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Discovery of Superconductivity

n 1911, superconductivity was first discovered by H.
Kamerlingh Onnes Iin Leiden, just three years after he
nad first liquefied helium.
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Perfect Conductivity

Non-superconductive
Metal .

___‘__.-r"'" ~t== Superconductor

Resistance

0K Tc Temperature

If the temperature is lower than a critical temperature
T.., the electronic resistance completely drops to zero.
Once the current is set up, It can stay for very long
periods (years).
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Perfect Diamagnetism

B B

T.:-T.: T= T{:

Meissnher effect

Perfect diamagnetism was found in 1933 by Meissner
and Ochsenfeld. They found a magnetic field is
excluded from entering a superconductor.
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Levitation: Meissner Effect
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Features of Superconductivity
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Perfect Conductivity
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However, these two features can not be explained
under the classical Maxwell's Electrodynamic at the
same time.
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Theories for Superconductivity

~

In 1950, Ginzburg and Landau propose a
phenomenological theory about superconductivity.
This theory Is based on Landau’s general theory of

second-order phase transitions.
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Theories for Superconductivity

In 1957, Bardeen, Cooper, and Schrieffer propose
their microscopic theory about superconductivity,

BCS theory. They introduce a idea of ‘Cooper pairs’
of electrons.

Click here to view the movie
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The Glory of the GL Theory

In 1957, Abrikosov predicted the existence of a
periodic lattice structure of magnetic flux for Type Il
superconductor under the framework of the GL
theory. Those structures was observed in lab in 1967.
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BCS and GL Theory

In 1959, Gor’kov showed that the macroscopic GL
theory can be derived from microscopic BCS theory
In the appropriate limit.
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BCS and GL Theory

In 1959, Gor’kov showed that the macroscopic GL
theory can be derived from microscopic BCS theory
In the appropriate limit.

The BCS well explains the mechanism of the low
temperature of superconductivity. However, the BCS
theory cannot explains high temperature
superconductivity.

The GL theory can even be used to explain some
phenomenons for high temperature superconductivity.
The GL model is also simpler to handle.
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Ginzburg-Landau Model

G, A) = /U (!(V—iA)¢\2+%(\¢\2—u2)2) dx

+ [ |VxA—-H dz.

R3

Herey : U — C, with
U the domain occupied by the sample,
|¢\2 =density of supercond. charge carriers,

A : R? — R’ is the induced mag. potential,
T.. . the critical temperature under no applied field,

u? oc T. — T, : material constant
H¢ : R’ — R’ = given external magnetic field.
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Ginzburg-Landau Model

G, A) = /U (!(V—iA)¢\2+%(\w\2—u2)2) dx

+ [ |VxA—-H dz.

R3
The Basic Thermodynamic Postulate:

The statgy, A) of the sample minimizes the
Ginzburg-Landau energy.
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The Onset of Superconductivity

lypel Tvpe 1

Normal state (¢, A) = (0, A°) whereV x A¢ = H".

The critical temperaturé,. is the phase transition
temperature under no applied magnetic field
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The Onset of Superconductivity

2
cw.a) = [ (17 ial+ 5 (10 - 2)") do
V x A —H? dz.
+/R3‘ X < dx

The phase transition associated with onset of

superconductivity is characterized by the value

1? (o< (T, — T)) at which this normal state loses

stabllity.
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The Onset of Superconductivity

Second Variation:

52G(0, Ag;1h, A) =

2 [ (10 = iAo = lof?) da

V x Al dx.
R3

This leads us to consider the following Rayleigh
guotient problem:

— 1A°) d
,uz(He) = inf fU i w ’
b fU \w\ dax
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The Onset of Superconductivity

From the second variation, we know

w2(H) > p*(T)  Normal state is stable
n?(HY) < p*(T)  Normal state is unstable.

Phase Transition curve:

pe(H®) = (1) = o(T. = T) = aAT
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The Onset Problem

- Superconducting sample in the presence of a large
magnetic fieldd, = he,:

WhenU = R?, we have

te(h) =h (Landau)
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The Onset Problem

- Superconducting sample in the presence of a large
magnetic fieldd, = he,:

WhenU = R%, we have

te(h) = Ah where); ~ 0.59

The first eigenfunction exponentially decays from the bamd
(Surface superconductivity)

(St. james, De Gennes, Chapman, Lu & Pan)
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The Onset Problem

- Superconducting sample in the presence of a large
magnetic fieldd, = he,:

WhenU = smooth bounded domain iR?

1o(h) = AMh — Z”}“ W2 4 o(hY?) ash — oo
0

where); Is eigenvalue corresponding to the half-space And
a universal constant and, .. I1s the maximal curvature of the
boundary. The first eigenfunction is exponentially locadinear
points of maximal curvature on the boundary.

(P. Bauman, D. Phillips, Q. Tang, A. Bernoff, P. Sternberg, K
Lu, X. Pan, M. del Pino, P. Felmer, B. Helffer, A. Morame)
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The Onset Problem

- ForU c R’ or in-homogenous magnetic fields:

X. Pan, B. Helffer and A. Morame
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Thin Superconducting Samples
J. Rubinstein and M. Schatzman (2001)

They consider the Ginzburg-Landau functional on a
e-neighborhood of a planner embedded graphThey prove
that its minimizers converge in a suitable sense to the niagra
of a simpler functional on the planar graph.
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Thin Superconducting Samples
J. Rubinstein and M. Schatzman (2001)

They consider the Ginzburg-Landau functional on a
e-neighborhood of a planner embedded graphThey prove
that its minimizers converge in a suitable sense to the niagra
of a simpler functional on the planar graph.

- Thin superconducting sample with constriction:
¢ J. Rubinstein, M. Schatzman,P. Sternberg
¢ J. Rubinstein, P. Sternberg, G. Wolansky
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Question

Here we ask :

Can one (rigorously) derive a model of an onset
problem for a thin superconducting loop in a
presence of large magnetic field starting from
three-dimensional Ginzburg-Landau model?

This case was first treated by Richardson and
Rubinstein using formal asymptotic expansion.
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Little-Parks Experiment

In 1961, Little and Parks observed that the phase

transition temperature in thin ring is essentially a
periodic function of the axial magnetic flux through

the ring with a parabolic background.

AT (h)
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The Model of our problem

- Two Assumptions in our study :

1. The sample domaiti is a sequence of domains
{U.} consisting ok-neighborhoods of a limiting
simple closed curve.
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The Model of our problem

- Two Assumptions in our study :

1. The sample domaiti is a sequence of domains
{U.} consisting ok-neighborhoods of a limiting
simple closed curve.

2. The given applied fieltd. take the form

_8

H@

€

whereH?* Is a given smooth magnetic field
independent of.
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Description of U.

Letr : [0, L] — R’ be a simple, close@~ curve. The
triple {t,n, b} forms a Frenet Frame for the curve.

Thee-neighborhood’. is the image of the cylinder
() = {(ylay27y3) S Rg 0 < Y1 < Lv y%—l_y?% < 1}
under the mapping

T:(y) =r(y1) +eyan(y1) +cyzs b(y1) -
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Rayleigh quotient problem

This leads us to consider the following Rayleigh
guotient problem:

. ng ‘(V — i§)¢‘2 dz
inf 5 .
¢ ng [|” dx
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Main ldea
Set

(V —iAy|" da

J =
(¥) o 1o do

Main ldea: Identify a limiting energy such that if the
minimizersy. of E. converge to some limip,

defined on the limiting curve, then, minimizes this
limiting energy.
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Main difficulty

(V —iAy|" da

J =
(1) o 1o do

Main difficulty: The phase of the minimizef.
osclillates rapidly as — 0. Without shifting the
phase, we can’t attain compactness of minimizers

of E..
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Main difficulty

(V —iAy|" da
Jo 10 de

E.(¢) =

Main difficulty: The phase of the minimizef.
osclillates rapidly as — 0. Without shifting the
phase, we can’t attain compactness of minimizers

of E..
We shift the phase function by special phase functions

Pe-

A, .
?—VQﬁg%O(l) In U, .
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Define an equivalent functional

This lead us to find an equivalent energy functional to
E..

2

dx

Jo |(V = (A% = Vo))
Ju. |¢|2d5”

F.(y) = E.(ye'™) =

Find ¢.:

1. We decomposd into componentsi;, A5 and
Ag lying along the tangent, normal and bi-normal
to the limiting curver.

2. We set the numbéys. be the closest integer to the

number(1 OL Af(y;’o’o) dyy).
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Special phase functiony.

Define¢. by

Y1 A
b (Y1,Y2,Y3) ::/O ( 1(¢,0,0)

— Be)di

E
1
+g (yQAQ(yla 07 O) + y3A3 (y17 07 O)
Y5 Y3
+?26Q2A2 (ylv 07 0) -+ ?38%143(@/17 07 0)

1 1
—1—592938?;3142 (yla 07 0) T §y2y3ay2 A3 (3/17 O’ O)>

where the effective magnetic flux

1 L
66 — (/ Al(t7070) dt) — Q—Wkg.
L 0 E L
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The equivalent functional F

fQ ‘nig (aylw + TY30y, Y — Ty23y3¢)

F —
E(w) fQ |¢‘277€ dy
2
—i(5= — yo HS + ys HS) b — LR n. dy
fQ ’¢’2775 dy
) 2
Jo |20y,% + i(3ys) Hiy — LRS| n. dy
_|_
fQ |¢|277€ dy
1 -1 7 2
Jo 120ys¥ —i(5y2)H{Y — LR31| 1 dy
_|_

fQ |¢|2775 dy

wheren. = 1 — ekys andk IS the curvature of the curue
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The limiting energy G

We guess limiting energy should takes the following
form:

_ Jo | (d?ﬂ @5) Y[* + W(y)lyl? dy1
fo |¢’2d?/1

W) = g (HD) + 3(H5) + ()"
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Theorem 1
We obtain a compactness result

Theorem 1 Let ). is the minimizer off, in H*(Q).
There exists a subsequenfeg .} andy, € H'(Q2)
andg, € |[—7F, 7] such that

Y., — 1o weaklyinH'(Q),

Ve, — Py strongly inL%(€2),1 < g <6

5€j — 50

Note thaty, Is a function ofy; only.
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Theorem 2

Involving technigues of dimension reduction and
['-convergence. We obtain

Theorem 2 The limiting functiony, € H*((0, L))
minimizesG g, .

This result is followed by the claim

Gﬁo(¢0) S hgl_%lf F€j (ng)'

All terms In F will converge to their 1d analogs.
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Theorem 3

Comparing the minimum of. and the minimum of
G .. This gives us

Theorem 3 Let \. be the minimum ofr. and leto.
be the minimum of>5_. Then

(. —0.) = O(e) .
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Theorem 4

Asymptotic relationship between the first eigenspaces
of functionalsF, andGp_:

Theorem 4 Lete; — 0 be any sequence such that

—% < liminf 8;, <limsup f§;, < ~.

J—0 J—>00 L

and lety°7 be a minimizer ofF;, in H'(€2) with
|92y = 1. Then there exists a sequenag;’ }
mlnlmlzmg {Gs..1In H..((0,L)) with

|65 12(0 = 1 such that

Y — 1 — 0 strongly inH'(Q).
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Little-Parks Experiment

In 1961, Little and Parks observed that the phase

transition temperature in thin ring is essentially a
periodic function of the axial magnetic flux through

the ring with a parabolic background.

AT (h)
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N-S Transition Curve

1 — i) O + Kl
= In ,
v f()L |¢‘2dyl
= Bo(h) + ! h?



N-S Transition Curve

The result of the Little-Parks experiment can be found
through the relation

W2(he.) = p*(T) = a(T. — T) = aAT ,

we obtain
1 2 2
Bo(h) + 1 h* = pui(he,) = aAT.
where
2(H) 1= ing S| 7~ TAOUL

w Iy W\ dx
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Thank You!
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