SDPA : High performance package for SemiDefinite Programs

Makoto Yamashita¹, Katsuki Fujisawa², Mituhiro Fukuda¹, Kazuhiro Kobayashi³, Masakazu Kojima¹, Kazuhide Nakata¹, Maho Nakata⁴

¹Tokyo Institute of Technology, ²Chuo University, ³National Maritime Research Institute, ⁴RIKEN

2011.04.15 @ National Cheng Kung University, Taiwan

SDPA

The fastest solver for large-scale SDPs.

- SDP (SemiDefinite Programs) has many applications.
- How large SDP can we solve?
- How fast can we solve it?

<ロ> (四) (四) (日) (日) (日)

	-	_	_
п.	s	1.3	Р.
-	~	~	-

SDPA History & Computation time

Version	Year	mcp500-1	theta6	mater-4	
1.00	1995	-	-	-	Initial Version
2.01	1996	569.2	2643.5	62051.7	Mehrotra Type
3.20	1997	126.8	216.3	7605.9	Exploiting Sparsity
4.50	1998	53.6	217.6	29601.9	Full Ver. Exploiting Sparsity
5.01	1999	23.8	212.0	31258.1	Fast Step-Size
6.2.1	2002	1.6	20.7	746.7	BLAS/LAPACK
7.3.1	2009	1.5	14.2	10.4	Multi-Thread & Sparse Cholesky

Time unit is second, Xeon 5550 (2.66GHz) x2, 72GB memory

The latest version is 7.3.4 (2011, March).

ヘロト ヘヨト ヘヨト ヘヨト

-1	C11	D.	
1		υ.	E

3.SDPA

SDPA Online Solver

- SDPA is useful to solve SDPs.
- We prepare SDPA Online Solver.

- Log-in the online solver
- Opload your problem
- O Push 'Execute' button
- Receive the result via Web/Mail

C SOPA Colline, Salver Execution Male Pae	ee – Windows Intern			
🚱 🔍 🔹 🖉 /////www.her. dwaries.p./r		(**)	× Omth	P -
🛊 🧝 SDPA Crime Solver Essoution Main Page				
				12
Lower Charge Barrand	SDPA Onlin	e Solver Main	Page.	labe
LODOD COMMERCIANSHIEL	STORF FOR CASE AND	3 CSC. Statiogenitesia) 243	COLEMPTORY AND ADDRESS	802
UxerName valorio				
First of ML upload your problem file with sign format i You can also upload your parameter file for charging see	(Plase see marval page). ne parameters by yourself.			
Parameter File .	Pis . upload			
Sparse data file :	welk, upload			
Uploading file Bell_2Rigman_STO.60N5e12g1T2.dat-				
Uplead successed.				
Parameter File:	param sdpa	*		
Data file:	BeH_2Sigma+_STO	AGREST 12g112 dat a 👻		
Cluster selection	Power	~		
Select the solver:	SDPA 7.3 2 + Gotol	BLAS2 1.09	*	
# of CPUs: (only effects parallel programs.)	Soher selection	140210		
Result filename(shall be over written)	SEPARA 7.3.1 + Gr	MECAS 1.38 ATLAS 3.9.11 + GutuBUA	8.1.31	
E-mail (required to be notified, now works.)				
Execute via Web				

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family

Outline

- SDP Definition
- Primal-Dual Interior-Point Methods
- Inside of SDPA

SDPA Family (Parallel computation, Multiple precision, Online solver)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

- 1. SemiDefinite Programs
 - Standard form
 - Applications
 - Theoretical property (Duality and Optimality)

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
SDP			

Standard from

$$(\mathcal{P}) : \min : \mathbf{C} \bullet \mathbf{X} \quad \text{s.t.} \quad \mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \quad \mathbf{X} \succeq \mathbf{O}$$
$$(\mathcal{D}) : \max : \sum_{k=1}^m b_k \mathbf{z}_k \quad \text{s.t.} \quad \sum_{k=1}^m \mathbf{A}_k \mathbf{z}_k + \mathbf{Y} = \mathbf{C}, \quad \mathbf{Y} \succeq \mathbf{O}$$

Notations:

- \boldsymbol{S}^n : The space of $n \times n$ symmetric matrices
- $\boldsymbol{S}^n_+ \subset \boldsymbol{S}^n_-$: The space of $n \times n$ positive semidefinite symmetric matrices
 - $\boldsymbol{X} \succeq \boldsymbol{O}$: $\boldsymbol{X} \in \boldsymbol{S}_{+}^{n}$, i.e., all the eigenvalues of \boldsymbol{X} are non-negative

$$X \bullet Y$$
 : the inner-product between X and $Y, X \bullet Y = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij} Y_{ij}$

- m: The number of equality constraints
- n : The size of variable matrices \boldsymbol{X} and \boldsymbol{Y}

1.SDP	2.PDIPM	3.SDPA	4.Family
SDP			

Standard from

$$(\mathcal{P}) : \min : \mathbf{C} \bullet \mathbf{X} \quad \text{s.t.} \quad \mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \quad \mathbf{X} \succeq \mathbf{O}$$
$$(\mathcal{D}) : \max : \sum_{k=1}^m b_k \mathbf{z}_k \quad \text{s.t.} \quad \sum_{k=1}^m \mathbf{A}_k \mathbf{z}_k + \mathbf{Y} = \mathbf{C}, \quad \mathbf{Y} \succeq \mathbf{O}$$

Notations:

- \boldsymbol{S}^n : The space of $n \times n$ symmetric matrices
- $\boldsymbol{S}^n_+ \subset \boldsymbol{S}^n_-$: The space of $n \times n$ positive semidefinite symmetric matrices
 - $\boldsymbol{X} \succeq \boldsymbol{O}$: $\boldsymbol{X} \in \boldsymbol{S}_{+}^{n}$, i.e., all the eigenvalues of \boldsymbol{X} are non-negative
 - $X \bullet Y$: the inner-product between X and $Y, X \bullet Y = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij} Y_{ij}$
 - m: The number of equality constraints
 - n : The size of variable matrices X and Y

Our target is $m \ge 30,000$.

Linear Matrix Inequality from Differential Equations (1 of 3)

Early SDP researches were strongly related to LMI from DE. A simple example of DE w.r.t. $\boldsymbol{x}(t) = (x_1(t), x_2(t))^T \in \mathbb{R}^2$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t); \left(\begin{array}{c} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{array}\right) = \left(\begin{array}{cc} -3 & 1 \\ 1 & -3 \end{array}\right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right)$$

Linear Matrix Inequality from Differential Equations (1 of 3)

Early SDP researches were strongly related to LMI from DE. A simple example of DE w.r.t. $\boldsymbol{x}(t) = (x_1(t), x_2(t))^T \in \mathbb{R}^2$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t); \left(\begin{array}{c} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{array}\right) = \left(\begin{array}{cc} -3 & 1 \\ 1 & -3 \end{array}\right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right)$$

We want to know a stability condition; whether $||\boldsymbol{x}(t)|| \to 0$ when $t \to \infty$.

Linear Matrix Inequality from Differential Equations (1 of 3)

Early SDP researches were strongly related to LMI from DE. A simple example of DE w.r.t. $\boldsymbol{x}(t) = (x_1(t), x_2(t))^T \in \mathbb{R}^2$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t); \left(\begin{array}{c} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{array}\right) = \left(\begin{array}{c} -3 & 1 \\ 1 & -3 \end{array}\right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right)$$

We want to know a stability condition; whether $||\boldsymbol{x}(t)|| \to 0$ when $t \to \infty$. In this case, YES.

Linear Matrix Inequality from Differential Equations (1 of 3)

Early SDP researches were strongly related to LMI from DE. A simple example of DE w.r.t. $\boldsymbol{x}(t) = (x_1(t), x_2(t))^T \in \mathbb{R}^2$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t); \left(\begin{array}{c} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{array}\right) = \left(\begin{array}{c} -3 & 1 \\ 1 & -3 \end{array}\right) \left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right)$$

We want to know a stability condition; whether $||\boldsymbol{x}(t)|| \to 0$ when $t \to \infty$. In this case, YES.

First, apply the eigenvalue decomposition to the coefficient matrix.

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} \quad (\mathbf{P}: \text{orthogonal}\mathbf{P}\mathbf{P}^{T} = \mathbf{I}, \mathbf{D}: \text{diagonal})$$
$$\begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -2 \\ -4 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}^{T}$$

1.SDP	
-------	--

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t)$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t)$$
$$\Rightarrow \quad \frac{d\tilde{\boldsymbol{x}}(t)}{dt} = \boldsymbol{D}\tilde{\boldsymbol{x}}(t)$$

・ロト ・四ト ・ヨト ・ヨト

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t)$$
$$\Rightarrow \quad \frac{d\widetilde{\boldsymbol{x}}(t)}{dt} = \boldsymbol{D}\widetilde{\boldsymbol{x}}(t) \Rightarrow \begin{pmatrix} \frac{d\widetilde{x}_{1}(t)}{dt} \\ \frac{d\widetilde{x}_{2}(t)}{dt} \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \begin{pmatrix} \widetilde{x}_{1}(t) \\ \widetilde{x}_{2}(t) \end{pmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\begin{aligned} \frac{d\boldsymbol{x}(t)}{dt} &= \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \\ \Rightarrow \quad \frac{d\tilde{\boldsymbol{x}}(t)}{dt} &= \boldsymbol{D}\tilde{\boldsymbol{x}}(t) \Rightarrow \begin{pmatrix} \frac{d\tilde{x}_{1}(t)}{dt} \\ \frac{d\tilde{x}_{2}(t)}{dt} \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \begin{pmatrix} \tilde{x}_{1}(t) \\ \tilde{x}_{2}(t) \end{pmatrix} \\ \Rightarrow \quad \frac{d\tilde{x}_{1}(t)}{dt} &= -2\tilde{x}_{1}(t), \quad \frac{d\tilde{x}_{2}(t)}{dt} = -4\tilde{x}_{2}(t) \\ \Rightarrow \quad \tilde{x}_{1}(t) &= \tilde{x}_{1}(0)e^{-2t}, \quad \tilde{x}_{2}(t) = \tilde{x}_{2}(0)e^{-4t} \\ \Rightarrow \quad \lim_{t \to \infty} \tilde{\boldsymbol{x}}(t) = 0 \end{aligned}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t)$$

$$\Rightarrow \quad \frac{d\tilde{\boldsymbol{x}}(t)}{dt} = \boldsymbol{D}\tilde{\boldsymbol{x}}(t) \Rightarrow \begin{pmatrix} \frac{d\tilde{x}_{1}(t)}{dt} \\ \frac{d\tilde{x}_{2}(t)}{dt} \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \begin{pmatrix} \tilde{x}_{1}(t) \\ \tilde{x}_{2}(t) \end{pmatrix}$$

$$\Rightarrow \quad \frac{d\tilde{x}_{1}(t)}{dt} = -2\tilde{x}_{1}(t), \quad \frac{d\tilde{x}_{2}(t)}{dt} = -4\tilde{x}_{2}(t)$$

$$\Rightarrow \quad \tilde{x}_{1}(t) = \tilde{x}_{1}(0)e^{-2t}, \quad \tilde{x}_{2}(t) = \tilde{x}_{2}(0)e^{-4t}$$

$$\Rightarrow \quad \lim_{t \to \infty} \tilde{\boldsymbol{x}}(t) = 0$$

$$\Rightarrow \quad \boldsymbol{x} = \boldsymbol{P}\boldsymbol{P}^{T}\boldsymbol{x} = \boldsymbol{P}\tilde{\boldsymbol{x}}, \quad \text{hence} \quad \lim_{t \to \infty} \boldsymbol{x}(t) = 0$$

・ロト ・四ト ・ヨト ・ヨト

We introduce the vector $\tilde{\boldsymbol{x}} = \boldsymbol{P}^T \boldsymbol{x}$, then, from $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{I}$,

$$\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}\boldsymbol{x}(t) = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t) \Rightarrow \boldsymbol{P}^{T}\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{D}\boldsymbol{P}^{T}\boldsymbol{x}(t)$$

$$\Rightarrow \quad \frac{d\tilde{\boldsymbol{x}}(t)}{dt} = \boldsymbol{D}\tilde{\boldsymbol{x}}(t) \Rightarrow \begin{pmatrix} \frac{d\tilde{x}_{1}(t)}{dt} \\ \frac{d\tilde{x}_{2}(t)}{dt} \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \begin{pmatrix} \tilde{x}_{1}(t) \\ \tilde{x}_{2}(t) \end{pmatrix}$$

$$\Rightarrow \quad \frac{d\tilde{x}_{1}(t)}{dt} = -2\tilde{x}_{1}(t), \quad \frac{d\tilde{x}_{2}(t)}{dt} = -4\tilde{x}_{2}(t)$$

$$\Rightarrow \quad \tilde{x}_{1}(t) = \tilde{x}_{1}(0)e^{-2t}, \quad \tilde{x}_{2}(t) = \tilde{x}_{2}(0)e^{-4t}$$

$$\Rightarrow \quad \lim_{t \to \infty} \tilde{\boldsymbol{x}}(t) = 0$$

$$\Rightarrow \quad \boldsymbol{x} = \boldsymbol{P}\boldsymbol{P}^{T}\boldsymbol{x} = \boldsymbol{P}\tilde{\boldsymbol{x}}, \quad \text{hence} \quad \lim_{t \to \infty} \boldsymbol{x}(t) = 0$$

The point is $\lim_{t\to\infty} \boldsymbol{x}(t) = 0$ if all the eigenvalues of \boldsymbol{A} is negative.

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
LMI from DE 3 o	f 3		

The point is $\lim_{t\to\infty} \boldsymbol{x}(t) = 0$ if all the eigenvalues of \boldsymbol{A} is negative.

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
LMI from DE 3 of	of 3		

The point is $\lim_{t\to\infty} \boldsymbol{x}(t) = 0$ if all the eigenvalues of \boldsymbol{A} is negative. $\Leftrightarrow \quad \lambda^* < 0$, where $\lambda^* = \min \lambda : \lambda \boldsymbol{I} - \boldsymbol{A} \succeq \boldsymbol{O}$ For example,

$$\min \lambda : \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} - \begin{pmatrix} -2 \\ & -4 \end{pmatrix} \succeq \mathbf{O} \Leftrightarrow \begin{cases} \lambda + 2 \ge 0 \\ \lambda + 4 \ge 0 \end{cases} \Leftrightarrow \lambda^* = -2 < 0$$

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family
LMI from DE 3	of 3		

The point is $\lim_{t\to\infty} \boldsymbol{x}(t) = 0$ if all the eigenvalues of \boldsymbol{A} is negative. $\Leftrightarrow \quad \lambda^* < 0$, where $\lambda^* = \min \lambda : \lambda \boldsymbol{I} - \boldsymbol{A} \succeq \boldsymbol{O}$ For example,

$$\min \lambda : \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} - \begin{pmatrix} -2 \\ & -4 \end{pmatrix} \succeq \boldsymbol{O} \Leftrightarrow \begin{cases} \lambda + 2 \ge 0 \\ \lambda + 4 \ge 0 \end{cases} \Leftrightarrow \lambda^* = -2 < 0$$

In some applications like control theory, $\mathbf{A}(\mathbf{z}) = \sum_{k=1}^{m} A_k z_k$; a linear combination of A_1, \ldots, A_m with variables z_1, \ldots, z_m . We want to know for $\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}(\mathbf{z})\mathbf{x}(t)$, whether $||\mathbf{x}(t)|| \to 0$ when $t \to \infty$.

<ロ> (四) (四) (日) (日) (日)

1.SDP	
-------	--

3.SDPA

4.Family

LMI from DE 3 of 3

The point is $\lim_{t\to\infty} \boldsymbol{x}(t) = 0$ if all the eigenvalues of \boldsymbol{A} is negative. $\Leftrightarrow \quad \lambda^* < 0$, where $\lambda^* = \min \lambda : \lambda \boldsymbol{I} - \boldsymbol{A} \succeq \boldsymbol{O}$ For example,

$$\min \lambda : \begin{pmatrix} \lambda \\ & \lambda \end{pmatrix} - \begin{pmatrix} -2 \\ & -4 \end{pmatrix} \succeq \boldsymbol{O} \Leftrightarrow \begin{cases} \lambda + 2 \ge 0 \\ \lambda + 4 \ge 0 \end{cases} \Leftrightarrow \lambda^* = -2 < 0$$

In some applications like control theory, $\mathbf{A}(\mathbf{z}) = \sum_{k=1}^{m} A_k z_k$; a linear combination of A_1, \ldots, A_m with variables z_1, \ldots, z_m . We want to know for $\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}(\mathbf{z})\mathbf{x}(t)$, whether $||\mathbf{x}(t)|| \to 0$ when $t \to \infty$. We solve an SDP and check λ^* .

$$\min \lambda : \lambda I - \sum_{k=1}^{m} A_k z_k \succeq O$$

・ロト ・四ト ・ヨト ・ヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
SDP Application	S		

- Control theory (LMI from DE)
- Combinatorial optimization (Max-cut problems, theta functions)
- Quadratic assignment problem
- Sensor network localization problem
- Polynomial optimization problem
- Quantum chemistry
- Statistics (Multi dimensional unfolding)
- Machine Learning

The applications generate extremely large-scale SDPs.

・ロト ・回ト ・ヨト・

3.SDPA

4.Family

Theoretical Aspects

- Weak duality
- Strong duality
- KKT condition (Optimality Condition)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

	$X,Y \succeq O =$	$\Rightarrow \boldsymbol{X} \bullet \boldsymbol{Y} \ge \boldsymbol{O}$	
 Weak duality Strong duali KKT condition 	y ty ion (Optimality Condition e semidefinite matrices	n)	
Theoretical A	Aspects		
1.SDP	2.PDIPM	3.SDPA	4.Family

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

1.SDP	2.PDIPM	3.SDPA	4.Family
Theoretical Aspec	cts		
Weak dualityStrong duality			

• KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices

 $X, Y \succ O \Rightarrow X \bullet Y > O$

Proof: $X \succeq O$ has the eigenvalue decomposition with eigenvalues $\lambda_1, \ldots, \lambda_n \ge 0$.

$$\begin{aligned} \boldsymbol{X} &= \sum_{i=1}^{n} \lambda_i \boldsymbol{p}_i \boldsymbol{p}_i^T \\ \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} &= 4 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} + 2 \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \end{aligned}$$

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family
Theoretical Asp	pects		
 Weak duality Strong duality 			

• KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices

 $X, Y \succ O \Rightarrow X \bullet Y > O$

Proof: $X \succeq O$ has the eigenvalue decomposition with eigenvalues $\lambda_1, \ldots, \lambda_n \ge 0$.

$$\begin{aligned} \boldsymbol{X} &= \sum_{i=1}^{n} \lambda_i \boldsymbol{p}_i \boldsymbol{p}_i^T \\ \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} &= 4 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} + 2 \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \\ \boldsymbol{Y} \succeq \boldsymbol{O} \text{ also has } \boldsymbol{Y} &= \sum_{j=1}^{n} \mu_j \boldsymbol{q}_j \boldsymbol{q}_j^T \ (\mu_1, \dots, \mu_n \ge 0). \end{aligned}$$

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family
Theoretical Aspe	cts		
Weak dualityStrong duality			

• KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices

$$X, Y \succeq O \Rightarrow X \bullet Y \ge O$$

Proof: $X \succeq O$ has the eigenvalue decomposition with eigenvalues $\lambda_1, \ldots, \lambda_n \ge 0$.

$$\begin{aligned} \boldsymbol{X} &= \sum_{i=1}^{n} \lambda_i \boldsymbol{p}_i \boldsymbol{p}_i^T \\ \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} &= 4 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} + 2 \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \boldsymbol{Y} \succeq \boldsymbol{O} \text{ also has } \boldsymbol{Y} &= \sum_{j=1}^{n} \mu_j \boldsymbol{q}_j \boldsymbol{q}_j^T (\mu_1, \dots, \mu_n \ge 0). \text{ Hence,} \\ \boldsymbol{X} \bullet \boldsymbol{Y} &= \sum_{i=1}^{n} \lambda_i \boldsymbol{p}_i \boldsymbol{p}_i^T \bullet \sum_{j=1}^{n} \mu_j \boldsymbol{q}_j \boldsymbol{q}_j^T = \sum_{i=1}^{n} \lambda_i \sum_{j=1}^{n} \mu_j \boldsymbol{p}_i \boldsymbol{p}_i^T \bullet \boldsymbol{q}_j \boldsymbol{q}_j^T \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \mu_j (\boldsymbol{p}_i^T \boldsymbol{q}_j)^2 \ge 0. \end{aligned}$$

Weak DualityStandard from (\mathcal{P}) : min : $C \bullet X$ s.t. $A_k \bullet X = b_k \ (k = 1,, m), X \succeq O$ (\mathcal{D}) : max : $\sum_{k=1}^{m} b_k z_k$ s.t. $\sum_{k=1}^{m} A_k z_k + Y = C, Y \succeq O$	1.SDP	2.PDIPM	3.SDPA	4.Family
Standard from $(\mathcal{P}) : \min : \mathbf{C} \bullet \mathbf{X} \text{s.t.} \mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \mathbf{X} \succeq \mathbf{O}$ $(\mathcal{D}) : \max : \sum_{k=1}^m b_k \mathbf{z}_k \text{s.t.} \sum_{k=1}^m \mathbf{A}_k \mathbf{z}_k + \mathbf{Y} = \mathbf{C}, \mathbf{Y} \succeq \mathbf{O}$	Weak Du	ality		
	Standard fr (\mathcal{P}) (\mathcal{D})	om : min: $C \bullet X$: max: $\sum_{k=1}^{m} b_k z_k$	s.t. $A_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m),$ s.t. $\sum_{k=1}^m A_k \mathbf{z}_k + \mathbf{Y} = \mathbf{C}, \mathbf{Y} \succeq$	$X \succeq O$ O

For any feasible point (X^+, Y^+, z^+) $C \bullet X^+ \ge \sum_{k=1}^m b_k z_k^+$

1.SDP		2.PDIPM		3.SDPA	4.Family
Weak D	Juali	ty			
Standard	from	L			
$(\mathcal{P}$	') :	min : $C \bullet X$	s.t.	$A_k \bullet X = b_k \ (k = 1, \dots, m), X \succeq C$	2
(T	. .	$max \cdot \sum_{h=1}^{m} h$	a t	$\sum_{n=1}^{\infty} A_n + \mathbf{V} - C = \mathbf{V} \leq 0$	

$$(\mathcal{P}) \quad : \quad \min : \mathbf{C} \bullet \mathbf{A} \quad \text{ s.t. } \quad \mathbf{A}_k \bullet \mathbf{A} = b_k \ (k = 1, \dots, m), \quad \mathbf{A} \succeq \mathbf{C}$$
$$(\mathcal{D}) \quad : \quad \max : \sum_{k=1}^m b_k \mathbf{z}_k \quad \text{ s.t. } \quad \sum_{k=1}^m \mathbf{A}_k \mathbf{z}_k + \mathbf{Y} = \mathbf{C}, \quad \mathbf{Y} \succeq \mathbf{O}$$

For any feasible point (X^+, Y^+, z^+) $C \bullet X^+ \ge \sum_{k=1}^m b_k z_k^+$

Proof:

$$C \bullet X^{+} - \sum_{k=1}^{m} b_{k} z_{k}^{+} = \left(\sum_{k=1}^{m} A_{k} z_{k}^{+} + Y^{+} \right) \bullet X^{+} - \sum_{k=1}^{m} (A_{k} \bullet X^{+}) z_{k}^{+}$$
$$= \sum_{k=1}^{m} (A_{k} \bullet X^{+}) z_{k}^{+} + X^{+} \bullet Y^{+} - \sum_{k=1}^{m} (A_{k} \bullet X^{+}) z_{k}^{+}$$
$$= X^{+} \bullet Y^{+} \ge 0.$$

1.SDP	2.PDIPM	3.SDPA	4.Family
Strong Duality			

For any feasible point (X^+, Y^+, z^+) $C \bullet X^+ \ge \sum_{k=1}^m b_k z_k^+$

Strong Duality

Assume Slater's Condition $(\exists (\widehat{X}, \widehat{Y}, \widehat{z}) \text{ such that feasible and } \widehat{X}, \widehat{Y} \succ O).$ If feasible point (X^*, Y^*, z^*) satisfies $C \bullet X^* = \sum_{k=1}^m b_k z_k^*$, then (X^*, Y^*, z^*) is an optimal solution, and vice versa.

1.SDP	2.PDIPM	3.SDPA	4.Family
Strong Duality			

For any feasible point
$$(X^+, Y^+, z^+)$$
 $C \bullet X^+ \ge \sum_{k=1}^m b_k z_k^+$

Strong Duality

Assume Slater's Condition $(\exists (\widehat{X}, \widehat{Y}, \widehat{z}) \text{ such that feasible and } \widehat{X}, \widehat{Y} \succ O).$ If feasible point (X^*, Y^*, z^*) satisfies $C \bullet X^* = \sum_{k=1}^m b_k z_k^*$, then (X^*, Y^*, z^*) is an optimal solution, and vice versa.

Proof: only (\Rightarrow)

<ロ> (四) (四) (三) (三) (三)

1.SDP	
-------	--

$$0 = \boldsymbol{C} \bullet \boldsymbol{X}^* - \sum_{k=1}^m b_k z_k^*$$

1.SDP	
-------	--

$$0 = \boldsymbol{C} \bullet \boldsymbol{X}^* - \sum_{k=1}^m b_k z_k^* = \boldsymbol{X}^* \bullet \boldsymbol{Y}^*$$

1.SDP	,
-------	---

$$0 = \boldsymbol{C} \bullet \boldsymbol{X}^* - \sum_{k=1}^m b_k z_k^* = \boldsymbol{X}^* \bullet \boldsymbol{Y}^*$$

Furthermore, from $X^*, Y^* \succeq O$

$$X^* \bullet Y^* = 0 \Leftrightarrow X^*Y^* = O$$

1.SDP	
-------	--

$$0 = \boldsymbol{C} \bullet \boldsymbol{X}^* - \sum_{k=1}^m b_k z_k^* = \boldsymbol{X}^* \bullet \boldsymbol{Y}^*$$

Furthermore, from $X^*, Y^* \succeq O$

$$\boldsymbol{X}^{*} \bullet \boldsymbol{Y}^{*} = 0 \Leftrightarrow \boldsymbol{X}^{*} \boldsymbol{Y}^{*} = \boldsymbol{O}$$

Optimality Condition (Karush-Kuhn-Tucker Condition)

$ (A_k \bullet X^* = b_k \ (k = 1, \dots, m)) $	primal feasibility
$\int \sum_{k=1}^{n} \boldsymbol{A}_{k} z_{k}^{*} + \boldsymbol{Y}^{*} = \boldsymbol{C}$	dual feasibility
$X^*, Y^* \succeq O$	positive semidefiniteness
$X^*Y^* = O$	complementarity

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト
1.SDP	
-------	--

Optimality Condition

$$0 = \boldsymbol{C} \bullet \boldsymbol{X}^* - \sum_{k=1}^m b_k z_k^* = \boldsymbol{X}^* \bullet \boldsymbol{Y}^*$$

Furthermore, from $X^*, Y^* \succeq O$

$$\boldsymbol{X}^{*} \bullet \boldsymbol{Y}^{*} = 0 \Leftrightarrow \boldsymbol{X}^{*} \boldsymbol{Y}^{*} = \boldsymbol{O}$$

Optimality Condition (Karush-Kuhn-Tucker Condition)

$ (A_k \bullet X^* = b_k \ (k = 1, \dots, m)) $	primal feasibility
$\sum_{k=1}^{n} \boldsymbol{A}_{k} z_{k}^{*} + \boldsymbol{Y}^{*} = \boldsymbol{C}$	dual feasibility
$X^*, Y^* \succeq O$	positive semidefiniteness
$X^*Y^* = O$	complementarity

This (X^*, Y^*, z^*) is the solution we want to obtain.

(ロ) (四) (E) (E) (E) (E)

- 2. Primal-Dual Interior-Point Methods
 - \bullet Central path
 - Path-following algorithm
 - Search direction
 - Schur complement matrix

イロト イヨト イヨト イヨト

-1		~		D
Τ.	• •	5	D	Р.

2.PDIPM

3.SDPA

4.Family

Central Path

Optimality Condition

$$\left\{egin{array}{ll} oldsymbol{A}_kullet \mathbf{A}_kullet \mathbf{A}_k &ullet \mathbf{X}^* = b_k \ (k=1,\ldots,m) \ \sum_{k=1}^n oldsymbol{A}_k z_k^* + oldsymbol{Y}^* = oldsymbol{C} \ oldsymbol{X}^*, oldsymbol{Y}^* \succeq oldsymbol{O} \ oldsymbol{X}^* oldsymbol{Y}^* = oldsymbol{O} \ oldsymbol{X}^* oldsymbol{Y}^* = oldsymbol{O} \end{array}
ight.$$

primal feasibility dual feasibility positive semidefiniteness complementarity

Perturbed Condition $(\mu > 0)$

$$\begin{cases} \boldsymbol{A}_{k} \bullet \boldsymbol{X}(\mu) = b_{k} \ (k = 1, \dots, m) \\ \sum_{k=1}^{n} \boldsymbol{A}_{k} z_{k}(\mu) + \boldsymbol{Y}(\mu) = \boldsymbol{C} \\ \boldsymbol{X}(\mu), \boldsymbol{Y}(\mu) \succeq \boldsymbol{O} \\ \boldsymbol{X}(\mu) \boldsymbol{Y}(\mu) = \mu \boldsymbol{I} \end{cases}$$

primal feasibility dual feasibility positive semidefiniteness complementarity

<ロ> (四) (四) (日) (日) (日)

-1		~		D
Τ.	• •	5	D	Р.

2.PDIPM

3.SDPA

4.Family

Central Path

Optimality Condition

$$\begin{cases} \mathbf{A}_k \bullet \mathbf{X}^* = b_k \ (k = 1, \dots, m) \\ \sum_{k=1}^n \mathbf{A}_k z_k^* + \mathbf{Y}^* = \mathbf{C} \\ \mathbf{X}^*, \mathbf{Y}^* \succeq \mathbf{O} \\ \mathbf{X}^* \mathbf{Y}^* = \mathbf{O} \end{cases}$$

primal feasibility dual feasibility positive semidefiniteness complementarity

Perturbed Condition $(\mu > 0)$

$$\begin{cases} \boldsymbol{A}_{k} \bullet \boldsymbol{X}(\mu) = b_{k} \ (k = 1, \dots, m) & \text{primal feasibility} \\ \sum_{k=1}^{n} \boldsymbol{A}_{k} z_{k}(\mu) + \boldsymbol{Y}(\mu) = \boldsymbol{C} & \text{dual feasibility} \\ \boldsymbol{X}(\mu), \boldsymbol{Y}(\mu) \succeq \boldsymbol{O} & \text{positive semidefiniteness} \\ \boldsymbol{X}(\mu) \boldsymbol{Y}(\mu) = \mu \boldsymbol{I} & \text{complementarity} \end{cases}$$

Central Path

Central path is defined by $\{(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu)) : \mu > 0\}.$

- For any $\mu > 0$, there exists a unique point $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu))$.
- $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu)) \rightarrow (\boldsymbol{X}^*, \boldsymbol{Y}^*, \boldsymbol{z}^*)$ when $\mu \rightarrow 0$.

1.SDP	2.PDIPM	3.SDPA	4.Family

Path Following Algorithm

・ロット 全部マント 中国マ

1.SDP	2.PDIPM	3.SDPA	4.Family

Path Following Algorithm

Makoto Yamashita (Tokyo-Tech)

2011.04.15 18 / 58

Path-Following Interior-Point Algorithm

- Ochoose an initial point (X⁰, Y⁰, z⁰) with X⁰, Y⁰ ≻ O. Set the iteration number h = 0. Choose parameters 0 < β < 1, 0 < γ < 1.</p>
- **2** Compute a search direction $(d\mathbf{X}, d\mathbf{Y}, d\mathbf{z})$.
- **③** To keep positive semidefiniteness, compute the maximum step length α_{max} by

$$\alpha_{\max} = \max\{\alpha : \boldsymbol{X}^h + \alpha d\boldsymbol{X} \succeq \boldsymbol{O}, \boldsymbol{Y}^h + \alpha d\boldsymbol{Y} \succeq \boldsymbol{O}\}$$

- Set $(\boldsymbol{X}^{h+1}, \boldsymbol{Y}^{h+1}, \boldsymbol{z}^{h+1}) = (\boldsymbol{X}^h, \boldsymbol{Y}^h, \boldsymbol{z}^h) + \gamma \alpha_{\max}(d\boldsymbol{X}, d\boldsymbol{Y}, d\boldsymbol{z}), h \to h+1.$
- **③** If (X^h, Y^h, z^h) satisfies a stopping criteria, then stop. Otherwise, return to 2.

イロト イヨト イヨト イヨト

Path-Following Interior-Point Algorithm

- Ochoose an initial point (X⁰, Y⁰, z⁰) with X⁰, Y⁰ ≻ O. Set the iteration number h = 0. Choose parameters 0 < β < 1, 0 < γ < 1.</p>
- **2** Compute a search direction $(d\mathbf{X}, d\mathbf{Y}, d\mathbf{z})$.
- **③** To keep positive semidefiniteness, compute the maximum step length α_{max} by

$$\alpha_{\max} = \max\{\alpha : \boldsymbol{X}^h + \alpha d\boldsymbol{X} \succeq \boldsymbol{O}, \boldsymbol{Y}^h + \alpha d\boldsymbol{Y} \succeq \boldsymbol{O}\}$$

 $\textbf{ o Set } (\boldsymbol{X}^{h+1}, \boldsymbol{Y}^{h+1}, \boldsymbol{z}^{h+1}) = (\boldsymbol{X}^h, \boldsymbol{Y}^h, \boldsymbol{z}^h) + \gamma \alpha_{\max}(d\boldsymbol{X}, d\boldsymbol{Y}, d\boldsymbol{z}), \ h \to h+1.$

• If (X^h, Y^h, z^h) satisfies a stopping criteria, then stop. Otherwise, return to 2. The most important computation is the search direction (dX, dY, dz).

イロト イヨト イヨト イヨト

-1	0		D	
1	5	D	Р.	

Search Direction (dX, dY, dz)

The point $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu))$ on the central path satisfies

 $\boldsymbol{X}(\boldsymbol{\mu}) \bullet \boldsymbol{Y}(\boldsymbol{\mu}) = n\boldsymbol{\mu}.$

・ロット 全部マント 中国マ

1.SDP

Search Direction (dX, dY, dz)

The point $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu))$ on the central path satisfies

 $\boldsymbol{X}(\boldsymbol{\mu}) \bullet \boldsymbol{Y}(\boldsymbol{\mu}) = n\boldsymbol{\mu}.$

The search direction from $(\boldsymbol{X}^{h}, \boldsymbol{Y}^{h}, \boldsymbol{z}^{h})$ should head to $(\boldsymbol{X}(\beta\mu), \boldsymbol{Y}(\beta\mu), \boldsymbol{z}(\beta\mu))$ with $\mu = \frac{\boldsymbol{X}^{h} \bullet \boldsymbol{Y}^{h}}{n}, 0 < \beta < 1.$

1.SDP

2.PDIPM

3.SDPA

4.Family

Search Direction (dX, dY, dz)

The point $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu))$ on the central path satisfies

 $\boldsymbol{X}(\boldsymbol{\mu}) \bullet \boldsymbol{Y}(\boldsymbol{\mu}) = n\boldsymbol{\mu}.$

The search direction from $(\boldsymbol{X}^{h}, \boldsymbol{Y}^{h}, \boldsymbol{z}^{h})$ should head to $(\boldsymbol{X}(\beta\mu), \boldsymbol{Y}(\beta\mu), \boldsymbol{z}(\beta\mu))$ with $\mu = \frac{\boldsymbol{X}^{h} \bullet \boldsymbol{Y}^{h}}{n}, 0 < \beta < 1.$

The system for next point $(\boldsymbol{X}^h + \boldsymbol{d}\boldsymbol{X}, \boldsymbol{Y}^h + \boldsymbol{d}\boldsymbol{Y}, \boldsymbol{z}^h + \boldsymbol{d}\boldsymbol{z})$

$$\begin{cases} \boldsymbol{A}_{k} \bullet (\boldsymbol{X}^{h} + \boldsymbol{d}\boldsymbol{X}) = b_{k} \quad (k = 1, \dots, m) \\ \sum_{k=1}^{m} \boldsymbol{A}_{k}(\boldsymbol{z}_{k}^{h} + \boldsymbol{d}\boldsymbol{z}_{k}) + (\boldsymbol{Y} + \boldsymbol{d}\boldsymbol{Y}) = \boldsymbol{C} \\ (\boldsymbol{X}^{h} + \boldsymbol{d}\boldsymbol{X})(\boldsymbol{Y}^{h} + \boldsymbol{d}\boldsymbol{Y}) = \beta \mu \boldsymbol{I} \end{cases}$$

• In the moment we ignore $X, Y \succeq O$, since we control the point by the step length α_{\max} .

<ロ> (四) (四) (日) (日) (日)

1.SDP

2.PDIPM

3.SDPA

4.Family

Search Direction (dX, dY, dz)

The point $(\boldsymbol{X}(\mu), \boldsymbol{Y}(\mu), \boldsymbol{z}(\mu))$ on the central path satisfies

 $\boldsymbol{X}(\boldsymbol{\mu}) \bullet \boldsymbol{Y}(\boldsymbol{\mu}) = n\boldsymbol{\mu}.$

The search direction from $(\boldsymbol{X}^{h}, \boldsymbol{Y}^{h}, \boldsymbol{z}^{h})$ should head to $(\boldsymbol{X}(\beta\mu), \boldsymbol{Y}(\beta\mu), \boldsymbol{z}(\beta\mu))$ with $\mu = \frac{\boldsymbol{X}^{h} \bullet \boldsymbol{Y}^{h}}{n}, 0 < \beta < 1.$

The system for next point $(\boldsymbol{X}^h + \boldsymbol{d}\boldsymbol{X}, \boldsymbol{Y}^h + \boldsymbol{d}\boldsymbol{Y}, \boldsymbol{z}^h + \boldsymbol{d}\boldsymbol{z})$

$$\begin{cases} \boldsymbol{A}_{k} \bullet (\boldsymbol{X}^{h} + \boldsymbol{d}\boldsymbol{X}) = b_{k} \quad (k = 1, \dots, m) \\ \sum_{k=1}^{m} \boldsymbol{A}_{k}(\boldsymbol{z}_{k}^{h} + \boldsymbol{d}\boldsymbol{z}_{k}) + (\boldsymbol{Y} + \boldsymbol{d}\boldsymbol{Y}) = \boldsymbol{C} \\ (\boldsymbol{X}^{h} + \boldsymbol{d}\boldsymbol{X})(\boldsymbol{Y}^{h} + \boldsymbol{d}\boldsymbol{Y}) = \beta \mu \boldsymbol{I} \end{cases}$$

- In the moment we ignore $X, Y \succeq O$, since we control the point by the step length α_{\max} .
- This system is nonlinear due to the cross term dXdY in $(X^h + dX)(Y^h + dY) = \beta\mu I$. We ignore it, and replace by $X^hY^h + dXY^h + X^hdY = \beta\mu I$.

イロト イヨト イヨト イヨト

The system for next point $(X^h + dX, Y^h + dY, z^h + dz)$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

・ロト ・四ト ・ヨト ・ヨト

The system for next point $(X^h + dX, Y^h + dY, z^h + dz)$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

$$d\mathbf{Y} = \mathbf{D} - \sum_{j=1}^{m} \mathbf{A}_j dz_j$$

(日) (四) (三) (三)

The system for next point $(\boldsymbol{X}^h + \boldsymbol{dX}, \boldsymbol{Y}^h + \boldsymbol{dY}, \boldsymbol{z}^h + \boldsymbol{dz})$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

$$egin{aligned} & egin{aligned} & egi$$

・ロト ・個ト ・モト ・モト

The system for next point $(X^h + dX, Y^h + dY, z^h + dz)$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

$$\begin{pmatrix} d\mathbf{Y} = \mathbf{D} - \sum_{j=1}^{m} A_j dz_j \\ d\mathbf{X} = (\mathbf{R} - \mathbf{X}^h d\mathbf{Y}) (\mathbf{Y}^h)^{-1} = (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} \\ A_i \bullet (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} = p_i \quad (i = 1, ..., m)$$

・ロト ・個ト ・モト ・モト

The system for next point $(X^h + dX, Y^h + dY, z^h + dz)$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

$$\begin{cases} d\mathbf{Y} = \mathbf{D} - \sum_{j=1}^{m} A_j dz_j \\ d\mathbf{X} = (\mathbf{R} - \mathbf{X}^h d\mathbf{Y}) (\mathbf{Y}^h)^{-1} = (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} \\ A_i \bullet (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} = p_i \quad (i = 1, ..., m) \\ \sum_{j=1}^{m} A_i \bullet (\mathbf{X}^h A_j (\mathbf{Y}^h)^{-1}) dz_j = p_i - A_i \bullet (\mathbf{R} - \mathbf{X}^h \mathbf{D}) (\mathbf{Y}^h)^{-1} \quad (i = 1, ..., m) \end{cases}$$

(日) (四) (三) (三)

The system for next point $(\mathbf{X}^h + d\mathbf{X}, \mathbf{Y}^h + d\mathbf{Y}, \mathbf{z}^h + d\mathbf{z})$

$$A_i \bullet d\mathbf{X} = p_i := b_i - A_k \bullet \mathbf{X}^h \quad (i = 1, \dots, m)$$

$$\sum_{j=1}^m A_j dz_j + d\mathbf{Y} = \mathbf{D} := \mathbf{C} - \sum_{j=1}^m A_j z_j^h - \mathbf{Y}^h$$

$$d\mathbf{X} \mathbf{Y}^h + \mathbf{X}^h d\mathbf{Y} = \mathbf{R} := \beta \mu \mathbf{I} - \mathbf{X}^h \mathbf{Y}^h$$

$$\begin{cases} d\mathbf{Y} = \mathbf{D} - \sum_{j=1}^{m} A_j dz_j \\ d\mathbf{X} = (\mathbf{R} - \mathbf{X}^h d\mathbf{Y}) (\mathbf{Y}^h)^{-1} = (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} \\ A_i \bullet (\mathbf{R} - \mathbf{X}^h (\mathbf{D} - \sum_{j=1}^{m} A_j dz_j)) (\mathbf{Y}^h)^{-1} = p_i \quad (i = 1, ..., m) \\ \sum_{j=1}^{m} A_i \bullet (\mathbf{X}^h A_j (\mathbf{Y}^h)^{-1}) dz_j = p_i - A_i \bullet (\mathbf{R} - \mathbf{X}^h \mathbf{D}) (\mathbf{Y}^h)^{-1} \quad (i = 1, ..., m) \end{cases}$$

Schur Complement Equation

Define $\boldsymbol{B} \in \mathbb{S}^m$ by $B_{ij} = \boldsymbol{A}_i \bullet (\boldsymbol{X}^h \boldsymbol{A}_j (\boldsymbol{Y}^h)^{-1})$ and $\boldsymbol{r} \in \mathbb{R}^m$ by $r_i = p_i - \boldsymbol{A}_i \bullet (\boldsymbol{R} - \boldsymbol{X}^h \boldsymbol{D}) (\boldsymbol{Y}^h)^{-1}$. Then Schur complement equation is

Bdz = r

1.SDP	2.PDIPM	3.SDPA	4.Family
Computational B	ottlenecks		

Schur Complement Matrix

$$\boldsymbol{B} \in \mathbb{S}^m$$
 with $B_{ij} = \boldsymbol{A}_i \bullet (\boldsymbol{X}^h \boldsymbol{A}_j (\boldsymbol{Y}^h)^{-1})$

・ロト・「四ト・(四ト・(日下)

1.SDP	2.PDIPM	3.SDPA	4.Family
Computational	Bottlenecks		

Schur Complement Matrix

$$\boldsymbol{B} \in \mathbb{S}^m$$
 with $B_{ij} = \boldsymbol{A}_i \bullet (\boldsymbol{X}^h \boldsymbol{A}_j (\boldsymbol{Y}^h)^{-1})$

To solve $\boldsymbol{B}d\boldsymbol{z} = \boldsymbol{r}$, we apply

the Cholesky factorization $B = LL^T$ (L is the lower triangular matrix)

and then solve $\boldsymbol{L}^T \widetilde{d\boldsymbol{z}} = \boldsymbol{r}$ and $\boldsymbol{L} d\boldsymbol{z} = \widetilde{d\boldsymbol{z}}$.

イロト イヨト イヨト イヨ

1.SDP	2.PDIPM	3.SDPA	4.Family
Computational B	ottlenecks		

Schur Complement Matrix

$$\boldsymbol{B} \in \mathbb{S}^m$$
 with $B_{ij} = \boldsymbol{A}_i \bullet (\boldsymbol{X}^h \boldsymbol{A}_j (\boldsymbol{Y}^h)^{-1})$

To solve $\boldsymbol{B}d\boldsymbol{z} = \boldsymbol{r}$, we apply

the Cholesky factorization $B = LL^T$ (L is the lower triangular matrix)

and then solve $\boldsymbol{L}^T \widetilde{d\boldsymbol{z}} = \boldsymbol{r}$ and $\boldsymbol{L} d\boldsymbol{z} = \widetilde{d\boldsymbol{z}}$.

Computational Bottlenecks

Q (ELEMENTS) Evaluation of **B** by
$$B_{ij} = \mathbf{A}_i \bullet (\mathbf{X}^h \mathbf{A}_j (Y^h)^{-1})$$

 \bigcirc (CHOLESKY) the Cholesky factorization of B

	ELEMENTS	CHOLESKY	Total
Stability Condition	22228	1593	23986
Polynomial Optimization	668	1992	2713

Time unit is second, SDPA 7, Xeon 5460 (3.16GHz)

ヘロト ヘ回ト ヘヨト ヘヨト

3. Inside of SDPA

Most improvements are for ELEMENTS and CHOLESKY for the fastest solver for large-scale SDPs.

- **Q** Exploiting Sparsity by three formulas $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$
- Multiple Threads
- Sparse Cholesky factorization

<ロ> (四) (四) (日) (日) (日)

1.SDP	1.SDP :		2.PDIP	2.PDIPM			3.SDPA			4.Family		

Sparsity in Input Data Matrices

Standard from

$$(\mathcal{P})$$
: min : $\mathbf{C} \bullet \mathbf{X}$ s.t. $\mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \quad \mathbf{X} \succeq \mathbf{O}$

 $A_k \in \mathbb{S}^n$ are very sparse in most applications. (*i.e.*, most elements in A_k are zero) For example, in Max-cut problems, A_k has only one non-zero elements in $n \times n$ positions.

$$egin{array}{ccc} k & & & \ & & \ & & & \ & \ & & \ & & \ & \ & \ & \ & & \$$

<ロ> (四) (四) (三) (三) (三)

1.SDP	2.PDIPM	3.SDPA	4.Family

Sparsity in Input Data Matrices

Standard from

$$(\mathcal{P})$$
: min: $\mathbf{C} \bullet \mathbf{X}$ s.t. $\mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \quad \mathbf{X} \succeq \mathbf{O}$

 $A_k \in \mathbb{S}^n$ are very sparse in most applications. (*i.e.*, most elements in A_k are zero) For example, in Max-cut problems, A_k has only one non-zero elements in $n \times n$ positions.

$$oldsymbol{A}_k = k \left(egin{array}{ccc} k & & \ & 1 & \ & & \end{pmatrix}
ight)$$

The SCM is evaluated by

$$B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$$

In Max-Cut Problem, computing $(\mathbf{X}\mathbf{A}_i\mathbf{Y}^{-1})$ is efficient?

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family

Sparsity in Input Data Matrices

Standard from

$$(\mathcal{P})$$
: min : $\mathbf{C} \bullet \mathbf{X}$ s.t. $\mathbf{A}_k \bullet \mathbf{X} = b_k \ (k = 1, \dots, m), \quad \mathbf{X} \succeq \mathbf{O}$

 $A_k \in \mathbb{S}^n$ are very sparse in most applications. (*i.e.*, most elements in A_k are zero) For example, in Max-cut problems, A_k has only one non-zero elements in $n \times n$ positions.

$$oldsymbol{A}_k = k \left(egin{array}{ccc} & k & & \ & 1 & & \ & & & \end{pmatrix}$$

The SCM is evaluated by

$$B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$$

In Max-Cut Problem, computing (XA_iY^{-1}) is efficient? No! Only (j, j) element of (XA_iY^{-1}) is necessary.

$$\boldsymbol{U} \bullet \boldsymbol{V} = \sum_{p=1}^{n} \sum_{q=1}^{n} U_{pq} V_{pq} \Rightarrow \boldsymbol{U} \bullet \boldsymbol{A}_{j} = \sum_{p=1}^{n} \sum_{q=1}^{n} U_{pq} [\boldsymbol{A}_{j}]_{pq} = U_{jj} [\boldsymbol{A}_{j}]_{jj} = U_{jj}$$

・ロト ・四ト ・ヨト ・ヨト

3.SDPA

4.Family

Sparsity in Evaluation Formula

 $B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$

If A_i is dense, we first compute $U_i := XA_iY^{-1}$, then take $U_i \bullet A_j$ for j = 1, ..., m.

イロト イヨト イヨト イヨト

Sparsity in Evaluation Formula

 $B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$

If A_i is dense, we first compute $U_i := XA_iY^{-1}$, then take $U_i \bullet A_j$ for j = 1, ..., m. If A_i is sparse,

$$B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j = \sum_{\alpha=1}^n \sum_{\beta=1}^n [\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}]_{\alpha,\beta} [\boldsymbol{A}_j]_{\alpha,\beta}$$

<ロ> (四) (四) (日) (日) (日)

Sparsity in Evaluation Formula

 $B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$

If A_i is dense, we first compute $U_i := XA_iY^{-1}$, then take $U_i \bullet A_j$ for j = 1, ..., m. If A_i is sparse,

$$B_{ij} = (\boldsymbol{X}\boldsymbol{A}_{i}\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_{j} = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} [\boldsymbol{X}\boldsymbol{A}_{i}\boldsymbol{Y}^{-1}]_{\alpha,\beta} [\boldsymbol{A}_{j}]_{\alpha,\beta}$$
$$= \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} [\boldsymbol{X}]_{\alpha,*} \boldsymbol{A}_{i} [\boldsymbol{Y}^{-1}]_{*,\beta} [\boldsymbol{A}_{j}]_{\alpha,\beta}$$

・ロト ・四ト ・ヨト ・ヨト
Sparsity in Evaluation Formula

 $B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$

If A_i is dense, we first compute $U_i := XA_iY^{-1}$, then take $U_i \bullet A_j$ for j = 1, ..., m. If A_i is sparse,

$$B_{ij} = (\mathbf{X}\mathbf{A}_i\mathbf{Y}^{-1}) \bullet \mathbf{A}_j = \sum_{\alpha=1}^n \sum_{\beta=1}^n [\mathbf{X}\mathbf{A}_i\mathbf{Y}^{-1}]_{\alpha,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$
$$= \sum_{\alpha=1}^n \sum_{\beta=1}^n [\mathbf{X}]_{\alpha,*} \mathbf{A}_i [\mathbf{Y}^{-1}]_{*,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$
$$= \sum_{\alpha=1}^n \sum_{\beta=1}^n \sum_{\gamma=1}^n \sum_{\delta=1}^n [\mathbf{X}]_{\alpha,\gamma} [\mathbf{A}_i]_{\gamma,\delta} [\mathbf{Y}^{-1}]_{\delta,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$

<ロ> (四) (四) (日) (日) (日)

Sparsity in Evaluation Formula

 $B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$

If A_i is dense, we first compute $U_i := XA_iY^{-1}$, then take $U_i \bullet A_j$ for j = 1, ..., m. If A_i is sparse,

$$B_{ij} = (\mathbf{X}\mathbf{A}_i\mathbf{Y}^{-1}) \bullet \mathbf{A}_j = \sum_{\alpha=1}^n \sum_{\beta=1}^n [\mathbf{X}\mathbf{A}_i\mathbf{Y}^{-1}]_{\alpha,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$
$$= \sum_{\alpha=1}^n \sum_{\beta=1}^n [\mathbf{X}]_{\alpha,*} \mathbf{A}_i [\mathbf{Y}^{-1}]_{*,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$
$$= \sum_{\alpha=1}^n \sum_{\beta=1}^n \sum_{\gamma=1}^n \sum_{\delta=1}^n [\mathbf{X}]_{\alpha,\gamma} [\mathbf{A}_i]_{\gamma,\delta} [\mathbf{Y}^{-1}]_{\delta,\beta} [\mathbf{A}_j]_{\alpha,\beta}$$

By counting $#A_i$ (the number of nonzeros in A_i), we select the better formula.

イロト イタト イヨト イヨト 三日

1.SDP	2.PDIPM	3.SDPA	4.Family

By counting $#A_i$ (the number of nonzeros in A_i), we select the better formula.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-1	0		D	
Τ.	Э	D	Р.	

By counting $#A_i$ (the number of nonzeros in A_i), we select the better formula. We count the number of multiplications.

•
$$U_i = X \underbrace{A_i Y^{-1}}_{n \times \# A_i},$$

ヘロト ヘヨト ヘヨト ヘヨト

-1	0		D
1	• •	\mathbf{r}	1.

By counting $#A_i$ (the number of nonzeros in A_i), we select the better formula. We count the number of multiplications.

• $U_i = X \underbrace{A_i Y^{-1}}_{n \times \# A_i}, \quad B_{ij} = \underbrace{U_i \bullet A_j}_{\# A_j}.$ Total $n \times \frac{\# A_i}{\# A_i} + n^3 + \# A_j.$

<ロ> (四) (四) (日) (日) (日)

By counting $#A_i$ (the number of nonzeros in A_i), we select the better formula. We count the number of multiplications.

•
$$U_i = X \underbrace{A_i Y^{-1}}_{n \times \# A_i}, \quad B_{ij} = \underbrace{U_i \bullet A_j}_{\# A_j}.$$

Total $n \times \# A_i + n^3 + \# A_j.$
• $B_{ij} = \sum_{\alpha=1}^n \sum_{\beta=1}^n \sum_{\gamma=1}^n \sum_{\delta=1}^n \underbrace{[X]_{\alpha,\gamma}[A_i]_{\gamma,\delta}[Y^{-1}]_{\delta,\beta}}_{2 \times \# A_i}[A_j]_{\alpha,\beta}$
Total $0 \times \# A$ is # A

Total $2 \times \# \mathbf{A}_i \times \# \mathbf{A}_j$.

<ロ> (四) (四) (日) (日) (日)

1.SDP

3.SDPA

4.Family

Three formulas $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$

1.SDP	2.PDIPM	3.SDPA	4.Family

Effect of Three Formula

	control10		mcp500	-1
density	3.76%)	4.0×10^{-1}	$^{-4}\%$
	ELEMENTS	Total	ELEMENTS	Total
Only \mathcal{F}_1	1278.90	1293.66	1321.50	1346.90
${\mathcal F}_1, {\mathcal F}_2, {\mathcal F}_3$	233.18	236.78	0.16	2.01

Time unit is *second*, SDPA7, Xeon 5460 3.16 GHz, 48GB meory control10 and mcp500-1 are from SDPLIB.

<ロ> (四) (四) (日) (日) (日)

1.SDP	2.PDIPM	3.SDPA	4.Family
Multiple T	hreading for SCM		

- Modern CPU (Xeon, Atom) has multiple cores.
- Easy for parallel computing.

1.SDP	2.PDIPM	3.SDPA	4.Family
Multiple '	Threading for SCM		

- Modern CPU (Xeon, Atom) has multiple cores.
- Easy for parallel computing.

1.SDP	2.PDIPM	3.SDPA	4.Family
Multiple T	hreading for SCM		

- Modern CPU (Xeon, Atom) has multiple cores.
- Easy for parallel computing.

The SCM is evaluated by $B_{ij} = (\mathbf{X} \mathbf{A}_i \mathbf{Y}^{-1}) \mathbf{A}_j$,

1.SDP	2.PDIPM	3.SDPA	4.Family
Multiple T	hreading for SCM		

- Modern CPU (Xeon, Atom) has multiple cores.
- Easy for parallel computing.

The SCM is evaluated by $B_{ij} = (\mathbf{X} \mathbf{A}_i \mathbf{Y}^{-1}) \mathbf{A}_j$, The computation of i_1 th row is completely independent from i_2 th row $(i_1 \neq i_2)$.

1.SDP	2.PDIPM	3.SDPA	4.Family
Multiple T	hreading for SCM		

- Modern CPU (Xeon, Atom) has multiple cores.
- Easy for parallel computing.

The SCM is evaluated by $B_{ij} = (\mathbf{X} \mathbf{A}_i \mathbf{Y}^{-1}) \mathbf{A}_j$, The computation of i_1 th row is completely independent from i_2 th row $(i_1 \neq i_2)$. \Rightarrow Very good for multiple threading.

4.Family

Row-wise distribution

• 4 cores available

Makoto Yamashita (Tokyo-Tech)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

4.Family

Row-wise distribution

- 4 cores available
- Assign threads in cyclic manner

ヘロト ヘヨト ヘヨト ヘヨト

4.Family

Row-wise distribution

- 4 cores available
- Assign threads in cyclic manner
- No communication between threads
- Each thread concentrates its tasks

4.Family

Row-wise distribution

- 4 cores available
- Assign threads in cyclic manner
- No communication between threads
- Each thread concentrates its tasks

<ロ> (四) (四) (日) (日) (日)

• Excellent speed-up

-1	_ C		D
	• • •	_	

4.Family

Computation Time and Scalability

problem	threads	ELEMENTS	CHOLESKY	Total
thetaG51	1	134.7(1.0)	308.6(1.0)	494.9(1.0)
	8	26.2(5.1)	45.8(6.8)	86.8(5.7)
rambo	1	56.3(1.0)	88.1(1.0)	146.6(1.0)
	8	11.2(5.0)	13.5 (6.5)	28.8(5.1)
control11	1	77.3(1.0)	6.8(1.0)	86.1(1.0)
	8	29.6(2.6)	4.1(1.7)	35.9(2.4)

second(speed-up), SDPA7, Xeon X5550 2.67GHz x2

ヘロト ヘヨト ヘヨト ヘヨト

-1	0		D	
1	5	Ľ	1.	

4.Family

Sparsity of SCM

In some applications (like Polynomial Optimization), the Schur complement matrix becomes sparse.

Figure: Fully dense (Quantum Chem, 100%) Figure: Sparse (POP, 9.26%) Sparsity of SCM comes from the diagonal block structure.

・ロト ・日下・ ・ヨト・

1.SDP	2.PDIPM	3.SDPA	4.Family

Input data matrices A_1, \ldots, A_m can be decomposed into same size sub-matrices.

$$oldsymbol{A}_k = diag(oldsymbol{A}_k^1, oldsymbol{A}_k^2, \dots, oldsymbol{A}_k^s) = egin{pmatrix} oldsymbol{A}_k^1 & oldsymbol{O} & \dots & oldsymbol{O} & \ oldsymbol{O} & oldsymbol{A}_k^2 & \dots & oldsymbol{O} & \ dots & dots & dots & dots & dots & \ dots & dots & dots & dots & dots & dots & \ dots & dots & dots & dots & dots & \ dots & dots & dots & dots & dots & dots & \ dots & \ dots & d$$

The number of sub-matrices s sometimes s > 1000.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-1	0		D	
1	5	Ľ	1.	

Input data matrices A_1, \ldots, A_m can be decomposed into same size sub-matrices.

$$\boldsymbol{A}_{k} = diag(\boldsymbol{A}_{k}^{1}, \boldsymbol{A}_{k}^{2}, \dots, \boldsymbol{A}_{k}^{s}) = \begin{pmatrix} \boldsymbol{A}_{k}^{1} & \boldsymbol{O} & \dots & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}_{k}^{2} & \dots & \boldsymbol{O} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{O} & \boldsymbol{O} & \dots & \boldsymbol{A}_{k}^{s} \end{pmatrix}$$

The number of sub-matrices s sometimes s > 1000. Then, the variable matrices X, Y can also be decomposed.

$$\boldsymbol{X} = diag(\boldsymbol{X}^1, \boldsymbol{X}^2, \dots, \boldsymbol{X}^s), \boldsymbol{Y} = diag(\boldsymbol{Y}^1, \boldsymbol{Y}^2, \dots, \boldsymbol{Y}^s)$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-1		0		D	
1	٠	0	L	F. 1	

Input data matrices A_1, \ldots, A_m can be decomposed into same size sub-matrices.

$$\boldsymbol{A}_{k} = diag(\boldsymbol{A}_{k}^{1}, \boldsymbol{A}_{k}^{2}, \dots, \boldsymbol{A}_{k}^{s}) = \begin{pmatrix} \boldsymbol{A}_{k}^{1} & \boldsymbol{O} & \dots & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}_{k}^{2} & \dots & \boldsymbol{O} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{O} & \boldsymbol{O} & \dots & \boldsymbol{A}_{k}^{s} \end{pmatrix}$$

The number of sub-matrices s sometimes s > 1000. Then, the variable matrices X, Y can also be decomposed.

$$\boldsymbol{X} = diag(\boldsymbol{X}^1, \boldsymbol{X}^2, \dots, \boldsymbol{X}^s), \boldsymbol{Y} = diag(\boldsymbol{Y}^1, \boldsymbol{Y}^2, \dots, \boldsymbol{Y}^s)$$

$$B_{ij} = (\boldsymbol{X} \boldsymbol{A}_i \boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$$
$$= \sum_{l=1}^{s} (\boldsymbol{X}^l \boldsymbol{A}_i^l (\boldsymbol{Y}^l)^{-1}) \bullet \boldsymbol{A}_j^l$$

・ロト ・四ト ・ヨト ・ヨト

-1		0		D	
1	٠	0	L	F. 1	

Input data matrices A_1, \ldots, A_m can be decomposed into same size sub-matrices.

$$\boldsymbol{A}_{k} = diag(\boldsymbol{A}_{k}^{1}, \boldsymbol{A}_{k}^{2}, \dots, \boldsymbol{A}_{k}^{s}) = \begin{pmatrix} \boldsymbol{A}_{k}^{1} & \boldsymbol{O} & \dots & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}_{k}^{2} & \dots & \boldsymbol{O} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{O} & \boldsymbol{O} & \dots & \boldsymbol{A}_{k}^{s} \end{pmatrix}$$

The number of sub-matrices s sometimes s > 1000. Then, the variable matrices X, Y can also be decomposed.

$$\boldsymbol{X} = diag(\boldsymbol{X}^1, \boldsymbol{X}^2, \dots, \boldsymbol{X}^s), \boldsymbol{Y} = diag(\boldsymbol{Y}^1, \boldsymbol{Y}^2, \dots, \boldsymbol{Y}^s)$$

$$B_{ij} = (\boldsymbol{X}\boldsymbol{A}_i\boldsymbol{Y}^{-1}) \bullet \boldsymbol{A}_j$$
$$= \sum_{l=1}^{s} (\boldsymbol{X}^l \boldsymbol{A}_i^l (\boldsymbol{Y}^l)^{-1}) \bullet \boldsymbol{A}_j^l$$

If $#\mathbf{A}_i^l = 0$ or $#\mathbf{A}_j^l = 0$ through $l = 1, \ldots, s$, then $B_{ij} = 0$.

If $#\mathbf{A}_i^l = 0$ or $#\mathbf{A}_j^l = 0$ through $l = 1, \ldots, s$, then $B_{ij} = 0$.

・ロト・「四ト・(四ト・(日下)

If $#\mathbf{A}_i^l = 0$ or $#\mathbf{A}_j^l = 0$ through l = 1, ..., s, then $B_{ij} = 0$. Nonzero pattern of $\mathbf{B} \in \mathbb{S}_+^m$ is

$$\mathcal{S}(\boldsymbol{B}) = \bigcup_{l=1}^{s} \{(i,j) : \#\boldsymbol{A}_{i}^{l} \neq 0 \text{ and } \#\boldsymbol{A}_{j}^{l} \neq 0\}$$

・ロト・「四ト・(四ト・(日下)

If
$$#\mathbf{A}_i^l = 0$$
 or $#\mathbf{A}_j^l = 0$ through $l = 1, ..., s$, then $B_{ij} = 0$.
Nonzero pattern of $\mathbf{B} \in \mathbb{S}_+^m$ is

$$\mathcal{S}(\boldsymbol{B}) = \cup_{l=1}^{s} \{(i,j) : \#\boldsymbol{A}_{i}^{l} \neq 0 \text{ and } \#\boldsymbol{A}_{j}^{l} \neq 0\}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ =

If
$$#\mathbf{A}_{l}^{l} = 0$$
 or $#\mathbf{A}_{j}^{l} = 0$ through $l = 1, \ldots, s$, then $B_{ij} = 0$.
Nonzero pattern of $\mathbf{B} \in \mathbb{S}_{+}^{m}$ is

$$\mathcal{S}(\boldsymbol{B}) = \cup_{l=1}^{s} \{ (i,j) : \#\boldsymbol{A}_{i}^{l} \neq 0 \text{ and } \#\boldsymbol{A}_{j}^{l} \neq 0 \}$$

To solve the Schur complement equation Bdz = r, we apply sparse Cholesky factorization $B = LL^{T}$.

<ロ> (日) (日) (日) (日) (日)

If
$$#\mathbf{A}_i^l = 0$$
 or $#\mathbf{A}_j^l = 0$ through $l = 1, ..., s$, then $B_{ij} = 0$.
Nonzero pattern of $\mathbf{B} \in \mathbb{S}_+^m$ is

$$\mathcal{S}(\boldsymbol{B}) = \cup_{l=1}^{s} \{ (i,j) : \#\boldsymbol{A}_{i}^{l} \neq 0 \text{ and } \#\boldsymbol{A}_{j}^{l} \neq 0 \}$$

To solve the Schur complement equation Bdz = r, we apply sparse Cholesky factorization $B = LL^{T}$. We employ MUMPS developed by Amestoy *et al.* MUMPS implements multifrontal method.

1.SDP	2.PDIPM	3.SDPA	4.Family
Selection of Dens	e or Sparse		

- Through all the iteration, $\mathcal{S}(\boldsymbol{B})$ is invariant.
- Before the iteration, we build $\mathcal{S}(B)$.

ヘロト ヘ回ト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
Selection of	Dense or Sparse		

- Through all the iteration, $\mathcal{S}(B)$ is invariant.
- Before the iteration, we build $\mathcal{S}(\boldsymbol{B})$.

If $\frac{\#S(B)}{m^2} > 0.70$, then we use dense; otherwise sparse.

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family

Selection of Dense or Sparse

- Through all the iteration, $\mathcal{S}(B)$ is invariant.
- Before the iteration, we build $\mathcal{S}(\boldsymbol{B})$.

If $\frac{\#S(B)}{m^2} > 0.70$, then we use dense; otherwise sparse. We prepare different memory storage for $B \in \mathbb{S}^n_+$

- Dense data format We use one-dimensional storage. $B_{11}, B_{12}, \ldots, B_{1n}, B_{21}, \ldots, B_{2n}, \cdots, B_{n1}, \ldots, B_{nn}$
- Sparse data format We use the set of tuples. $(1, 1, B_{1,1}), (1, 10, B_{1,10}), (1, 11, B_{1,11}), (2, 2, B_{2,2}), \dots, (n, n, B_{n,n})$

・ロト ・回ト ・モト ・モト

Effect of Sparse Cholesky

problem	sfsdp500 (Sensor Network Localization)					
SCM density	0.94~%					
	ELEMENTS	CHOLESKY	Total	Iter		
Dense	9.83	74.94	100.09	34		
Sparse	2.48	4.33	13.54	34		
problem	BroydenTri5	00 (Polynomial	Optimizati	ion)		
SCM density		0.48~%				
	ELEMENTS	CHOLESKY	Total	Iter		
Dense	10.24	2744.45	2744.20	23		
Sparse	2.72	3.33	12.13	22		
problem	theta6 (Combinatorial Optimization)					
SCM density	100 %					
	ELEMENTS	CHOLESKY	Total	Iter		
Dense	10.45	7.79	20.70	18		
Sparse	10.45	7.80	20.71	18		

Time unit is second, SDPA7, Xeon 5460 3.16 GHz, 48GB meory

<ロ> (四) (四) (日) (日) (日)

	-	_	_
п.	s	1.3	Р.
-	~	~	-

Comparison with Other Software Packages

Other software packages based on PDIPM

- CSDP (Borcher, https://projects.coin-or.org/Csdp/)
- SDPT3 (Toh et al, http://www.math.nus.edu.sg/~mattohkc/sdpt3.html)

name	m	nBlock	BlockSize
	Qua	ntum Che	emistry
NH3	2964	22	$(744 \times 2, 224 \times 4, \dots, 1 \times 154)$
Be	4743	22	$(1062 \times 2, 324 \times 4, \dots, 1 \times 190)$
	Sensor 1	Network L	ocalization
d2s4Kn0r01a4	31630	3885	$(43 \times 2, 36 \times 1, \dots, 1 \times 31392)$
$\rm s5000n0r05g2FD_R$	33061	4631	$(73 \times 1, 65 \times 1, 64 \times 2)$

• SeDuMi (Sturm, http://sedumi.ie.lehigh.edu/)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Results with Other Software Packages

name		SDPA	CSDP	SDPT3	SeDuMi
NH3	time	495.3	5675.6	4882.9	1375.1
	memory	1004	568	3676	4065
Be	time	2238.3	15592.3	15513.8	5550.4
	memory	1253	744	3723	4723
d2s4Kn0r01a4	time	45.7	5162.4	4900.3	92.6
	memory	1093	8006	63181	3254
$s5000n0r05g2FD_R$	time	284.7	6510.9	4601.6	1005.0
	memory	2127	8730	100762	4914

Time unit is *second*, Memory is *Mega Bytes*, Xeon 5550 (2.66GHz) x2, 72GB memory.

- For Quantum Chem, \mathcal{F}_3 and Multiple Threading are effective.
- For SNL, Sparse Cholesky is very important.

Results with Other Software Packages

name		SDPA	CSDP	SDPT3	SeDuMi
NH3	time	495.3	5675.6	4882.9	1375.1
	memory	1004	568	3676	4065
Be	time	2238.3	15592.3	15513.8	5550.4
	memory	1253	744	3723	4723
d2s4Kn0r01a4	time	45.7	5162.4	4900.3	92.6
	memory	1093	8006	63181	3254
$\rm s5000n0r05g2FD_R$	time	284.7	6510.9	4601.6	1005.0
	memory	2127	8730	100762	4914

Time unit is *second*, Memory is *Mega Bytes*, Xeon 5550 (2.66GHz) x2, 72GB memory.

イロト イヨト イヨト イヨト

- For Quantum Chem, \mathcal{F}_3 and Multiple Threading are effective.
- For SNL, Sparse Cholesky is very important.

SDPA is the fastest solver for large-scale SDPs.

4. SDPA Family [SDPA, SDPA-M, SDPA-C, SDPARA, SDPARA-C, SDPA-GMP]

<ロ> (四) (四) (日) (日) (日)

Matlab Interface

<ロ> (四) (四) (日) (日) (日)

<ロト (四) (注) (注) (注)

<ロ> (日) (日) (日) (日) (日)

In this talk, SDPARA and SDPA-GMP are discussed.

1.SDP	2.PDIPM	3.SDPA	4.Family

SDPARA

A parallel version of SDPA designed for extremely large-scale SDPs.

- Dense Schur complement matrix
 - ▶ (ELEMENTS) Hybrid Parallel [MPI & Thread]
 - ▶ (CHOLESKY) Two-Dimensional Block-Cyclic Distribution
- Sparse Schur complement matrix
 - ▶ (ELEMENTS) Formula-Cost-Based Distribution
 - ▶ (CHOLESKY) Multiple-frontal method by MUMPS

<ロ> (四) (四) (日) (日) (日)

-1		~		D
Τ.	• •	5	D	Р.

2.PDIPM

3.SDPA

4.Family

- We connect all PCs by MPI (Message Passing Interface).
- Each PC has multiple CPU.
- Each CPU has multiple threads.

	-	_	_
п.	s	1.3	Р.
-	~	~	-

2.PDIPM

3.SDPA

4.Family

- We connect all PCs by MPI (Message Passing Interface).
- Each PC has multiple CPU.
- Each CPU has multiple threads.

	-	_	_
п.	s	1.3	Р.
-	~	~	-

- We connect all PCs by MPI (Message Passing Interface).
- Each PC has multiple CPU.
- Each CPU has multiple threads.

	-	_	_
п.	s	1.3	Р.
-	~	~	-

- We connect all PCs by MPI (Message Passing Interface).
- Each PC has multiple CPU.
- Each CPU has multiple threads.

	-	_	_
п.	s	1.3	Р.
-	~	~	-

- We connect all PCs by MPI (Message Passing Interface).
- Each PC has multiple CPU.
- Each CPU has multiple threads.

-1	0			
1	5	D	r	

Hybrid Parallel

The case of 2 Nodes \times 1 CPU \times 2 Threads.

• Assign the rows to the nodes.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-1	C		D
1	5	Ľ	F

Hybrid Parallel

The case of 2 Nodes \times 1 CPU \times 2 Threads.

- Assign the rows to the nodes.
- **②** Assign the rows to the threads in each node.

(日) (四) (注) (注) (注) (注) (注)

Parallel Cholesky factorization

- Parallel Cholesky factorization of ScaLAPACK.
- To enhance the performance, we redistribute the SCM.

Figure: Row-wise distribution

Figure: Two-Dimensional Block-Cyclic Distribution

ヘロト ヘヨト ヘヨト ヘヨト

Scalability of SDPARA

		Nodes			Threads	
	1	4	16	1	2	4
ELEMENTS	28678	7192	1826	28678	14252	7143
CHOLESKY	548	131	47	548	365	255
Total	29700	7764	2294	29700	14981	7613

Time unit is second

SDP: B.2P ($m = 7230, n = 5990, n_{max} = 1450, SCM = 100\%$) SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family

MPI & Multi Threading

$\# {\rm threads} \setminus \# {\rm node}$	1	2	4	8	16
1	36206	18134	9190	4729	2479
8	5983	2002	1680	901	565

Time unit is second

SDP: B.2P ($m = 7230, n = 6010, n_{\text{max}} = 1460, \text{SCM} = 100\%$)

SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

イロト イヨト イヨト イヨト

Computation time is reduced from

36206 seconds (1nodes \times 1threads) to 565 seconds (16nodes \times 8threads).

 \Rightarrow 64× speed-up

Formula-cost-based Distribution for Sparse SCM

 $#A_i$ enables us to estimate computation cost of $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$. We distribute the computation to the nodes based on this estimation.

Parallel Cholesky factorization for Sparse SCM

- Parallel Sparse Cholesky factorization from MUMPS.
- Memory storage on each processor should be consecutive in row-wise.
- The distribution for ELEMENTS matches this method.

Numerical Results on Sparse SCM

	Nodes				Threads	;
	1	4	16	1	2	4
ELEMENTS	1137	296	85	1137	682	368
CHOLESKY	4053	1386	950	4053	3122	2500
Total	5284	1744	1074	5284	3895	2949

Time unit is second

SDP: optControl(20,8,5,0) ($m = 109, 246, n = 33847, n_{max} = 136, SCM = 4.39\%$) SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

ヘロト ヘ回ト ヘヨト ヘヨト

Load-balance on ELEMENTS

For B.2P, max/min = 13.88/13.54 = 1.02 ⇒ 62× speed-up on 64 threads.
For optControl, max/min = 1.43/0.23 = 6.21 ⇒ 35× speed-up on 64 threads.

・ロト ・ 日下 ・ モト

Numerical Experiments on Large-Scale SDPs

- Comparison with PCSDP developed by Ivanov and deKlerk based on CSDP by Borcher
- Dense SCM Quantum Chemistry
- Sparse SCM

Sensor Network Localization Problem generated by SFSDP

イロト イヨト イヨト イヨト

SDPARA vs **PCSDP** on Dense SCM

$\#$ threads $\setminus \#$ node	1	2	4	8	16
PCSDP(8)	53763	27854	14273	7995	4050
SDPARA(1)	36206	18134	9190	4729	2479
SDPARA(8)	5983	2002	1680	901	565

Time unit is second

SDP: B.2P ($m = 7230, n = 6010, n_{\text{max}} = 1460, \text{SCM} = 100\%$)

SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

イロト イヨト イヨト イヨト

- SDPARA is much faster than PCSDP.
- SDPARA *combines* MPI and Multi-threading.
- Scalability of SDPARA is better than PCSDP.

SDPARA vs **PCSDP** on Sparse SCM

#sensors	1,000 (m=16450; density=1.23%)					
#Nodes	1	2	4	8	16	
PCSDP	O.M.	1527	887	591	368	
SDPARA	28.2	22.1	16.7	13.8	27.3	

#sensors	35,000 (m=527096; density= $6.53 \times 10^{-3}\%$)					
#Nodes	1	2	4	8	16	
PCSDP	Out of memory if $\#$ sensors ≥ 4000					
SDPARA	1080	845	614	540	506	

- Sparse Cholesky has a great impact.
- SDPARA can solve extremely large-scale SDPs in a short time.

ヘロト ヘヨト ヘヨト ヘヨト

1.SDP	2.PDIPM	3.SDPA	4.Family
SDPA-GMP			

- PD-IPM usually attains numerical accuracy $10^{-6} \sim 10^{-8}$.
- Some applications require 10^{-30} .
- *double* precision in C language (approx. 10^{-16}) is NOT enough.
- GMP (Gnu Multiple Precision) library can handle arbitrary accuracy.

SDPA replaces BLAS (Matrix manipulation libraries) by MLAPACK library with the help of GMP.

http://mplapack.sourceforge.net/

Here, we report the numerical results of SDPA-GMP on Graph Partition Problem.

イロト イヨト イヨト イヨト

[GPP] min $\boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{e}\boldsymbol{e}^T \bullet \boldsymbol{X} = 0, \boldsymbol{e}_i \boldsymbol{e}_i^T \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succeq \boldsymbol{O}$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

[GPP] min $\boldsymbol{C} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{e}\boldsymbol{e}^T \bullet \boldsymbol{X} = 0, \boldsymbol{e}_i \boldsymbol{e}_i^T \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succeq \boldsymbol{O}$

GPP does not satisfy the Slater's condition.

$$\{\boldsymbol{X} \in \mathbb{S}^{n} : \boldsymbol{e}\boldsymbol{e}^{T} \bullet \boldsymbol{X} = \boldsymbol{0}, \boldsymbol{e}_{i}\boldsymbol{e}_{i}^{T} \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succ \boldsymbol{O}\} = \emptyset$$

PDIPM gets into numerical instability near optimal solution.

イロト イヨト イヨト イヨト

[GPP] min
$$\boldsymbol{C} \bullet \boldsymbol{X}$$
 s.t. $\boldsymbol{e}\boldsymbol{e}^T \bullet \boldsymbol{X} = 0, \boldsymbol{e}_i \boldsymbol{e}_i^T \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succeq \boldsymbol{O}$

GPP does not satisfy the Slater's condition.

$$\{\boldsymbol{X} \in \mathbb{S}^{n} : \boldsymbol{e}\boldsymbol{e}^{T} \bullet \boldsymbol{X} = 0, \boldsymbol{e}_{i}\boldsymbol{e}_{i}^{T} \bullet \boldsymbol{X} = 1(i = 1, \dots, n), \boldsymbol{X} \succ \boldsymbol{O}\} = \emptyset$$

PDIPM gets into numerical instability near optimal solution. The $\overline{\epsilon}\text{-}\mathrm{perturbed}$ problem

 $[GPP(\bar{\epsilon})] \quad \text{min } \boldsymbol{C} \bullet \boldsymbol{X} \quad \text{s.t. } \boldsymbol{e}\boldsymbol{e}^T \bullet \boldsymbol{X} \leq \bar{\epsilon}, \boldsymbol{e}_i \boldsymbol{e}_i^T \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succeq \boldsymbol{O}$ has an interior, for example, $\boldsymbol{X} = (1 - a)\boldsymbol{I} + a\boldsymbol{e}\boldsymbol{e}^T$ with $a = \frac{\frac{\bar{\epsilon}}{2} - n}{n(n-1)}$.

$$[GPP] \quad \min \ \boldsymbol{C} \bullet \boldsymbol{X} \quad \text{s.t.} \ \boldsymbol{e}\boldsymbol{e}^T \bullet \boldsymbol{X} = 0, \boldsymbol{e}_i \boldsymbol{e}_i^T \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succeq \boldsymbol{O}$$

GPP does not satisfy the Slater's condition.

$$\{\boldsymbol{X} \in \mathbb{S}^{n} : \boldsymbol{e}\boldsymbol{e}^{T} \bullet \boldsymbol{X} = 0, \boldsymbol{e}_{i}\boldsymbol{e}_{i}^{T} \bullet \boldsymbol{X} = 1 (i = 1, \dots, n), \boldsymbol{X} \succ \boldsymbol{O}\} = \emptyset$$

PDIPM gets into numerical instability near optimal solution. The $\overline{\epsilon}\text{-}\mathrm{perturbed}$ problem

 $[GPP(\bar{\epsilon})]$ min $C \bullet X$ s.t. $ee^T \bullet X \leq \bar{\epsilon}, e_i e_i^T \bullet X = 1 (i = 1, ..., n), X \succeq O$

has an interior, for example, $\mathbf{X} = (1-a)\mathbf{I} + a\mathbf{e}\mathbf{e}^T$ with $a = \frac{\frac{e}{2}-n}{n(n-1)}$. We can control the numerical hardness by the parameter $\overline{\epsilon}$.

The small $\rho_p(d)$ in Toh's paper indicates the closeness to the infeasible region.

$\bar{\epsilon}$	1e-1	1e-4	1e-7	1e-10	1e-15	0
$\rho_p(d)$	2.0e-4	2.0e-7	4.9e-9	4.8e-9	4.8e-9	0

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-	~	-	-
п.	s	1)	Р.

Numerical Results on GPP

$\overline{\epsilon}$		CSDP	SDPT3	SeDuMi	SDPA	GMP
1.0e-1	Accuracy	3.95e-9	1.21e-11	2.16e-10	1.08e-8	4.80e-48
	Time	5.67	6.42	245.86	2.03	77760.19
	Iter	23	21	27	19	206
1.0e-7	Accuracy	4.37e-9	1.11e-6	1.48e-4	4.27e-7	4.21e-48
	Time	6.57	6.64	303.81	2.37	78385.60
	Iter	26	20	30	23	209
1.0e-15	Accuracy	2.76e-8	3.83e-9	1.08e-4	1.63e-7	2.97e-48
	Time	5.50	6.26	332.12	2.26	82115.52
	Iter	27	19	33	21	219

Accuracy is the maximum of DIMACS errors. Time unit is second.

<ロ> (四) (四) (日) (日) (日)

GMP uses 300 digits.

- SDPA-GMP needs long-long computation time.
- SDPA-GMP attains extremely high accuracy.

1.SDP	2.PDIPM	3.SDPA 4.F	amily
SDPA Online Sol	ver		

- SDPA and SDPA Family are useful to solve SDPs.
- However, its install is not easy (In particular, optimized BLAS).
- SDPARA requires a parallel computing environment.

- SDPA
- SDPARA (on PC-cluster)
- SDPARA-C (on PC-cluster)

C SDPA Online Solver Execution Main Pa	ee - Windows Internet Explo	667.	
🚱 🔍 🖲 1110//menter durante o		A Date No. 1	P -
🛊 👔 SDPA Celine Solver Ecocution Nam Page			
			18
	SDPA Online Sol	ver Main Page.	
Logood Change Phonword	SIMP PARE CORP. JOBS FOR SI	anagements 1.02 of 212 colled 2005 humanit 2005	
UserName: maloato			
First of all, upload your problem file with sign format. You can also upload your parameter file for changing so	(Plass son marcal page). no parametors by yearsed!		
Parameter File	(#15) upload		
Sparse data file :	(\$6E, upload		
Uploading file Bell_2Repror_STO-60N5e12g1T2.det			
Uplead successed.			
Parameter File:	peram sepe 🛩		
Data file:	BeH_2Sigma+_STO 6GNSr1	2g172 dat-s 👻	
Cluster selection	Power		
Select the solver:	SEPA 7.32 + GotoBLAS2 1	09	
# of CPUs: (only effects parallel programs.)	Soher selection	19	
Result filename(shall be over written)	SDPARA 7.3.1 + GotoEUAS SDPARA-0.1.0.1 + ATUAS 3	1.38 15.11 + GoodUAS 1.38	
E-mail (required to be notified, now works)			
Exacute via Web			

イロト イヨト イヨト イ

-1	_ C		D
	• • •	_	

Conclusion

- SDP (SemiDefinite Programs) has many applications.
- SDPA is the fastest solver (on single) for large-scale SDPs.
- SDPARA can solve the largest SDPs.
- SDPA-GMP obtains high accuracy.

http://sdpa.sourceforge.net/

<ロ> (四) (四) (日) (日) (日)

Thank you very much for your attention.

ヘロト ヘヨト ヘヨト ヘヨト