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Problems & Background

Cardinality constrained quadratic program

Optimization model:

(P) min q(x) =
1

2
xTQx + cT x (convex quadratic function)

s.t. Ax ≤ b, (linear constraints)

|supp(x)| ≤ K , (cardinality)

xi ≥ αi , i ∈ supp(x), (minimum positive value)

0 ≤ x ≤ u,

where supp(x) = {i | xi 6= 0}, Q is a positive semidefinite
matrix, c ∈ Rn, A ∈ <m×n, b ∈ <m, 1 ≤ K ≤ n is an integer,
0 < αi < ui .

Difficulty: testing the feasibility of (P) is already NP-complete
when A has three rows (Bienstock (1996)).
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Problems & Background

Portfolio selection with cardinality constraint

Markowitz’s classical mean-variance model:

min xTΣx

s.t. eT x = 1,

µT x ≥ ρ,

where µ is the expected return µ = E (r) for the random
return vector r , Σ is the covariance matrix
Σ = E [(r − r̄)(r − r̄)T ] and ρ is the target return.

Cardinality constraint: the number of assets in the optimal
portfolio should be limited:

|supp(x)| ≤ K ,

The need to account for this limit is due to the transaction
cost and managerial concerns.
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Problems & Background

Portfolio selection and index tracking

Portfolio section with cardinality and buy-in threshold
constraints:

(P) min q(x) = xTΣx − ra µT x (risk or utility)

s.t. Ax ≤ b, (return, budget, sector, regulations)

|supp(x)| ≤ K , (cardinality)

xi ≥ αi , i ∈ supp(x), (buy-in threshold)

0 ≤ x ≤ u, (bounds on positions, no short-selling).

Index tracking:

tracking error = (x − x0)
TΣ(x − x0),

where x is the trading vector with small number of nonzero
variables and x0 is the weight vector of the benchmark index
(S&P 500, FTSE 100, N225).
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Problems & Background

Literature review

Jacob (1974, J. Finance). Limited-diversified portfolio
selection model for small investors.
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portfolio, dynamic heuristic method.
Bonami and Lejeune (2009, OR), exact methods for portfolio
optimization problems under stochastic and discrete
constraints including cardinality and minimum buy-in
threshold.
Branch-and-bound and branch-and-cut methods based on
continuous relaxations. Bienstock (1996, MP), Bertsimas and
Shioda (2009, COA), Li, Sun and Wang (2006, MF), Shawa
et al. (2008, OMS).
Various heuristic methods. Chang et al. (2001, EJOR),
Maringer and Kellerer (2003, OR Spectrum), Mitra et al.
(2007, JAM).
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Research Motivation

Standard mixed-integer QP reformulation

Introducing 0-1 variables yi ∈ {0, 1}, (P) can be reformulated
as

(MIQP) min q(x) =
1

2
xTQx + cT x

s.t. Ax ≤ b,

eT y ≤ K , y ∈ {0, 1}n,

x2
i − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,

0 ≤ xi ≤ uiyi , i = 1, . . . , n,

y ∈ {0, 1} ⇒ y ∈ [0, 1]. The continuous relaxation (QP).
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Research Motivation

Research Motivation

Can we do better than the standard MIQP reformulation?

Does there exist tighter convex relaxations of (P) than the
continuous relaxation of (MIQP0)? ⇒ SDP and SCOP.

Does there exist a more efficient reformulation of mixed
integer QP for (P) than (MIQP0)?



Convex Relaxations and Mixed-Integer Quadratic Programming Reformulations for Cardinality Constrained Quadratic Programs

Research Motivation

Relaxing: X = xxT ⇒ X º xxT , Y = yyT ⇒ Y º yyT . SDP
relaxation of (MIQP):

(SDP0) min
1

2
Q • X + cT x

s.t. Ax ≤ b, 0 ≤ xi ≤ uiyi , i = 1, . . . , n,

Xii − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,

eT y ≤ K , Yii = yi , i = 1, . . . , n,(
X x
xT 1

)
º 0,

(
Y y
yT 1

)
º 0.

v(SDP0) = v(QP)!. (SDP0) is the conic dual of the
conventional Lagrangian relaxation (dualizing all constraints).

Stronger Lagrangian dual formulations: Lagrangian
decomposition scheme (Guignard and Kim (1987), Michelon
and Maculan (1991),Shawa et al. (2008)).
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SDP Relaxations: Lagrangian decomposition

SDP Relaxations: Lagrangian decomposition

Main ideas:

Decompose Q as Q = (Q − diag(d)) + diag(d), where
Q − diag(d) º 0;
Construct a convex relaxation of (P) by Lagrangian
decomposition technique via copying constraints;
Reduce the Lagrangian dual to an SDP formulation.

The objective function decomposition:

1

2
xTdiag(d)x + cT x +

1

2
xT (Q − diag(d))x .
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SDP Relaxations: Lagrangian decomposition

Lagrangian relaxation via diagonal decomposition and copying
constraints

min
1

2
xTdiag(d)x + cT x +

1

2
zT (Q − diag(d))z

π : s.t. Az ≤ b, 0 ≤ z ≤ u,

λ : x = z , (link constraint)

|supp(x)| ≤ K , 0 ≤ x ≤ u,

xi ≥ αi , i ∈ supp(x).
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SDP Relaxations: Lagrangian decomposition

Lagrangian relaxation:

d(π, λ) = −πTb + d1(π, λ) + d2(π, λ),

where

d1(π, λ) = min
1

2
xTdiag(d)x + (cT + πTA− λT )x

s.t. |supp(x)| ≤ K , 0 ≤ x ≤ u,

xi ≥ αi , i ∈ supp(x),

d2(π, λ) = min
1

2
zT (Q − diag(d))z + λT z ,

s.t. Az ≤ b, 0 ≤ z ≤ u.

Lagrangian dual:

(Dd) max{−πTb + d1(π, λ)+ d2(π, λ) | (π, λ) ∈ <m
+×<n}.

Dual bound via best diagonal decomposition:

(D) max
Q−diag(d)º0

v(D(d)).
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SDP Relaxations: Lagrangian decomposition

Denote the sum of the K largest elements of
x = (x1, . . . , xn)

T by SK (x) =
∑K

k=1 xik , Then

d1(π, λ) = max{−t | SK (−q) ≤ t}.

SK (p) ≤ t is SDP representable (Nemirovski (2001)):

(a) t − Ks − eTz ≥ 0,

(b) z ≥ 0,

(c) z − p + se ≥ 0.
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SDP Relaxations: Lagrangian decomposition

Problem (D) is equivalent to the following SDP problem
(DSDP):

max − πTb − t + γ

s.t.
(

di + 2µi c̃i − µi (αi + ui )
c̃i − µi (αi + ui ) −2τi + 2µiαiui

)
º 0, i = 1, . . . , n,

(
Q − diag(d) λ + ATη − ζ + ξ

λT + ηTA− ζT + ξT −2ηTb − 2ξTu − 2γ

)
º 0,

τ − β ≥ 0, t − Ks − eT z ≥ 0, z + β + se ≥ 0,

(t, s, z , µ, τ,−β) ∈ < × <× <n ×<n
+ ×<n ×<n

+,

(γ, η, ξ, ζ) ∈ < × <m
+ ×<n

+ ×<n
+, (π, λ) ∈ <m

+ ×<n.

If Q º 0, then

v(QP) ≤ v(Dd) ≤ v(D) = v(DSDP).
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SDP relaxation: reformulation and lifting

The conic dual of (DSDP) is

(SDP1) min
1

2
Q • X + cTx

s.t. Ax ≤ b,

φi − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,

0 ≤ x ≤ u,

y ∈ [0, 1]n, eTy ≤ K ,

Xii = φi , i = 1, . . . , n,(
X x
xT 1

)
º 0,

(
φi xi

xi yi

)
º 0, i = 1, . . . , n,

X ∈ Sn, x , y , φ ∈ <n.

where X ∈ Sn, x , y , φ ∈ <n. (Straightforward yet tedious!)
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SDP relaxation: reformulation and lifting

(SDP1) ⇐ (relaxed from ) a new reformulation of (MIQP0):

(MIQP1) min
1

2
Q • X + cTx

s.t. Ax ≤ b,

φi − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,

0 ≤ x ≤ u,

y ∈ {0, 1}n, eTy ≤ K ,

φi = x2
i , i = 1, . . . , n,

X = xxT, φiyi = x2
i , φi ≥ 0, i = 1, . . . , n.

x2
i ⇒ Xii , X = xxT ⇒ X º xxT , yi ∈ {0, 1} ⇒ yi ∈ [0, 1],

φiyi = x2
i ⇒ φiyi ≥ x2

i .

φiyi ≥ x2
i , φi ≥ 0, yi ≥ 0⇔

(
φi xi

xi yi

)
º 0, i = 1, . . . , n.
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Second-order cone relaxation and MIQP reformulation

Second-order cone relaxation

Computational difficulties arise in solving SDP problem with
large-size matrix variables. SOCP is a reasonable compromise
between SDP and LP relaxation (lift-and-project). Powerful
SOCP solvers are available (CPLEX, MOSEK).
(Dd) can be expressed as:

max − πTb − t + γ

s.t. Υi :=

(
di + 2µi c̃i − µi (αi + ui )

c̃i − µi (αi + ui ) −2τi + 2µiαiui

)
º 0, i = 1, . . . , n,

Φ :=

(
Q − diag(d) λ + ATη − ζ + ξ

λT + ηTA− ζT + ξT −2ηTb − 2ξTu − 2γ

)
º 0,

τ − β ≥ 0, t − Ks − eTz ≥ 0, z + β + se ≥ 0,

(t, s, z , µ, τ,−β) ∈ < × <× <n
+ ×<n

+ ×<n ×<n
+,

(γ, η, ξ, ζ) ∈ < × <m
+ ×<n

+ ×<n
+, (π, λ) ∈ <m

+ ×<n,

where c̃i = ci + aT
i π − λi .
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Second-order cone relaxation and MIQP reformulation

The first LMI is equivalent to

∥∥∥∥
ci + aT

i π − λici − µi (ui + αi )
di+2µi+2τi−2µiαiui

2

∥∥∥∥
2

≤ di + 2µi − 2τi + 2µiαiui

2
.

The second LMI is equivalent to

UT
i (λ + ATη − ζ + ξ) = 0, i = 1, . . . , r ,∥∥∥∥∥∥∥∥∥∥∥

UT
r+1(λ+AT η−ζ+ξ)√

σr+1

...
UT

n (λ+AT η−ζ+ξ)√
σn

−2ηT b−2ξT u−2γ−1
2

∥∥∥∥∥∥∥∥∥∥∥
2

≤ −2ηTb − 2ξTu − 2γ + 1

2
.
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Second-order cone relaxation and MIQP reformulation

Therefore, (Dd) ⇔ (DSDPd):

max − πTb − t + γ

s.t.
∥∥∥∥
(

ci + aT
i π − λici − µi (ui + αi )
di+2µi+2τi−2µiαiui

2

)∥∥∥∥
2

≤ di + 2µi − 2τi + 2µiαiui

2
,

∥∥∥∥∥∥∥∥∥∥∥




UT
r+1(λ+ATη−ζ+ξ)√

σr+1

...
UT

n (λ+ATη−ζ+ξ)√
σn

−2ηTb−2ξTu−2γ−1
2




∥∥∥∥∥∥∥∥∥∥∥
2

≤ −2ηTb − 2ξTu − 2γ + 1

2
,

UT
i (λ + ATη − ζ + ξ) = 0, i = 1, . . . , r ,

τ − β ≥ 0, t − Ks − eTz ≥ 0, z + β + se ≥ 0,

(t, s, z , µ, τ,−β) ∈ < × <× <n
+ ×<n

+ ×<n ×<n
+,

(γ, η, ξ, ζ) ∈ < × <m
+ ×<n

+ ×<n
+, (π, λ) ∈ <m

+ ×<n.
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Second-order cone relaxation and MIQP reformulation

The conic dual of (DSDPd) is:

(SOCPd) min cTx +
1

2
xT(Q − diag(d))x +

1

2
φTd

s.t. Ax ≤ b, 0 ≤ x ≤ u,

eTy ≤ K , 0 ≤ y ≤ 1,

φi − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,∥∥∥∥
xi

φi−yi
2

∥∥∥∥
2

≤ φi + yi

2
, i = 1, . . . , n.

For any fixed d ∈ <n with Q − diag(d) º 0, it holds that
v(SOCPd) = v(DSOCPd) = v(DSDPd) = v(Dd).
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Second-order cone relaxation and MIQP reformulation

(SOCPd) suggests the following MIQP problem of (P):

(MIQPd) min cTx +
1

2
xT(Q − diag(d))x +

1

2
φTd

s.t. Ax ≤ b, 0 ≤ x ≤ u,

eTy ≤ K , y ∈ {0, 1}n,

φi − (αi + ui )xi + αiuiyi ≤ 0, i = 1, . . . , n,

x2
i ≤ φiyi , φi ≥ 0, i = 1, . . . , n.

The continuous relaxation of (MIQPd) is exactly (SOCPd).

For any d ∈ <n
+, v(MIQPd) = v(MIQP0) = v(P).

Since v(SOCPd) ≥ v(QP) for any d ≥ 0, (MIQPd) is a more
efficient reformulation for cardinality constrained QP.
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Preliminary computational results

Preliminary computational results

Purpose of the numerical experiment:

Comparison of the SDP and SOCP bounds for cardinality
constrained QP;
Comparison of the effectiveness of the new MIQP
reformulation.

Computnig environment:

Convex mixed integer QCP solver in CPLEX 12.1 with Matlab
interface is used to solve the MIQP reformulations (MIQPd)
and (MIQP0) of (P).
The SDP problems (DSDP) and (SDP1) are modeled by CVX
1.2 and solved by SeDuMi 1.2;
The SOCP problem (SOCPd) is solved by MOSEK 6.0;
The convex QP problem (QP) is solved by the QP solver
quadprog in Matlab Optimization Toolbox.
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Preliminary computational results

Test Problems

The parameters in the test problems are randomly generated
(this could lead to over-optimistic computation time).

Test problem 1 (portfolio selection):

(MV) min − rTx +
1

2
(x − xB)TΣ(x − xB) +

n∑

i=1

ci (xi − x0
i )2,

s.t. |
∑

i∈Sk

(xi − xB
i )| ≤ εk , k = 1, . . . ,m,

eTx = 1, x ≥ 0,

|supp(x)| ≤ K ,

xi ≥ αi , i ∈ supp(x),

where the parameters are simulated weekly returns (Gaussian
distribution).
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Preliminary computational results

Test problem 2:

(P1) min
1

2
xT(HTH + diag(%))x − cTx

s.t. Ax ≥ b, 0 ≤ x ≤ u,

|supp(x)| ≤ K ,

xi ≥ αi , i ∈ supp(x),

where the parameters are uniformly distributed in some
intervals.
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Preliminary computational results

Table: Comparison results for test problem 1 with K = n
2 and m = 5

(MIQP0) (DSDP) (MIQPd)
n

time nodes rel. error (%) time time nodes rel. error (%)
20 27.46 3111 0.00 0.72 4.01 41 0.00
30 1415.77 108847 0.85 1.09 14.01 234 0.00
40 1800.00 82385 2.37 1.69 27.79 591 0.01
60 1800.00 35555 0.87 3.19 172.18 1549 0.01
80 1800.00 21850 0.73 5.29 1519.76 8759 0.07
100 1800.00 11023 0.84 8.27 1800.00 6474 0.23
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Preliminary computational results

Table: Average improv ratio of lower bounds for test problem 2 with
m = 10, K = b n

4c
improv. ratio (%) CPU time (seconds)

n
v(SOCPd) v(SDP1) v(QP0) v(SCOPd) v(SDP1)

100 33.19 61.48 0.02 0.32 6.34
200 18.01 38.15 0.05 1.60 36.12
300 10.19 24.21 0.11 4.33 117.65
400 7.69 20.59 0.22 9.77 258.93
500 6.03 17.83 0.39 19.75 528.83



Convex Relaxations and Mixed-Integer Quadratic Programming Reformulations for Cardinality Constrained Quadratic Programs

Preliminary computational results

Table: Comparison results for problem 2 with m = b n
4c K = b n

4c
(MIQP0) SDP (MIQPd)

n
time nodes rel. gap(%) time time nodes rel. gap(%)

20 10.14 1124 0.00 0.70 8.13 459 0.00
30 186.02 15526 0.00 1.04 92.04 4431 0.00
40 1588.93 78007 16.24 1.53 752.69 21876 1.66
60 1800.00 37174 55.65 2.72 1800.00 24294 36.24
80 1800.00 18097 60.34 4.44 1800.00 11829 41.98
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Discussions

Discussions

Lagrangian relaxation technique has been successfully applied
to many NP-hard integer and combinatorial optimization
problems (Fisher 1981) to generate tight dual bounds in a
branch-and-bound framework or construct approximate
feasible solution.

Subgradient methods are commonly used to search the
optimal multipliers and dual value. In some cases (when the
relaxation is “easy” to solve), it is possible to reduce the dual
problem to a polynomially solvable convex formulation such as
LP, SDP, SOCP ...

We have used the matrix decomposition
Q = (Q − diag(d)) + diag(d) and Lagrangian decomposition
technique to generate SDP relaxation and new MIQP
reformulation for cardinality QP.
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Discussions

Further Study

Extend the idea of SDP reduction to Lagrangian dual
formulations for other integer and combinatorial optimization
problems.

Develop Lagrangian heuristics for finding suboptimal solutions
of large-scale cardinality QP.

Lagrangian decomposition and SDP relaxations for
probabilistic constrained QP:

(CCQP) min
1

2
xTQx + cT x

s.t. Prob(ξT x ≥ b) ≥ 1− ε,

x ∈ X .

Question: How to construct tight convex relaxations and
efficient MQIP reformulation to(CCQP)?


