Exploiting Sparsity in Sensor Network Localization Problem with the framework of SDP relaxation

> Makoto Yamashita ¹, Masakazu Kojima ¹, Sunyoung Kim ², Hayato Waki ³

¹Tokyo Institute of Technology, ²Ewha Women's university, ³The University of Electro-Communications

> 2011.04.13 @ National Cheng Kung University, Taiwan

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Outline					

- Sensor Network Localization (SNL) Problem has many applications, e.g. building check, protein conformation.
- SNL is NP-complete in general.
- Biswas-Ye introduced Semidefinite Programming(SDP) relaxation to obtain a good approximation for small SNLs.
- To solve large-scale SNLs (*i.e.* many sensors) without losing accuracy, we exploit the network sparsity.
- SFSDP can solve sensor network localization problem with more than 10,000 sensors.

http://www.is.titech.ac.jp/~kojima/SFSDP/SFSDP.html

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Sensor N	fetwork				

• In 2D square ([0,1] × [0,1]), anchors and sensors are scattered.

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Sensor N	letwork				

- In 2D square ([0, 1] × [0, 1]), anchors and sensors are scattered.
- The exact positions of anchors a₇,..., a₁₂ ∈ ℝ² are known.
- The exact positions of sensors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_6 \in \mathbb{R}^2$ are unknown.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Sensor N	letwork				

- In 2D square ([0, 1] × [0, 1]), anchors and sensors are scattered.
- The exact positions of anchors $a_7, \ldots, a_{12} \in \mathbb{R}^2$ are known.
- The exact positions of sensors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_6 \in \mathbb{R}^2$ are unknown.
- If we know $x_1, \ldots, x_6 \in \mathbb{R}^2$, it is easy to compute the distances, $e.g. \ d_{2,4} = ||x_2 - x_4||,$ $d_{5,10} = ||x_5 - a_{10}||.$ $||x_2 - x_4|| = \sqrt{(x_{21} - x_{41})^2 + (x_{22} - x_{42})^2)}$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Sensor N	letwork				

- In 2D square ([0, 1] × [0, 1]), anchors and sensors are scattered.
- The exact positions of anchors $a_7, \ldots, a_{12} \in \mathbb{R}^2$ are known.
- The exact positions of sensors $x_1, \ldots, x_6 \in \mathbb{R}^2$ are unknown.
- If we know $x_1, \ldots, x_6 \in \mathbb{R}^2$, it is easy to compute the distances, $e.g. \ d_{2,4} = ||x_2 - x_4||,$ $d_{5,10} = ||x_5 - a_{10}||.$ $||x_2 - x_4|| = \sqrt{(x_{21} - x_{41})^2 + (x_{22} - x_{42})^2)}$
- The reverse is SNL.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Sensor N	letwork				

- In 2D square ([0, 1] × [0, 1]), anchors and sensors are scattered.
- The exact positions of anchors $a_7, \ldots, a_{12} \in \mathbb{R}^2$ are known.
- The exact positions of sensors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_6 \in \mathbb{R}^2$ are unknown.
- If we know $x_1, \ldots, x_6 \in \mathbb{R}^2$, it is easy to compute the distances, $e.g. \ d_{2,4} = ||x_2 - x_4||,$ $d_{5,10} = ||x_5 - a_{10}||.$ $||x_2 - x_4|| = \sqrt{(x_{21} - x_{41})^2 + (x_{22} - x_{42})^2)}$
- The reverse is SNL.
- Given distance, compute the locations.
- However, the reverse is difficult (NP-complete).

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Example of SNL computation

Figure: Input

50 Sensors, 4 Anchors(at corners), Radiorange = 0.3, Noise = 0.02,

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Example of SNL computation

Figure: Input

Figure: Output

(日) (四) (注) (注) (日)

50 Sensors, 4 Anchors(at corners), Radiorange = 0.3, Noise = 0.02,

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Usage of	f SFSDP				

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Usage of	f SFSDP				

 $\begin{array}{l} \mbox{Input: sDim} = 2, \mbox{ noOfSensors} = 3, \mbox{ noOfAnchors} = 4, \mbox{ xMatrix0} = \left(\begin{array}{ccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right), \\ \mbox{ditanceMatrix0} = \left(\begin{array}{ccc} 0 & 0.21 & 0.41 \\ 0 & 0 & 0.35 \\ 0 & 0 & 0 \end{array} \right| \begin{array}{c} 0.50 & 0.75 & 0 & 0 \\ 0.62 & 0.47 & 0 & 0 \\ 0 & 0 & 0.64 & 0.48 \end{array} \right) \\ \mbox{Execute: } [xMatrix] = \\ \mbox{SFSDPplus(sDim,noOfSensors,noOfAnchors,xMatrix0,distanceMatrix0,pars);} \end{array}$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Applica	tions of SNL				

There are many applications of SNL.

- Follow-up studies of wild animals
- Structural investigations
 - High buildings after long years.
 - Subway tunnel in U.K.

• Molecule and protein conformation (in 3D and noisy input)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Applica	tions of SNL				

There are many applications of SNL.

- Follow-up studies of wild animals
- Structural investigations
 - High buildings after long years.
 - Subway tunnel in U.K.
- Molecule and protein conformation (in 3D and noisy input)

Various approaches:

- Multi Dimensional Scaling (a method like principal component analysis)
- SDP relaxation
- Divide and conquer
- Shortest-path approach (onging work)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Basic Fo	ormulation				

Given edge sets \mathcal{N}_x and \mathcal{N}_a , distances $d_{pq}^2((p,q) \in \mathcal{N}_x)$ and $d_{pr}^2((p,r) \in \mathcal{N}_a)$, and anchor locations $a_1, \ldots, a_m \in \mathbb{R}^d$,

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Basic Fo	ormulation				

Given edge sets \mathcal{N}_x and \mathcal{N}_a , distances $d_{pq}^2((p,q) \in \mathcal{N}_x)$ and $d_{pr}^2((p,r) \in \mathcal{N}_a)$, and anchor locations $a_1, \ldots, a_m \in \mathbb{R}^d$,

Find solution $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$

$$\left\{\begin{array}{l} ||x_p - x_q||^2 = d_{pq}^2 \quad (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 \quad (p,r) \in \mathcal{N}_a \end{array}\right.$$

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Basic Fo	ormulation				

Given edge sets \mathcal{N}_x and \mathcal{N}_a , distances $d_{pq}^2((p,q) \in \mathcal{N}_x)$ and $d_{pr}^2((p,r) \in \mathcal{N}_a)$, and anchor locations $a_1, \ldots, a_m \in \mathbb{R}^d$,

Find solution $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$

$$\left\{ \begin{array}{ll} ||x_p - x_q||^2 = d_{pq}^2 & (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 & (p,r) \in \mathcal{N}_a \end{array} \right.$$

For \mathcal{N}_x and \mathcal{N}_a , the radio range ρ is usually used.

$$\begin{aligned} \mathcal{N}_{x}^{\rho} &= \{(p,q): ||x_{p} - x_{q}|| \leq \rho \} \\ \mathcal{N}_{a}^{\rho} &= \{(p,r): ||x_{p} - a_{r}|| \leq \rho \} \end{aligned}$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NF	P-complete?				

・ロト ・回 ・ ・ ヨト ・ ヨ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NF	P-complete?				

・ロト ・四ト ・ヨト・

Э

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NF	P-complete?				

・ロト ・日下・ ・ヨト・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NF	P-complete?				

・ロト ・日下・ ・ヨト・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NP	-complete?				

・ロト ・回ト ・ヨト・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NP	-complete?				

- Solutions may NOT be unique. (Late, we will discuss when SNL has unique solution.)
- In right figure, at least $O(2^n)$ solutions.
- The number of feasible solutions can be large in *exponential* order.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Why NP	-complete?				

- Solutions may NOT be unique. (Late, we will discuss when SNL has unique solution.)
- In right figure, at least $O(2^n)$ solutions.
- The number of feasible solutions can be large in *exponential* order.

Enumerating all the solutions are impossible for large number of sensors.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Nonline	ear Optimiza	ation			

 SNL

$$\left\{ \begin{array}{ll} ||x_p - x_q||^2 = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \end{array} \right.$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
3.7 14	• • • •				

Nonlinear Optimization

SNL

$$\begin{cases} ||x_p - x_q||^2 = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \end{cases}$$

can be formulated as

Nonlinear Optimization Formulation

$$\min : \sum_{(p,q)\in\mathcal{N}_x} \left| ||x_p - x_q||^2 - d_{pq}^2 \right| + \sum_{(p,r)\in\mathcal{N}_a} \left| ||x_p - a_r||^2 - d_{pr}^2 \right|$$

- This objective function is nonconvex. (Multiple solutions.)
- At feasible solution of SNL, the objective value is zero.

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Noisy In	put				

- Some input distances in real applications may have small noise.
- There may be **no** feasible points.

$$\left\{ \begin{array}{ll} ||x_p - x_q||^2 = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \end{array} \right.$$

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Noisy In	put				

- Some input distances in real applications may have small noise.
- There may be **no** feasible points.

$$\left\{ \begin{array}{ll} ||x_p - x_q||^2 = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \end{array} \right.$$

• Instead, minimize the differences

$$\min : \sum_{(p,q)\in\mathcal{N}_x} \left| ||x_p - x_q||^2 - d_{pq}^2 \right| + \sum_{(p,r)\in\mathcal{N}_a} \left| ||x_p - a_r||^2 - d_{pr}^2 \right|$$

- 2. SDP relaxations
 - Standard form of SDP
 - Goemans-Williamson's relaxation for Max-cut problems
 - Biswas-Ye's relaxation for SNL

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Standard	l form of SD	Р			

Standard form of SDP has primal-dual from.

$$\begin{array}{ll} \text{(Primal)} & : & \min \boldsymbol{C} \bullet \boldsymbol{X} & \text{s.t.} \boldsymbol{A}_k \bullet \boldsymbol{X} = b_k (k = 1, \dots, m), \boldsymbol{X} \succeq \boldsymbol{O} \\ \text{(Dual)} & : & \max \sum_{k=1}^m b_k \boldsymbol{z}_k & \text{s.t.} \sum_{k=1}^m \boldsymbol{A}_k \boldsymbol{z}_k + \boldsymbol{Y} = \boldsymbol{C}, \boldsymbol{Y} \succeq \boldsymbol{O} \end{array}$$

Notations:

$$\begin{split} \mathbb{S}^{n} &: \text{ the space of } n \times n \text{ symmetric matrices} \\ \mathbb{S}^{n}_{+} &: \text{ the space of } n \times n \text{ positive semidefinite symmetric matrices} \\ \boldsymbol{X} \succeq \boldsymbol{O} &: \boldsymbol{X} \in \mathbb{S}^{n}_{+} \\ &\text{ all the eigenvalues of } \boldsymbol{X} \text{ are non-negative} \\ &\Leftrightarrow \boldsymbol{u}^{T} \boldsymbol{X} \boldsymbol{u} \geq 0 \quad \text{for } \forall \boldsymbol{u} \in \mathbb{R}^{n}. \\ \boldsymbol{X} \bullet \boldsymbol{Y} &: \text{ Inner product in } \mathbb{S}^{n}, \boldsymbol{X} \bullet \boldsymbol{Y} = \text{tr}(\boldsymbol{X}^{T} \boldsymbol{Y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij} Y_{ij} \end{split}$$

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Charae	cteristics of S	DP			

- Extension of Linear Programs to Hilbert space
- Solvable in polynomial time (owing to Primal-Dual Interior-Point Methods)
- Eigenvalue is restricted to non-negative

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Max-cut	problem				

Goemans and Williams first applied SDP to Max-cut problems. This opened the new researches called SDP relaxations.

Max-cut problem

Given a graph G(V, W) (V is the vertex set, W is the edge weights), find the cut with the maximum weight.

 $V = \{1, 2, 3, 4, 5, 6\}$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Max-cut	problem				

Goemans and Williams first applied SDP to Max-cut problems. This opened the new researches called SDP relaxations.

Max-cut problem

Given a graph G(V, W) (V is the vertex set, W is the edge weights), find the cut with the maximum weight.

<ロト (四) (三) (三) (三)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Max-cut	problem				

Goemans and Williams first applied SDP to Max-cut problems. This opened the new researches called SDP relaxations.

Max-cut problem

Given a graph G(V, W) (V is the vertex set, W is the edge weights), find the cut with the maximum weight.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Mathematical formulation of Max-cut

A cut separates the vertex set $V = \{v_1, \ldots, v_n\}$ to two disjoint sets Left L and Right R.

 $V = L \cup R \qquad L \cap R = \emptyset$

<ロ> (四) (四) (三) (三) (三)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Mathematical formulation of Max-cut

A cut separates the vertex set $V = \{v_1, \ldots, v_n\}$ to two disjoint sets Left L and Right R.

$$V = L \cup R$$
 $L \cap R = \emptyset$

The weight of a cut is

$$W(L,R) = \sum_{v_i \in L, v_j \in R} w_{ij} + \sum_{v_i \in R, v_j \in L} w_{ij}.$$

(日) (四) (三) (三) (三)
1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Mathematical formulation of Max-cut

A cut separates the vertex set $V = \{v_1, \ldots, v_n\}$ to two disjoint sets Left L and Right R.

$$V = L \cup R$$
 $L \cap R = \emptyset$

The weight of a cut is

$$W(L,R) = \sum_{v_i \in L, v_j \in R} w_{ij} + \sum_{v_i \in R, v_j \in L} w_{ij}.$$

They introduced the variables x_1, \ldots, x_n

$$x_i = 1$$
 if $v_i \in L$, $x_i = -1$ if $v_i \in R$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Mathematical formulation of Max-cut

A cut separates the vertex set $V = \{v_1, \ldots, v_n\}$ to two disjoint sets Left L and Right R.

$$V = L \cup R$$
 $L \cap R = \emptyset$

The weight of a cut is

$$W(L,R) = \sum_{v_i \in L, v_j \in R} w_{ij} + \sum_{v_i \in R, v_j \in L} w_{ij}.$$

They introduced the variables x_1, \ldots, x_n

$$x_i = 1$$
 if $v_i \in L$, $x_i = -1$ if $v_i \in R$.

then

$$1 - x_i x_j = \begin{cases} 2 & \text{if } [v_i \in L, v_j \in R] \text{ or } [v_j \in L, v_i \in R] \\ 0 & \text{otherwise} \end{cases}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Mathematical formulation of Max-cut

A cut separates the vertex set $V = \{v_1, \ldots, v_n\}$ to two disjoint sets Left L and Right R.

$$V = L \cup R$$
 $L \cap R = \emptyset$

The weight of a cut is

$$W(L,R) = \sum_{v_i \in L, v_j \in R} w_{ij} + \sum_{v_i \in R, v_j \in L} w_{ij}.$$

They introduced the variables x_1, \ldots, x_n

$$x_i = 1$$
 if $v_i \in L$, $x_i = -1$ if $v_i \in R$.

then

$$1 - x_i x_j = \begin{cases} 2 & \text{if } [v_i \in L, v_j \in R] \text{ or } [v_j \in L, v_i \in R] \\ 0 & \text{otherwise} \end{cases}$$

Then the Max-cut problem can be expressed as

max
$$W(L,R) = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(1-x_ix_j)$$
 s.t. $x_i \in \{-1,1\} \ (i=1,\ldots,n)$

This problem is also NP-hard (The number of feasible solution is 2^n),

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Some m	atrices				

They introduce the matrix $\mathbf{X} \in \mathbb{S}^n$ by $\mathbf{X} = \mathbf{x}\mathbf{x}^T$, that is, $X_{ij} = x_i x_j$. Then $X_{ii} = 1$, because $x_i \in \{-1, 1\}$.

Some matrices

They introduce the matrix $\mathbf{X} \in \mathbb{S}^n$ by $\mathbf{X} = \mathbf{x}\mathbf{x}^T$, that is, $X_{ij} = x_i x_j$. Then $X_{ii} = 1$, because $x_i \in \{-1, 1\}$. In addition, we define the matrix C by

$$C_{ij} = \begin{cases} \frac{1}{4} \left(\sum_{k=1}^{n} w_{ik} - w_{ii} \right) & \text{if } i = j \\ \frac{1}{4} \left(-w_{ij} \right) & \text{if } i \neq j \end{cases}$$

Some matrices

They introduce the matrix $\mathbf{X} \in \mathbb{S}^n$ by $\mathbf{X} = \mathbf{x}\mathbf{x}^T$, that is, $X_{ij} = x_i x_j$. Then $X_{ii} = 1$, because $x_i \in \{-1, 1\}$. In addition, we define the matrix C by

$$C_{ij} = \begin{cases} \frac{1}{4} \left(\sum_{k=1}^{n} w_{ik} - w_{ii} \right) & \text{if } i = j \\ \frac{1}{4} \left(-w_{ij} \right) & \text{if } i \neq j \end{cases}$$

Then

$$C \bullet X = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij} = \sum_{i=1}^{n} C_{ii} X_{ii} + \sum_{i=1}^{n} \sum_{j \neq i} C_{ij} X_{ij}$$
$$= \frac{1}{4} \sum_{i=1}^{n} \left(\sum_{k=1}^{n} w_{ik} - w_{ii} \right) X_{ii} - \frac{1}{4} \sum_{i=1}^{n} \sum_{j \neq i} w_{ij} X_{ij}$$
$$= \frac{1}{4} \sum_{i=1}^{n} \sum_{k=1}^{n} w_{ik} X_{ii} - \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} X_{ij}$$
$$= \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (1 - x_i x_j) = W(L, R)$$

3

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix 1	Form				

Rank-1 property

We can recover the condition $x_i \in \{-1, 1\}$ (i = 1, ..., n) if

$$\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$$

by decomposing $\boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^{T}$.

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix 1	Form				

Rank-1 property

We can recover the condition $x_i \in \{-1, 1\}$ (i = 1, ..., n) if

$$\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$$

by decomposing $\boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^T$.

Therefore

$$\max W(L,R) = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(1-x_i x_j) \quad \text{s.t.} \quad x_i \in \{-1,1\} \ (i=1,\ldots,n)$$

is equivalent to

max $W(L,R) = \boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$

・ロト ・四ト ・ヨト ・ヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix 1	Form				

Rank-1 property

We can recover the condition $x_i \in \{-1, 1\}$ (i = 1, ..., n) if

$$\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$$

by decomposing $\boldsymbol{X} = \boldsymbol{x}\boldsymbol{x}^T$.

Therefore

$$\max W(L,R) = \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(1-x_i x_j) \qquad \text{s.t.} \quad x_i \in \{-1,1\} \ (i=1,\ldots,n)$$

is equivalent to

max $W(L,R) = \boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$

The NP-hard difficulty is now embedded into the constraint $\operatorname{rank}(X) = 1$.

・ロト ・四ト ・ヨト ・ヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
SDP re	laxation				

Goemans and Williamson relaxed the constraints rank(X) = 1.

Max-cut problem

 $W^* = \max W(L, R) = \boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$

SDP relaxation

 $\widehat{W} = \max W(L, R) = \boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n)$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
SDP re	laxation				

Goemans and Williamson relaxed the constraints rank(X) = 1.

Max-cut problem

 $W^* = \max W(L, R) = \boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n), \operatorname{rank}(\boldsymbol{X}) = 1$

SDP relaxation

$$\widehat{W} = \max W(L, R) = \boldsymbol{C} \bullet \boldsymbol{X}$$
 s.t. $\boldsymbol{X} \succeq \boldsymbol{O}, X_{ii} = 1 \ (i = 1, \dots, n)$

From the relaxation solution \overline{X} , they generated a rank-1 feasible solution \overline{X} such that

 $\boldsymbol{C} \bullet \widetilde{\boldsymbol{X}} \geq 0.878 \times W^*$

in average.

・ロト ・四ト ・ヨト ・ヨト

Quality of SDP relaxation max $C \cdot X$	1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
max C • X	Quali	ty of SDP rela	axtion			
		$\max C \bullet X$	Fear	sible Reaston		

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ♡

3. Biswas-Ye SDP relaxation

Makoto Yamashita (Tokyo-Tech)

・ロト ・四ト ・ヨト ・ヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Biswas	-Ye Approac	h to SNL			

The main idea of Biswas-Ye Approach

- Lift the variable space of SNL to a higher dimension
- Then apply SDP relaxation

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Biswas	-Ye Approac	h to SNL			

The main idea of Biswas-Ye Approach

- Lift the variable space of SNL to a higher dimension
- Then apply SDP relaxation

At the first step, for sensor locations $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$ in *d*-dimensional space, they introduce the matrix $\boldsymbol{X} = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n) \in \mathbb{R}^{d \times n}$. They also use $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X}$. Then, $Y_{pq} = [\boldsymbol{X}^T \boldsymbol{X}]_{pq} = \boldsymbol{x}_p^T \boldsymbol{x}_q$.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Biswas	-Ye Approac	h to SNL			

The main idea of Biswas-Ye Approach

- Lift the variable space of SNL to a higher dimension
- Then apply SDP relaxation

At the first step, for sensor locations $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$ in *d*-dimensional space, they introduce the matrix $\boldsymbol{X} = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n) \in \mathbb{R}^{d \times n}$. They also use $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X}$. Then, $Y_{pq} = [\boldsymbol{X}^T \boldsymbol{X}]_{pq} = \boldsymbol{x}_p^T \boldsymbol{x}_q$. Hence,

$$\begin{aligned} ||\boldsymbol{x}_{p} - \boldsymbol{x}_{q}||^{2} &= (\boldsymbol{x}_{p} - \boldsymbol{x}_{q})^{T}(\boldsymbol{x}_{p} - \boldsymbol{x}_{q}) \\ &= \boldsymbol{x}_{p}^{T}\boldsymbol{x}_{p} - 2\boldsymbol{x}_{p}^{T}\boldsymbol{x}_{q} + \boldsymbol{x}_{q}^{T}\boldsymbol{x}_{q} \\ &= Y_{pp} - 2Y_{pq} + Y_{qq} \\ ||\boldsymbol{x}_{p} - \boldsymbol{a}_{r}||^{2} &= (\boldsymbol{x}_{p} - \boldsymbol{a}_{r})^{T}(\boldsymbol{x}_{p} - \boldsymbol{a}_{r}) \\ &= \boldsymbol{x}_{p}^{T}\boldsymbol{x}_{p} - 2\boldsymbol{x}_{p}^{T}\boldsymbol{a}_{r} + \boldsymbol{a}_{r}^{T}\boldsymbol{a}_{r} \\ &= Y_{pp} - 2\boldsymbol{a}_{r}^{T}[\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_{r}||^{2} \end{aligned}$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix	x Formulation				

min : 0 s.t.:
$$\begin{aligned} ||x_p - x_q||^2 &= d_{pq}^2 \quad \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 &= d_{pr}^2 \quad \forall (p,r) \in \mathcal{N}_a \end{aligned}$$

Matrix Formulation

$$\begin{array}{rcl} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ \text{min} & : & 0 & \text{s.t.} : & Y_{pp} - 2\boldsymbol{a}_r^T [\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \end{array}$$

・ロン ・西 ・ ・ ヨ ・ ・ ヨ ・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix	x Formulation				

min : 0 s.t.:
$$\begin{aligned} ||x_p - x_q||^2 &= d_{pq}^2 \quad \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 &= d_{pr}^2 \quad \forall (p,r) \in \mathcal{N}_a \end{aligned}$$

Matrix Formulation

$$\begin{array}{rcl} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ \text{min} & : & 0 & \text{s.t.} : & Y_{pp} - 2\boldsymbol{a}_r^T [\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \end{array}$$

The NP-hard difficulty is now summarized into $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X}$.

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix	Formulation				

min : 0 s.t.:
$$\begin{aligned} ||x_p - x_q||^2 &= d_{pq}^2 \quad \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 &= d_{pr}^2 \quad \forall (p,r) \in \mathcal{N}_a \end{aligned}$$

Matrix Formulation

$$\begin{array}{rcl} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ \text{min} & : & 0 & \text{s.t.} : & Y_{pp} - 2\boldsymbol{a}_r^T [\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \end{array}$$

The NP-hard difficulty is now summarized into $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X}$. Biswas-Ye replaced this constraint by SDP relaxation $\boldsymbol{Y} \succeq \boldsymbol{X}^T \boldsymbol{X}$ ($\Leftrightarrow \boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X} \succeq \boldsymbol{O}$).

Makoto Yamashita (Tokyo-Tech)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix	Formulation				

min : 0 s.t.:
$$\begin{aligned} ||x_p - x_q||^2 &= d_{pq}^2 \quad \forall (p,q) \in \mathcal{N}_x \\ ||x_p - a_r||^2 &= d_{pr}^2 \quad \forall (p,r) \in \mathcal{N}_a \end{aligned}$$

Matrix Formulation

$$\begin{array}{rcl} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ \text{min} & : & 0 & \text{s.t.} : & Y_{pp} - 2\boldsymbol{a}_r^T [\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \end{array}$$

The NP-hard difficulty is now summarized into $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X}$. Biswas-Ye replaced this constraint by SDP relaxation $\boldsymbol{Y} \succeq \boldsymbol{X}^T \boldsymbol{X}$ ($\Leftrightarrow \boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X} \succeq \boldsymbol{O}$). Note that $\boldsymbol{Y} = \boldsymbol{X}^T \boldsymbol{X} \Leftrightarrow \boldsymbol{Y} \succeq \boldsymbol{X}^T \boldsymbol{X}$, rank $(\boldsymbol{Y}) = d$.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Schur o	complement				
Due to S	Schur complement	,			
	$oldsymbol{Y} - oldsymbol{X}^T.$	$X \succeq O \Leftrightarrow$	$\left(egin{array}{cc} oldsymbol{I}_d & oldsymbol{X} \ oldsymbol{X}^T & oldsymbol{Y} \end{array} ight)$	$\Big) \succeq O$	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◇◇

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Schur o	complement				

Due to Schur complement,

$$oldsymbol{Y} - oldsymbol{X}^T oldsymbol{X} \succeq oldsymbol{O} \qquad \Leftrightarrow \qquad \left(egin{array}{cc} oldsymbol{I}_d & oldsymbol{X} \ oldsymbol{X}^T & oldsymbol{Y} \end{array}
ight) \succeq oldsymbol{O}$$

Proof (\Rightarrow) Assume $\boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X} \succeq \boldsymbol{O}$, then $\boldsymbol{u}^T (\boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{u} \ge 0$ for any vector \boldsymbol{u} . For any vectors $\boldsymbol{v}, \boldsymbol{w}$,

$$\begin{pmatrix} \boldsymbol{v}^{T} & \boldsymbol{w}^{T} \end{pmatrix}^{T} \begin{pmatrix} \boldsymbol{I}_{d} & \boldsymbol{X} \\ \boldsymbol{X}^{T} & \boldsymbol{Y} \end{pmatrix} \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{w} \end{pmatrix}$$

$$= \boldsymbol{v}^{T} \boldsymbol{v} + 2\boldsymbol{v}^{T} \boldsymbol{X} \boldsymbol{w} + \boldsymbol{w}^{T} \boldsymbol{Y} \boldsymbol{w}$$

$$= (\boldsymbol{v} + \boldsymbol{X} \boldsymbol{w})^{T} (\boldsymbol{v} + \boldsymbol{X} \boldsymbol{w}) - (\boldsymbol{X} \boldsymbol{w})^{T} (\boldsymbol{X} \boldsymbol{w}) + \boldsymbol{w}^{T} \boldsymbol{Y} \boldsymbol{w}$$

$$= ||\boldsymbol{v} + \boldsymbol{X} \boldsymbol{w}||^{2} + \boldsymbol{w}^{T} (\boldsymbol{Y} - \boldsymbol{X}^{T} \boldsymbol{X}) \boldsymbol{w} \ge 0$$

(\Leftarrow) Assume there exists a vector \boldsymbol{w} s.t. $\boldsymbol{w}^T (\boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{w} < 0$. Let $\boldsymbol{v} = -\boldsymbol{X} \boldsymbol{w}$. Then

$$\begin{pmatrix} \boldsymbol{v}^T & \boldsymbol{w}^T \end{pmatrix}^T \begin{pmatrix} \boldsymbol{I}_d & \boldsymbol{X} \\ \boldsymbol{X}^T & \boldsymbol{Y} \end{pmatrix} \begin{pmatrix} \boldsymbol{v} \\ \boldsymbol{w} \end{pmatrix}$$

= $||\boldsymbol{v} + \boldsymbol{X}\boldsymbol{w}||^2 + \boldsymbol{w}^T (\boldsymbol{Y} - \boldsymbol{X}^T \boldsymbol{X}) \boldsymbol{w} < 0$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Lift up	of the varia	ble space			

They prepared the large variable matrix $\mathbf{Z} \in \mathbb{R}^{(d+n) \times (d+n)}$:

$$oldsymbol{Z} = \left(egin{array}{cc} oldsymbol{I}_d & oldsymbol{X} \ oldsymbol{X}^T & oldsymbol{Y} \end{array}
ight)$$

Biswas-Ye SDP relaxation for SNL

min
$$\boldsymbol{O} \bullet \boldsymbol{Z}$$
 s.t. $\boldsymbol{A}_k \bullet \boldsymbol{Z} = b_k \ (k \in \Lambda), \quad \boldsymbol{Z} \succeq \boldsymbol{O}$

The set Λ includes all the linear constraints, for example,

$$\begin{aligned} &||\boldsymbol{x}_{p} - \boldsymbol{a}_{r}||^{2} = d_{pr}^{2} \\ \Leftrightarrow \quad Y_{pp} - 2\boldsymbol{a}_{r}^{T}[X]_{*p} + ||\boldsymbol{a}_{r}||^{2} = d_{pr}^{2} \\ & \bullet \quad \begin{pmatrix} \boldsymbol{O} & (-\boldsymbol{a}_{r} &) \\ (-\boldsymbol{a}_{r}^{T} &) & (1 &) \\ & & \end{pmatrix} \end{pmatrix} \\ \Leftrightarrow \quad \begin{pmatrix} \left(\begin{array}{c} -\boldsymbol{a}_{r}^{T} \\ \boldsymbol{X}^{T} & \boldsymbol{Y} \end{array} \right) = d_{pr}^{2} - ||\boldsymbol{a}_{r}||^{2} \\ & & \end{pmatrix} \end{aligned}$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
T 1 0	C / C D'	37 1			

In SNL, multiple solutions are discrete. The SDP relaxation connects them.

<ロ> (四) (四) (日) (日) (日)

1.SNL		2.SI	DP relax	3.Bi	swas-	Ye		4.SFSDP	5.Results	6.Shortest	
T1	œ		C D!	37	1		. •				I

In SNL, multiple solutions are discrete. The SDP relaxation connects them.

ヘロト ヘヨト ヘヨト ヘヨト

In SNL, multiple solutions are discrete. The SDP relaxation connects them.

Therefore, the feasible region of SDP relaxation is convex.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
m 1 m	· · · · ·	37 1			

In SNL, multiple solutions are discrete. The SDP relaxation connects them.

Therefore, the feasible region of SDP relaxation is convex.

When we apply *Primal-Dual Interior-Point Methods*, the obtained solution is usually a max-rank solution. In SNL, max-rank corresponds to the center of the feasible region.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6. Shortest

Uniquely Localizable and SDP solution

In SDP relaxation, we obtain the solution (X^*, Y^*) with the property $Y^* \succeq (X^*)^T (X^*)$.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Uniquely Localizable and SDP solution

In SDP relaxation, we obtain the solution (X^*, Y^*) with the property $Y^* \succeq (X^*)^T (X^*)$.

So et al showed that

If $\mathbf{Y}^* = (\mathbf{X}^*)^T (\mathbf{X}^*)$ holds, the SNL has the unique solution. There is no solution for the SNL except \mathbf{X}^* .

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Uniquely Localizable and SDP solution

In SDP relaxation, we obtain the solution (X^*, Y^*) with the property $Y^* \succeq (X^*)^T (X^*)$.

So et al showed that

If $\mathbf{Y}^* = (\mathbf{X}^*)^T (\mathbf{X}^*)$ holds, the SNL has the unique solution. There is no solution for the SNL except \mathbf{X}^* .

This fact is very strong in the sense that without heavy computation cost, we can know whether the SNL has a unique solution or multiple solutions.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest		
Uniquely Localizable							

(Roughly speaking),

So et al implied for 2D that if the base graph satisfies the three conditions,

- Algebraically independent (No three vertices do not exist on a unique line)
- Q Rigid

(Continuous deformation is not allowed)

Three-connected

(The graph is still connected even when any two vertices and their edges are removed)

then the SNL has the unique solution. The result for 3D or higher dimension is unknown.

Thill to and					
1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

For example, a trilateration graph satisfies the three conditions.

Trilateration graph in d dimension

There is an order of vertices such that

- The first d + 1 vertices connect to each other.
- The *p*th vertex $(p \ge d+2)$ has at least d+1 edges from the vertex $1, \ldots, p-1$.

イロト イヨト イヨト イヨ

The laters	4.2	Const				
1.SNL	2.SDP	relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

For example, a trilateration graph satisfies the three conditions.

Trilateration graph in d dimension

There is an order of vertices such that

- The first d + 1 vertices connect to each other.
- The *p*th vertex $(p \ge d+2)$ has at least d+1 edges from the vertex $1, \ldots, p-1$.

The laters	4.2	Const				
1.SNL	2.SDP	relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

For example, a trilateration graph satisfies the three conditions.

Trilateration graph in d dimension

There is an order of vertices such that

- The first d + 1 vertices connect to each other.
- The *p*th vertex $(p \ge d+2)$ has at least d+1 edges from the vertex $1, \ldots, p-1$.

Thill to an a the	Cara la				
1.SNL 2.S	SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

For example, a trilateration graph satisfies the three conditions.

Trilateration graph in d dimension

There is an order of vertices such that

- The first d + 1 vertices connect to each other.
- The *p*th vertex $(p \ge d+2)$ has at least d+1 edges from the vertex $1, \ldots, p-1$.

- 4. SFSDP Exploiting Sparsity
 - Aggregate Sparsity
 - Chordal Graph
 - Matrix Completion
 - Apply Matrix Completion to SNL

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
SFSDP					

The main idea of SFSDP

Exploiting sparsity in the SDP to solve large-scale SNLs. The mathematical tool is Matrix completion.

イロト イヨト イヨト イヨ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
SFSDP					

The main idea of SFSDP

Exploiting sparsity in the SDP to solve large-scale SNLs. The mathematical tool is Matrix completion.

Without exploiting sparsity, the number of sensors n is limited to $n \leq 3,000$. We want to solve $n \geq 15,000$.

イロト イヨト イヨト イヨ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
SFSDP					

The main idea of SFSDP

Exploiting sparsity in the SDP to solve large-scale SNLs. The mathematical tool is Matrix completion.

Without exploiting sparsity, the number of sensors n is limited to $n \leq 3,000$. We want to solve $n \geq 15,000$. The network of SNL is usually sparse.

In most applications,

- The sensors with short distances are connected.
- But, the pairs with far distance are NOT connected

ヘロト ヘ回ト ヘヨト ヘヨト

6.Shortest

Input data matrices in SNL are very sparse

$$||\mathbf{x}_{p} - \mathbf{x}_{q}||^{2} = d_{pq}^{2} \Leftrightarrow \mathbf{x}_{p}^{T} \mathbf{x}_{p} - 2\mathbf{x}_{p}^{T} \mathbf{x}_{q} + \mathbf{x}_{q}^{T} \mathbf{x}_{q} = d_{pq}^{2}$$

$$\Leftrightarrow Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^{2}$$

$$\Rightarrow \begin{pmatrix} \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{I}_{d} & \mathbf{X} \\ \mathbf{X}^{T} & \mathbf{Y} \end{pmatrix} = d_{pq}^{2}$$

$$\Rightarrow ||\mathbf{x}_{p} - \mathbf{a}_{r}||^{2} = d_{pr}^{2} \Leftrightarrow \mathbf{x}_{p}^{T} \mathbf{x}_{p} - 2\mathbf{x}_{p}^{T} \mathbf{a}_{r} + \mathbf{a}_{r}^{T} \mathbf{a}_{r} = d_{pr}^{2}$$

$$\Leftrightarrow Y_{pp} - 2\mathbf{a}_{r}^{T} [\mathbf{X}]_{*p} + Y_{qq} = d_{pq}^{2} - ||\mathbf{a}_{r}||^{2}$$

$$\Rightarrow \begin{pmatrix} \mathbf{O} & (-\mathbf{a}_{r} &) \\ -\mathbf{a}_{r}^{T} & \begin{pmatrix} 1 & \\ \end{pmatrix} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{I}_{d} & \mathbf{X} \\ \mathbf{X}^{T} & \mathbf{Y} \end{pmatrix} = d_{pr}^{2} - ||\mathbf{a}_{r}||^{2}$$

æ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

To understand matrix completion, we start from a simple example.

$$\min : \begin{pmatrix} 2 & -1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 \\ -2 & 0 & 4 & 0 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix}$$
$$= 2X_{11} - 2X_{12} - 4X_{14} - X_{33} + 8X_{34}$$
$$\text{s.t.} : \begin{pmatrix} 0 & -2 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -3 & 1 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix} = 1, \qquad X \succeq O$$
$$= -4X_{12} - X_{22} + 2X_{33} - 6X_{34} + X_{44}$$

・ロット 全部マント 中国マ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

To understand matrix completion, we start from a simple example.

$$\min : \begin{pmatrix} 2 & -1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 \\ -2 & 0 & 4 & 0 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix}$$

$$= 2X_{11} - 2X_{12} - 4X_{14} - X_{33} + 8X_{34}$$

$$\text{s.t.} : \begin{pmatrix} 0 & -2 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -3 & 1 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix} = 1, \quad X \succeq O$$

$$= -4X_{12} - X_{22} + 2X_{33} - 6X_{34} + X_{44}$$

Only blue elements are enough to evaluate the objective function and the equality constraint.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

To understand matrix completion, we start from a simple example.

$$\min : \begin{pmatrix} 2 & -1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 \\ -2 & 0 & 4 & 0 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix}$$

$$= 2X_{11} - 2X_{12} - 4X_{14} - X_{33} + 8X_{34}$$

$$\text{s.t.} : \begin{pmatrix} 0 & -2 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -3 & 1 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix} = 1, \quad X \succeq O$$

$$= -4X_{12} - X_{22} + 2X_{33} - 6X_{34} + X_{44}$$

Only blue elements are enough to evaluate the objective function and the equality constraint. However, for positive semidefinite conditions,

$$\begin{pmatrix} 5 & -4 & 0 & -1 \\ -4 & 4 & 1 & 0 \\ 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 3 \end{pmatrix} \not\succeq \boldsymbol{O} \quad \text{but} \quad \begin{pmatrix} 5 & -4 & 0 & -1 \\ -4 & 4 & 1 & 2 \\ 0 & 1 & 3 & 2 \\ -1 & 2 & 2 & 3 \end{pmatrix} \succeq \boldsymbol{O}$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Makot

To understand matrix completion, we start from a simple example.

$$\min : \begin{pmatrix} 2 & -1 & 0 & -2 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 \\ -2 & 0 & 4 & 0 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix}$$

$$= 2X_{11} - 2X_{12} - 4X_{14} - X_{33} + 8X_{34}$$

$$\text{s.t.} : \begin{pmatrix} 0 & -2 & 0 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -3 & 1 \end{pmatrix} \bullet \begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix} = 1, \quad X \succeq O$$

$$= -4X_{12} - X_{22} + 2X_{33} - 6X_{34} + X_{44}$$

Only blue elements are enough to evaluate the objective function and the equality constraint. However, for positive semidefinite conditions,

$$\begin{pmatrix} 5 & -4 & 0 & -1 \\ -4 & 4 & 1 & 0 \\ 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 3 \end{pmatrix} \not\succeq O \quad \text{but} \quad \begin{pmatrix} 5 & -4 & 0 & -1 \\ -4 & 4 & 1 & 2 \\ 0 & 1 & 3 & 2 \\ -1 & 2 & 2 & 3 \end{pmatrix} \succeq O$$
Q: How many elements are necessary?

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Aggreg	ate Sparsity	Pattern			

Aggregate Sparsity Pattern

For an SDP

min
$$C \bullet X$$
 s.t. $A_k \bullet X = b_k (k = 1, ..., m), X \succeq O$

We define

 $\mathcal{E} = \{(i,j) : i \neq j, C_{ij} \neq 0 \text{ or } [\mathbf{A}_k]_{ij} \neq 0 \text{ for some } k = 1, \dots, m\}$

 $\begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{12} & X_{22} & X_{23} & X_{24} \\ X_{13} & X_{23} & X_{33} & X_{34} \\ X_{14} & X_{24} & X_{34} & X_{44} \end{pmatrix}$ $\Rightarrow \quad \mathcal{E} = \{(1, 2), (1, 4), (2, 3), (3, 4)\}$

<ロ> (四) (四) (三) (三) (三)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Aggreg	ate Sparsity	Pattern			

Aggregate Sparsity Pattern

For an SDP

min
$$C \bullet X$$
 s.t. $A_k \bullet X = b_k (k = 1, ..., m), X \succeq O$

We define

 $\mathcal{E} = \{(i,j) : i \neq j, C_{ij} \neq 0 \text{ or } [\mathbf{A}_k]_{ij} \neq 0 \text{ for some } k = 1, \dots, m\}$

We have already known that at least Aggregate Sparsity Pattern are necessary. Positive semidefiniteness is related to *chordal graph*.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Graph				

Chordal Graph

A graph is *chordal* if every cycle whose length is larger than 3 has a chord.

・ロト ・日下・ ・ヨト・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Graph				

Chordal Graph

A graph is *chordal* if every cycle whose length is larger than 3 has a chord.

・ロト ・回 ・ ・ ヨト ・ ヨ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Extension				

 $\left(\begin{array}{cccc} X_{11} & X_{12} & & X_{14} \\ X_{12} & X_{22} & X_{23} \\ & X_{23} & X_{33} & X_{34} \\ X_{14} & & X_{34} & X_{44} \end{array}\right)$

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Extension				

Chordal Extension

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Extension				

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Chordal	Extension				

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Submatr	ix				

In the following, we use many sub-matrices. Here, we introduce a simple expression of the sub-matrices.

Submatrix based on the subset C

For an index set $C = \{i_1, \ldots, i_l\}$, we define

 $\boldsymbol{X}(C) = \operatorname{matrix}(X_{ij} : i, j \in C)$

For example,

$$\boldsymbol{X}(\{1,2,4\}) = \begin{pmatrix} X_{11} & X_{12} & X_{14} \\ X_{12} & X_{22} & X_{24} \\ X_{14} & X_{24} & X_{44} \end{pmatrix}, \, \boldsymbol{X}(\{2,3,4\}) = \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{23} & X_{33} & X_{34} \\ X_{24} & X_{34} & X_{44} \end{pmatrix}$$

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Another example for Matrix completion

$$\begin{split} & \boldsymbol{X} \in \mathbb{S}_{+}^{7 \times 7} \\ \Leftrightarrow & \boldsymbol{X}(\{1, 2, 4\}) \in \mathbb{S}_{+}^{3 \times 3}, \boldsymbol{X}(\{2, 3, 4, 6\}) \in \mathbb{S}_{+}^{4 \times 4} \\ & \boldsymbol{X}(\{3, 4, 5, 6\}) \in \mathbb{S}_{+}^{4 \times 4}, \boldsymbol{X}(\{5, 6, 7\}) \in \mathbb{S}_{+}^{3 \times 3} \end{split}$$

In this graph, we have four maximal cliques; $\{1, 2, 4\}, \{2, 3, 4, 6\}, \{3, 4, 5, 6\}, \{5, 6, 7\}.$

ヘロト ヘヨト ヘヨト ヘヨト

How to obtain maximal cliques

・ロト ・四ト ・ヨト ・ヨト

How to obtain maximal cliques

イロト イヨト イヨト イヨ

How to obtain maximal cliques

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Matrix	Completion				

Grone et al, 1984

Assume that the graph is chordal and its maximal cliques are C_1, \ldots, C_ℓ , and the cliques satisfy the running intersection property. If $\mathbf{X}(C_r) \succeq \mathbf{O}$ $(r = 1, \ldots, \ell)$, then we can recover the enter matrix $\mathbf{X} \succeq \mathbf{O}$ by assigning appropriate values to X_{ij} for $(i, j) \notin \bigcup_{r=1}^{\ell} C_r \times C_r$.

Instead of handling large matrix \boldsymbol{X} , we can solve the SDPs with smaller matrices. This can save computation time.

イロト イヨト イヨト イヨー

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Very F	Effective Case				

When the graph is decomposed into smaller cliques, the computation cost to solve the SDP will be smaller.

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Very F	Effective Case				

When the graph is decomposed into smaller cliques, the computation cost to solve the SDP will be smaller.

$$\begin{pmatrix} X_{11} & & X_{1n} \\ & X_{22} & & X_{2n} \\ & & \ddots & & \vdots \\ & & & X_{n-1,n-1} & X_{n-1,n} \\ X_{1n} & X_{2n} & \cdots & X_{n-1,n-1} & X_{n-1,n} \end{pmatrix} \succeq \boldsymbol{O}$$

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Very E	Effective Case				

When the graph is decomposed into smaller cliques, the computation cost to solve the SDP will be smaller.

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Very E	ffective Case				

When the graph is decomposed into smaller cliques, the computation cost to solve the SDP will be smaller.

イロト イヨト イヨト イヨト

Aggregate sparsity pattern is already chordal extension. The positive semidefinite condition will be decomposed into

$$\left(egin{array}{cc} X_{11} & X_{1n} \ X_{1n} & X_{nn} \end{array}
ight) \succeq oldsymbol{O}, \left(egin{array}{cc} X_{22} & X_{2n} \ X_{2n} & X_{nn} \end{array}
ight) \succeq oldsymbol{O}, \dots, \left(egin{array}{cc} X_{n-1,n-1} & X_{n-1,n} \ X_{n-1,n} & X_{nn} \end{array}
ight) \succeq oldsymbol{O}.$$

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Very E	ffective Case				

When the graph is decomposed into smaller cliques, the computation cost to solve the SDP will be smaller.

Aggregate sparsity pattern is already chordal extension. The positive semidefinite condition will be decomposed into $\begin{pmatrix} X_{11} & X_{1n} \\ X_{1n} & X_{nn} \end{pmatrix} \succeq \mathbf{0}, \begin{pmatrix} X_{22} & X_{2n} \\ X_{2n} & X_{nn} \end{pmatrix} \succeq \mathbf{0}, \dots, \begin{pmatrix} X_{n-1,n-1} & X_{n-1,n} \\ X_{n-1,n} & X_{nn} \end{pmatrix} \succeq \mathbf{0}.$

The cost of PDIPM is roughly $O(m^2n^2 + mn^3 + m^3)$. This will be reduced to $O(m^2(2^2n) + m(2^3n) + m^3)$. If $n \ge 1000$, the effect is prominent.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Index N	umber				
SDP relaxa	ation for SNL				
	min $O \bullet Z$	s.t. $A_k \bullet$	$\boldsymbol{Z} = b_k \ (k \in \Lambda),$	$Z \succeq O$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Index N	lumber				
SDP relay	cation for SNL				
	min $O \bullet Z$	s.t. A_k	$\boldsymbol{Z} = b_k \ (k \in \boldsymbol{Z})$	$(\Lambda), \boldsymbol{Z} \succeq \boldsymbol{O}$	
First, we a	dd the index nun	ber to the rov	vs/columns of	the variable mat	rix \boldsymbol{Z} .
		10 20 .	d0	*1 *2	*n
	$\begin{array}{c} 10\\ 20 \end{array}$	1 1		$\begin{array}{cccc} X_{11} & X_{21} & \dots \\ X_{12} & X_{22} & \dots \end{array}$	$\begin{array}{c} X_{n1} \\ X_{n2} \end{array}$
	:		·. 1	$ \begin{array}{c} \vdots \\ \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{array} $: V
$\mathbf{Z} = \left(\underbrace{I_a} \right)$	$\left \begin{array}{c} \mathbf{X} \end{array} \right = \left \begin{array}{c} a_0 \\ - \end{array} \right $			Λ_{1d} Λ_{2d} \dots	$ \stackrel{\Lambda_{nd}}{-} $

Makoto Yamashita (Tokyo-Tech)

2011.04.13 41 / 65

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◇◇

1.SNL	2.SDP relax	3.Biswa	ıs-Ye	4.SFSDP		5.Result	ts	6.Shortest	
Index N	lumber								
SDP relax	kation for SNL								1
	min $O \bullet Z$	s.t.	$oldsymbol{A}_kulletoldsymbol{Z}$ =	$= b_k \ (k \in$	$\Lambda),$	$Z \succeq O$			J
First, we a	dd the index num	ber to t	the rows/co	olumns of	the v	ariable	matrix	Z .	
		10 5	20	d0	*1	*2	;	*n	
	10 /	1			X_{11}	X_{21}	X	X_{n1}	
	20		1	Í	X_{12}	X_{22}	X	X_{n2}	
	:		•.	1	:	:	·.	:	
	d0		·	1	v	v.			

$$Z = \left(\begin{array}{c|c|c} I_d & X \\ \hline X^T & Y \end{array}\right) = \begin{array}{c} a_0 \\ & & \\$$

We focus on the aggregated sparsity of the submatrix Y.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
The C	hordal extens	sion of SNL			

The aggregated sparsity of the submatrix \boldsymbol{Y} corresponds to the base network of SNL.

イロト イヨト イヨト イヨト
1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
The Ch	ordal extens	sion of SNL			

The aggregated sparsity of the submatrix \mathbf{Y} corresponds to the base network of SNL. If sensors p and q are connected, only Y_{pp}, Y_{pq}, Y_{qq} appear in the aggregated sparsity.

$$||\boldsymbol{x}_p - \boldsymbol{x}_q||^2 = d_{pq}^2 \Rightarrow \begin{pmatrix} \boldsymbol{O} & \boldsymbol{O} & \\ & \begin{pmatrix} 1 & -1 & \\ & -1 & 1 \end{pmatrix} \end{pmatrix} \bullet \begin{pmatrix} \boldsymbol{I}_d & \boldsymbol{X} \\ \boldsymbol{X}^T & \boldsymbol{Y} \end{pmatrix} = d_{pq}^2$$

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
The C	hordal extens	ion of SNL			

The aggregated sparsity of the submatrix \mathbf{Y} corresponds to the base network of SNL. If sensors p and q are connected, only Y_{pp}, Y_{pq}, Y_{qq} appear in the aggregated sparsity.

$$||\boldsymbol{x}_p - \boldsymbol{x}_q||^2 = d_{pq}^2 \Rightarrow \begin{pmatrix} \boldsymbol{O} & \boldsymbol{O} & \\ & \begin{pmatrix} 1 & -1 & \\ & -1 & 1 \end{pmatrix} \end{pmatrix} \bullet \begin{pmatrix} \boldsymbol{I}_d & \boldsymbol{X} \\ \boldsymbol{X}^T & \boldsymbol{Y} \end{pmatrix} = d_{pq}^2$$

The maximal cliques of Y are C_1, \ldots, C_ℓ , then the maximal cliques of Z are $\widetilde{C}_1, \ldots, \widetilde{C}_\ell$ where

$$\widetilde{C}_r = \underbrace{\{10, \dots, d0\}}_{\text{from } \boldsymbol{X}} \cup \underbrace{\{*p : p \in \boldsymbol{C}_r\}}_{\text{from } \boldsymbol{Y}}$$

<ロ> (四) (四) (日) (日) (日)

An example of the chordal extension

The maximal cliques

 $\{1,2,4\},\{2,3,4,6\},\{3,4,5,6\},\{5,6,7\}$

in the base network are extended to

 $\{10, 20, *1, *2, *4\}, \{10, 20, *2, *3, *4, *6\}, \{10, 20, *3, *4, *5, *6\}, \{10, 20, *5, *6, *7\},$

in the converted SDP.

・ロト ・日下・ ・ヨト・

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Cliques	and quasi-cli	ques in SNL			

If the base network of SNL is almost chordal graph, the matrix completion works well.

This happens in many applications, because the sensors in the short range are often connected and such connections involve many cliques and quasi-cliques.

・ロト ・回ト ・ヨト ・ヨ

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Decomp	osed SDP				

Original SDP

$$\begin{array}{lll} \min &: & 0 & \text{ s.t. : } & \begin{array}{c} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ Y_{pp} - 2\boldsymbol{a}_r^T[\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \left(\begin{array}{c} \boldsymbol{I}_d & \boldsymbol{X} \\ \boldsymbol{X}^T & \boldsymbol{Y} \end{array} \right) \succeq \boldsymbol{O} \end{array}$$

Decomposed SDP

$$\begin{array}{lll} \min &: & 0 & \text{ s.t. : } & \begin{array}{ll} Y_{pp} - 2Y_{pq} + Y_{qq} = d_{pq}^2 & \forall (p,q) \in \mathcal{N}_x \\ Y_{pp} - 2\boldsymbol{a}_r^T[\boldsymbol{X}]_{*p} + ||\boldsymbol{a}_r||^2 = d_{pr}^2 & \forall (p,r) \in \mathcal{N}_a \\ & \left(\begin{array}{c} \boldsymbol{I}_d & \boldsymbol{X}(:,C_r) \\ \boldsymbol{X}^T(:,C_r) & \boldsymbol{Y}(C_r) \end{array} \right) \succeq \boldsymbol{O} & r = 1, \dots, \ell \end{array}$$

If the sizes of C_1, \ldots, C_ℓ are remarkably smaller than n, the decomposed SDP can be solved in a shorter time.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Decomposed SDP from Noisy SNL

Noisy SNL

$$\begin{array}{ll} \min &: & \Sigma_{(p,q)\in\mathcal{N}_{x}}(\xi_{pq}^{+}+\xi_{pq}^{-})+\Sigma_{(p,r)\in\mathcal{N}_{a}}(\xi_{pr}^{+}+\xi_{pr}^{+}) \\ \mathrm{s.t.} &: & d_{pq}^{2}=||x_{p}-x_{q}||^{2}+\xi_{pq}^{+}-\xi_{pq}^{-}\;\forall(p,q)\in\mathcal{N}_{x} \\ & & d_{pr}^{2}=||x_{p}-a_{r}||^{2}+\xi_{pr}^{+}-\xi_{pr}^{-}\;\forall(p,r)\in\mathcal{N}_{a} \\ & & \xi_{pq}^{+},\xi_{pq}^{-}\geq 0\;\forall(p,q)\in\mathcal{N}_{x} \\ & & \xi_{pr}^{+},\xi_{pr}^{-}\geq 0\;\forall(p,r)\in\mathcal{N}_{a} \end{array}$$

Decomposed SDP from Noisy SNL

$$\begin{array}{lll} \min &: & \Sigma_{(p,q) \in \mathcal{N}_{x}}(\xi_{pq}^{+} + \xi_{pq}^{-}) + \Sigma_{(p,r) \in \mathcal{N}_{a}}(\xi_{pr}^{+} + \xi_{pr}^{-}) \\ & & Y_{pp} - 2Y_{pq} + Y_{qq} + \xi_{pq}^{+} - \xi_{pq}^{-} = d_{pq}^{2} & \forall (p,q) \in \mathcal{N}_{x} \\ & & Y_{pp} - 2a_{r}^{T}[\mathbf{X}]_{*p} + ||a_{r}||^{2} + \xi_{pr}^{+} - \xi_{pr}^{-} = d_{pr}^{2} & \forall (p,r) \in \mathcal{N}_{a} \\ \text{s.t.} & : & \xi_{pq}^{+}, \xi_{pq}^{-} \ge 0 & \forall (p,q) \in \mathcal{N}_{x} \\ & \xi_{pr}^{+}, \xi_{pr}^{-} \ge 0 & \forall (p,r) \in \mathcal{N}_{a} \\ & & \xi_{pr}^{+}, \xi_{pr}^{-} \ge 0 & \forall (p,r) \in \mathcal{N}_{a} \\ & & \left(\begin{array}{c} \mathbf{I}_{d} & \mathbf{X}(:,C_{r}) \\ \mathbf{X}^{T}(:,C_{r}) & \mathbf{Y}(C_{r}) \end{array} \right) \succeq \mathbf{O} & r = 1, \dots, \ell \end{array}$$

5. Numerical Results

(□) (

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Setting 1	l of 3				

- Computing Environment
 - ▶ (for small SNL) 2.8GHz Quad-Core Intel Xeon with 4GB memory
 - ▶ (for large SNL) 2.8GHz Quad-Core Intel Core i7 with 16GB memory
- SDP Solver SDPA 7.3.1 [http://sdpa.sourceforge.net]
- Accuracy Measure RMSD (root mean square distance)

$$\left(\frac{1}{n}\sum_{p=1}^{n}||\boldsymbol{x}_p-\boldsymbol{a}_p||^2\right)^{1/2}$$

where \boldsymbol{x}_p is the computed location of *p*th sensor and \boldsymbol{a}_p is its true location.

• Computation time unit in the results is *second*.

イロト イヨト イヨト イヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5. Results	6.Shortest
Setting 2	2 of 3				

- Sensors (n) n = 1000, 3000, 5000
- Anchors (m)
 - m = 4 or 8: 4 corners in $[0,1]^2$ or 8 corners in $[0,1]^3$.
 - $m = 5\% \times n$ or $10\% \times n$: randomly generated locations
- Radiorange ρ for $[0,1]^2$ in 2D
 - $\rho = 0.1$ • $\rho = \sqrt{10/n}$ (the square $\rho \times \rho$ contains 10 sensor on average) For $[0, 1]^3$ in 3D, $\rho = 0.25$ or $\rho = (15/n)^{1/3}$
- For noisy case, noisy factor σ is chosen from 0.0, 0.1 and 0.2. For the true locations a_1, \ldots, a_n , the input distances are

$$d_{pq} = \max\{(1 + \sigma \epsilon_{pq}), 0.1\} || \boldsymbol{a}_p - \boldsymbol{a}_q || \quad ((p,q) \in \mathcal{N}_x^{\rho})$$
$$d_{pr} = \max\{(1 + \sigma \epsilon_{pr}), 0.1\} || \boldsymbol{a}_p - \boldsymbol{a}_r || \quad ((p,r) \in \mathcal{N}_a^{\rho})$$

where $\epsilon_{pq}, \epsilon_{pr}$ follow the standard normal distribution N(0, 1).

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5. Results	6.Shortest
Setting 3	3 of 3				

Refinement

We apply the gradient method developed by Toh (a local method) by setting the solution of SDP relaxation as its initial point.

Comparison between three SDP formulations

- FSDP (Full SDP; without exploiting sparsity) Biswas-Ye
- ESDP (Edge Based SDP) Wang-Zheng-Boyd-Ye
- SFSDP (Sparse variant Full SDP)

Numerical Results on 2D

1					RMSD		Time		
n	m	ρ	σ	Form	SDP	w.Grad	SDPA	Grad	Total
1000	4	0.1	0.0	FSDP	5.5e-5	2.1e-5	45.4	0.3	48.8
				SFSDP	5.8e-5	2.5e-5	12.6	0.3	17.8
			0.1	FSDP	4.5e-2	1.0e-2	157.2	14.9	179.5
				SFSDP	4.5e-2	1.0e-2	18.3	12.5	39.8
1000	100	0.1	0.0	FSDP	5.0e-4	1.0e-5	53.8	0.2	56.9
				SFSDP	4.9e-5	7.1e-6	2.3	0.3	7.3
			0.1	FSDP	1.7e-2	7.1e-3	308.6	1.5	317.3
				SFSDP	1.7e-2	7.1e-3	5.1	5.0	18.9

• SFSDP is much faster than FSDP.

- The RMSDs of FSDP and SFSDP are almost same.
- Exact distance information shortens computation time. (Objective function is 0; hence the SDP is decomposed into smaller cliques.)
- In SFSDP, less anchors leads to longer computation. (The freedom in choice of the edges is reduced, and smaller cliques is difficult to expect.)

イロト イヨト イヨト イヨト

Results on Middle Size SNL (n = 3000)

	m = 3	300		1	m = 4 at corners			
		Tir	Time				Tir	ne
Form	RMSD	SDPA	Total		Form	RMSD	SDPA	Total
$ ho=0.1, \sigma=0.0$						$\rho = 0.1, c$	$\sigma = 0.0$	
ESDP	1.7e-3	68.0	359.2		ESDP	1.2e-2	84.6	274.0
SFSDP	2.3e-7	6.2	36.9		SFSDP	6.7e-6	36.8	74.2
$\rho = 0.1, \sigma = 0.2$						$\rho = 0.1, c$	$\sigma = 0.2$	
ESDP	8.1e-3	70.1	348.0		ESDP	3.3e-2	76.3	263.4
SFSDP	4.8e-3	15.1	98.8		SFSDP	9.3e-3	63.3	176.7
$\rho = \sqrt{1 + 1}$	$\sqrt{10/n} \sim 0$	$0.058, \sigma =$	0.0	1	$\rho = \sqrt{2}$	$\sqrt{10/n} \sim 0$	$0.058, \sigma =$	0.0
ESDP	8.1e-4	69.3	241.2	1	ESDP	7.2e-3	258.3	71.1
SFSDP	4.8e-3	21.5	88.9		SFSDP	7.6e-5	167.5	206.6
$\rho = \sqrt{10/n} \sim 0.058, \sigma = 0.2$				$\rho = \sqrt{2}$	$\sqrt{10/n} \sim 0$	$0.058, \sigma =$	0.2	
ESDP	7.9e-3	47.0	216.2]	ESDP	3.3e-2	77.2	265.4
SFSDP	4.4e-3	21.5	88.9		SFSDP	1.1e-2	176.4	312.4

- SFSDP attains smaller RMSD compared to ESDP.
- SFSDP is faster than ESDP in most cases.
- In the case m = 4, $\rho = \sqrt{10/n}$ and $\sigma = 0.2$, SFSDP becomes slower than ESDP. (The situation with less anchors and noise requires long computation for numerical accuracy.)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Results on Large Size SNL

				RM	ASD	Time			
n	m	ho	σ	SDPA	w.Grad	SDPA	Grad	Total	
20000	2000	0.1	0.0	1.4e-6	3.0e-7	93.4	0.7	326.9	
			0.2	1.9e-2	4.4e-3	148.2	23.5	882.1	
		$\sqrt{10/n}$	0.0	1.1e-4	4.0e-6	466.2	4.4	708.0	
		~ 0.022	0.2	6.2e-3	1.5e-3	237.6	41.4	773.1	
20000	4	0.1	0.0	4.0e-5	6.9e-6	182.9	2.0	469.2	
			0.2	6.6e-2	1.0e-2	402.6	146.0	1150.5	
		$\sqrt{10/n}$	0.0	Out of memory					
		~ 0.022	0.2		Out of memory				

• SFSDP can handle large size SNL ($n \ge 10000$).

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

SFSDP can handle 3D data

Mathematical formulation is same as 2D case. But, its computational cost becomes huge.

O : Sensor true locations vs *: the ones computed by SFSDP

Figure: 3000 sensors, 8 anchors (corners), noise 0.0

・ロト ・回ト ・ヨト ・ヨ

Results on 3D SNL

1				RN	ASD		Time	
n	m	ho	σ	SDPA	w.Grad	SDPA	Grad	Total
3000	300	0.25	0.0	6.2e-6	9.8e-7	12.1	0.4	48.1
			0.2	6.1e-2	1.7e-2	20.3	26.3	144.7
		$(10/n)^{1/3}$	0.0	1.0e-4	2.9e-6	49.3	1.2	87.3
		~ 0.171	0.2	4.9e-2	1.6e-2	51.6	25.3	162.0
3000	8	0.25	0.0	1.0e-4	7.5e-6	368.4	1.2	413.0
			0.2	1.4e-1	2.6e-2	422.2	45.9	563.6
		$\sqrt{10/n}$	0.0		Out	of memor	y	
		~ 0.171	0.2		Out	of memor	у	
5000	500	0.25	0.0	1.4e-6	4.2e-7	17.5	0.5	112.2
			0.2	6.1e-2	1.6e-2	37.5	31.8	331.8
		$(10/n)^{1/3}$	0.0	8.8e-5	2.1e-6	194.5	2.8	295.4
		~ 0.144	0.2	4.2e-2	1.2e-2	170.1	54.4	452.2
5000	250	0.25	0.0	1.8e-5	7.7e-7	18.7	1.2	117.3
			0.2	6.3e-2	1.7e-2	39.3	42.6	348.9
		$\sqrt{10/n}$	0.0		Out	of memor	y	
		~ 0.144	0.2		Out	of memor	у	

Same tendency as 2D can be observed in 3D case.

- Less anchor is difficult.
- Less edge (due to short ρ) requires more computation resources.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

Anchor-free 3D SNL

Some applications (like protein conformation) do not have any anchors. We solve SNLs of this type by the following steps.

- **Q** Fix d + 1 sensors which are connected each other, as anchors.
- Apply SFSDP and obtain SDP solution.
- Apply Gradient method.
- Apply *parallel translation*, *reflection* and *rotation* if the true locations are known.

O : Sensor true locations vs *: the ones computed by SFSDP

O : Sensor true locations vs * : the ones computed by SFSDP

Figure: SDP solution

Figure: After Gradient method

<ロ> (四) (四) (日) (日) (日)

Parallel Translation, Reflection and Rotation

O : Sensor true locations vs *: the ones computed by SFSDP

Figure: After Parallel Translation, Reflection and Rotation
We apply procusters.m developed by Toh. This function find the linear transformation T which minimizes

$$\sum_{p=1}^n ||m{T}(m{x}_p) - m{a}_p||^2$$

where x_p is the SDP solution and a_p is the true location.

• We can obtain enough accuracy.

6. Future Works (Shortest-Path Propagation Method)

ヘロト ヘヨト ヘヨト ヘヨト

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

We fix only the three sensors by the gradient method or SDP relaxation.
The three sensors are changed as new anchors. (We propagate the region of anchors.)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

- The three sensors are changed as new anchors. (We propagate the region of anchors.)
- We iterate this procedure.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

- The three sensors are changed as new anchors. (We propagate the region of anchors.)
- We iterate this procedure.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

- The three sensors are changed as new anchors. (We propagate the region of anchors.)
- We iterate this procedure.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

- The three sensors are changed as new anchors.
 (We propagate the region of anchors.)
- We iterate this procedure.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

• We fix only the three sensors by the gradient method or SDP relaxation.

- The three sensors are changed as new anchors.
 (We propagate the region of anchors.)
- We iterate this procedure.

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Distance	Estimation	by Shortest	Path		

- To reduce the iteration number, we fix the sensors with in two or three steps.
- We use the shortest path to infer the distances.

・ロト ・回ト ・ヨト ・ヨ

- To reduce the iteration number, we fix the sensors with in two or three steps.
- We use the shortest path to infer the distances.

<ロト (四) (注) (日) (日)

- To reduce the iteration number, we fix the sensors with in two or three steps.
- We use the shortest path to infer the distances.

<ロト (四) (注) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Test Sa	mple (Donut)			

A donut image is illustrated in 3D. (This sample was made by Cucuringu).

735 sensors + 4 anchors

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
-------	-------------	-------------	---------	-----------	------------

Numerical Results

We can obtain good accuracy for proteins. But there are hard problems.

	SFSDP	Shortest Path
RMSD	3.54e-4	2.49
Time	322.36 (SDPA 320.97 + Grad 0.09)	12.84 (Shortest $0.04 + Grad 9.70$)

- Shortest Path Propagation is too inaccurate in this example.
- All the anchors are located near one corner.
- Distance Estimation is not well.
- (Computation time is short; there is a room to improve.)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest

For further improvements

- Select good step-number.
- Select more stable shortest path.
- Estimate better shortest path. (Need not to be exact, because it is NOT straight.)

<ロ> (四) (四) (日) (日) (日)

1.SNL	2.SDP relax	3.Biswas-Ye	4.SFSDP	5.Results	6.Shortest
Conclusion & Future works					

- Sensor Network Localization Problem
- Biswas-Ye's SDP relaxation
- Section 2018 Se
- SFSDP can solve large-scale SNLs

SFSDP is available at

http://www.is.titech.ac.jp/~kojima/SFSDP/SFSDP.html

• Further improvements on Shortest Path Propagation.

イロト イヨト イヨト イヨト

Thank you very much for your attention. 謝謝

ヘロト ヘヨト ヘヨト ヘヨト