied by the sample,
|ψ|2 =density of supercond. charge carriers,
A : R3 → R

3 is the induced mag. potential,
Tc : the critical temperature under no applied field,
µ2 ∝ Tc − T, : material constant
H
e : R3 → R

3 = given external magnetic field.
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Ginzburg-Landau Model

G(ψ,A) =

∫

U

(

|(∇− iA)ψ|2 +
1

2

(

|ψ|2 − µ2
)2

)

dx

+

∫

R3

|∇ ×A−H
e|2 dx.

The Basic Thermodynamic Postulate:

The state(ψ,A) of the sample minimizes the
Ginzburg-Landau energy.
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The Onset of Superconductivity

Normal state :(ψ,A) = (0,Ae) where∇×A
e = H

e.

The critical temperatureTc is the phase transition
temperature under no applied magnetic field
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The Onset of Superconductivity

G(ψ,A) =

∫

U

(

|(∇− iA)ψ|2 +
1

2

(

|ψ|2 − µ2
)2

)

dx

+

∫

R3

|∇ ×A−H
e|2 dx.

The phase transition associated with onset of
superconductivity is characterized by the value
µ2 (∝ (Tc − T )) at which this normal state loses
stability.
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The Onset of Superconductivity
Second Variation:

δ2G(0,Ae;ψ,A) =

2

∫

U

(

|(∇− iAe)ψ|
2 − µ2 |ψ|2

)

dx

+2

∫

R3

|∇ ×A|2 dx.

This leads us to consider the following Rayleigh
quotient problem:

µ2c(H
e) := inf

ψ

∫

U
|(∇− iAe)ψ|2 dx
∫

U
|ψ|2 dx

.
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The Onset of Superconductivity
From the second variation, we know

µ2c(H
e) > µ2(T ) Normal state is stable

µ2c(H
e) < µ2(T ) Normal state is unstable.

Phase Transition curve:

µ2c(H
e) = µ2(T ) = α(Tc − T ) = α∆T
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The Onset Problem
- Superconducting sample in the presence of a large
magnetic fieldHe = h ez:

WhenU = R
2, we have

µc(h) = h (Landau)
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The Onset Problem
- Superconducting sample in the presence of a large
magnetic fieldHe = h ez:

WhenU = R
2
+, we have

µc(h) = λ1h whereλ1 ≈ 0.59

The first eigenfunction exponentially decays from the boundary.

(Surface superconductivity)

(St. james, De Gennes, Chapman, Lu & Pan )
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The Onset Problem
- Superconducting sample in the presence of a large
magnetic fieldHe = h ez:
WhenU = smooth bounded domain inR2

µc(h) = λ1h−
κmax

3I0
h1/2 + o(h1/2) ash→ ∞

whereλ1 is eigenvalue corresponding to the half-space andI0 is

a universal constant andκmax is the maximal curvature of the

boundary. The first eigenfunction is exponentially localized near

points of maximal curvature on the boundary.

(P. Bauman, D. Phillips, Q. Tang, A. Bernoff, P. Sternberg, K.
Lu, X. Pan, M. del Pino, P. Felmer, B. Helffer, A. Morame)

– p. 13/32



The Onset Problem
- ForU ⊂ R

3 or in-homogenous magnetic fields:

X. Pan, B. Helffer and A. Morame
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Thin Superconducting Samples
J. Rubinstein and M. Schatzman (2001)

They consider the Ginzburg-Landau functional on a
ε-neighborhood of a planner embedded graphM . They prove
that its minimizers converge in a suitable sense to the minimizers
of a simpler functional on the planar graphM .
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Thin Superconducting Samples
J. Rubinstein and M. Schatzman (2001)

They consider the Ginzburg-Landau functional on a
ε-neighborhood of a planner embedded graphM . They prove
that its minimizers converge in a suitable sense to the minimizers
of a simpler functional on the planar graphM .

- Thin superconducting sample with constriction:
• J. Rubinstein, M. Schatzman,P. Sternberg
• J. Rubinstein, P. Sternberg, G. Wolansky
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Question
Here we ask :

• Can one (rigorously) derive a model of an onset
problem for a thin superconducting loop in a
presence of large magnetic field starting from
three-dimensional Ginzburg-Landau model?

This case was first treated by Richardson and
Rubinstein using formal asymptotic expansion.
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Little-Parks Experiment
In 1961, Little and Parks observed that the phase
transition temperature in thin ring is essentially a
periodic function of the axial magnetic flux through
the ring with a parabolic background.

h

DTHhL
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The Model of our problem
- Two Assumptions in our study :

1. The sample domainU is a sequence of domains
{Uε} consisting ofε-neighborhoods of a limiting
simple closed curve.
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The Model of our problem
- Two Assumptions in our study :

1. The sample domainU is a sequence of domains
{Uε} consisting ofε-neighborhoods of a limiting
simple closed curve.

2. The given applied fieldHε take the form

H
e
ε =

H
e

ε

whereHe is a given smooth magnetic field
independent ofε.
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Description ofUε

Let r : [0, L] → R
3 be a simple, closedC2 curve. The

triple {t,n,b} forms a Frenet Frame for the curve.

Theε-neighborhoodUε is the image of the cylinder

Ω = {(y1, y2, y3) ∈ R
3 : 0 ≤ y1 ≤ L, y22 + y23 < 1}

under the mapping

Tε(y) = r(y1) + εy2 n(y1) + εy3 b(y1) .
– p. 18/32



Rayleigh quotient problem
This leads us to consider the following Rayleigh
quotient problem:

inf
ψ

∫

Uε

∣

∣(∇− iA
e

ε
)ψ

∣

∣

2
dx

∫

Uε
|ψ|2 dx

.
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Main Idea
Set

Eε(ψ) :=

∫

Uε

∣

∣(∇− iA
e

ε
)ψ

∣

∣

2
dx

∫

Uε
|ψ|2 dx

.

Main Idea: Identify a limiting energy such that if the
minimizersψε of Eε converge to some limitψ0

defined on the limiting curve, thenψ0 minimizes this
limiting energy.
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Main difficulty

Eε(ψ) :=

∫

Uε

∣

∣(∇− iA
e

ε
)ψ

∣

∣

2
dx

∫

Uε
|ψ|2 dx

.

Main difficulty: The phase of the minimizerψε
oscillates rapidly asε→ 0. Without shifting the
phase, we can’t attain compactness of minimizersψε
of Eε.
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Main difficulty

Eε(ψ) :=

∫

Uε

∣

∣(∇− iA
e

ε
)ψ

∣

∣

2
dx

∫

Uε
|ψ|2 dx

.

Main difficulty: The phase of the minimizerψε
oscillates rapidly asε→ 0. Without shifting the
phase, we can’t attain compactness of minimizersψε
of Eε.

We shift the phase function by special phase functions
φε.

Aε

ε
−∇φε ≈ O(1) in Uε .
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Define an equivalent functional
This lead us to find an equivalent energy functional to
Eε.

Fε(ψ) := Eε(ψe
iφε) =

∫

Uε

∣

∣

∣

(

∇− i(A
e

ε
−∇φε)

)

ψ
∣

∣

∣

2

dx
∫

Uε

∣

∣ψ
∣

∣

2
dx

Find φε:

1. We decomposeAe into componentsAe
1, A

e
2 and

Ae
3 lying along the tangent, normal and bi-normal

to the limiting curver.

2. We set the numberkε be the closest integer to the

number
(

1
L

∫ L

0
Ae

1
(y1,0,0)
ε

dy1
)

.

– p. 22/32



Special phase functionφε
Defineφε by

φε(y1, y2, y3) :=

∫ y1

0

(
A1(t, 0, 0)

ε
− βε)dt

+
1

ε

(

y2A2(y1, 0, 0) + y3A3(y1, 0, 0)

+
y2
2

2
∂y2A2(y1, 0, 0) +

y2
3

2
∂y3A3(y1, 0, 0)

+
1

2
y2y3∂y3A2(y1, 0, 0) +

1

2
y2y3∂y2A3(y1, 0, 0)

)

where the effective magnetic flux

βε =

(

1

L

∫ L

0

A1(t, 0, 0)

ε
dt

)

−
2π

L
kε.
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The equivalent functionalFε

Fε(ψ) =

∫

Ω

∣

∣

∣

1

ηε

(

∂y1ψ + τy3∂y2ψ − τy2∂y3ψ
)

∫

Ω
|ψ|2ηε dy

−i
(βε

ηε
− y2H

e
3
+ y3H

e
2

)

ψ − 1

εR
εψ

∣

∣

∣

2

ηε dy
∫

Ω
|ψ|2ηε dy

+

∫

Ω

∣

∣

∣

1

ε∂y2ψ + i(1
2
y3)H

e
1
ψ − i

εR
ε
2
ψ
∣

∣

∣

2

ηε dy
∫

Ω
|ψ|2ηε dy

+

∫

Ω

∣

∣

∣

1

ε∂y3ψ − i(1
2
y2)H

e
1
ψ − i

εR
ε
3
ψ
∣

∣

∣

2

ηε dy
∫

Ω
|ψ|2ηε dy

whereηε = 1− εκy2 andκ is the curvature of the curver.
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The limiting energy Gβ

We guess limiting energy should takes the following
form:

Gβ(ψ) :=

∫ L

0 |
(

d
dy1

− iβ
)

ψ|2 +W (y1)|ψ|
2dy1

∫ L

0 |ψ|2dy1
.

Here

W (y1) :=
1

8
(He

1)
2 +

1

4
(He

2)
2 +

1

4
(He

3)
2.
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Theorem 1
We obtain a compactness result

Theorem 1 Let ψε is the minimizer ofFε in H1(Ω).
There exists a subsequence{ψεj} andψ0 ∈ H1(Ω)

andβ0 ∈ [−π
L
, π
L
] such that

ψεj ⇀ ψ0 weakly inH1(Ω),

ψεj → ψ0 strongly inLq(Ω), 1 ≤ q < 6

βεj → β0

Note thatψ0 is a function ofy1 only.
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Theorem 2
Involving techniques of dimension reduction and
Γ-convergence. We obtain

Theorem 2 The limiting functionψ0 ∈ H1((0, L))
minimizesGβ0.

This result is followed by the claim

Gβ0(ψ0) ≤ lim inf
εj→0

Fεj(ψεj).

All terms inFεj will converge to their 1d analogs.
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Theorem 3
Comparing the minimum ofFε and the minimum of
Gβε. This gives us

Theorem 3 Let λε be the minimum ofFε and letσε
be the minimum ofGβε. Then

(λε − σε) = O(ε) .
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Theorem 4
Asymptotic relationship between the first eigenspaces
of functionalsFε andGβε:

Theorem 4 Let εj → 0 be any sequence such that

−
π

L
< lim inf

j→∞
βεj ≤ lim sup

j→∞
βεj <

π

L
.

and letψεj be a minimizer ofFεj in H1(Ω) with
‖ψεj‖L2(Ω) = 1. Then there exists a sequence{ψ

εj
0 }

minimizing{Gβεj
} in H1

per((0, L)) with

‖ψ
εj
0 ‖L2(Ω) = 1 such that

ψεj − ψ
εj
0 → 0 strongly inH1(Ω) .
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Little-Parks Experiment
In 1961, Little and Parks observed that the phase
transition temperature in thin ring is essentially a
periodic function of the axial magnetic flux through
the ring with a parabolic background.

h

DTHhL
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N-S Transition Curve

µ2c(hez)

∼ inf
ψ
Gβ0(ψ)

= inf
ψ

∫ L

0 |
(

d
dy1

− iβ0(h)
)

ψ|2 + h2

4 |ψ|
2dy1

∫ L

0 |ψ|2dy1
.

= β0(h) +
1

4
h2
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N-S Transition Curve
The result of the Little-Parks experiment can be found
through the relation

µ2c(h ez) = µ2(T ) = α(Tc − T ) = α∆T ,

we obtain

β0(h) +
1

4
h2 = µ2c(h ez) = α∆T .

where

µ2c(H
e) := inf

ψ

∫

U
|(∇− iAe)ψ|2 dx
∫

U
|ψ|2 dx

.
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Thank You!
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