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The fastest solver for large-scale SDPs.

@ SDP (SemiDefinite Programs) has many applications
@ How large SDP can we solve?

@ How fast can we solve it?
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SDPA History & Computation time

Version | Year | mcpb00-1 theta6 mater-4
1.00 | 1995 - - — | Initial Version
2.01 | 1996 569.2 2643.5 62051.7 | Mehrotra Type
3.20 | 1997 126.8 216.3 7605.9 | Exploiting Sparsity
4.50 | 1998 53.6 217.6  29601.9 | Full Ver. Exploiting Sparsity
5.01 | 1999 23.8 212.0 31258.1 | Fast Step-Size
6.2.1 | 2002 1.6 20.7 746.7 | BLAS/LAPACK
7.3.1 | 2009 1.5 14.2 10.4 | Multi-Thread & Sparse Cholesky

Time unit is second, Xeon 5550 (2.66GHz) x2, 72GB memory

The latest version is 7.3.4 (2011, March).
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@ SDPA is useful to solve SDPs.
@ We prepare SDPA Online Solver.

Il
. SDPA Online Solver Main Page.
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Q@ SDP Definition

Q Primal-Dual Interior-Point Methods
Q Inside of SDPA

@ SDPA Family (Parallel computation, Multiple precision, Online solver)

[m] [l = =
Makoto Yamashita (To. ech)
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1.SDP 2.PDIPM 3.SDPA

4.Family

1. SemiDefinite Programs
@ Standard form
@ Applications

@ Theoretical property (Duality and Optimality)

o-Tech)
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SDP

Standard from

(P) : min:CeX st. AyeX =b,(k=1,....m), X =0

(D) max:Zbkz;C s.t. ZAkzk—l—Y:C, Y -0
=il

k=1
Notations:
S" : The space of n x n symmetric matrices
" CS™ : The space of n X n positive semidefinite symmetric matrices
X >0 : X e€8Y%,ie., all the eigenvalues of X are non-negative

X oY : the inner-product between X and Y, X eY = Z Z Xi;Yi;
i=1j=1
The number of equality constraints

n : The size of variable matrices X and Y

Makoto Yamashita (Toky 2011.04.15 7/ 58
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SDP

Standard from

(P) : min:CeX st. AyeX =b,(k=1,....m), X =0

(D) max:Zbkz;C s.t. ZAkzk—l—Y:C, Y -0
=il

k=1
Notations:
S" : The space of n x n symmetric matrices
" CS™ : The space of n X n positive semidefinite symmetric matrices
X >0 : X e€8Y%,ie., all the eigenvalues of X are non-negative

X oY : the inner-product between X and Y, X eY = Z Z Xi;Yi;
i=1j=1
m : The number of equality constraints

n : The size of variable matrices X and Y

Our target is m > 30, 000.
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Early SDP researches were strongly related to LMI from DE.
A simple example of DE w.r.t.

(t) = (z1(t), 22(1))" € R?,
20 — A

dzi (t)
(t);

dw;tt) = ( _13 _13 ) ( ol

Makoto Yamashita (T
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Early SDP researches were strongly related to LMI from DE.
A simple example of DE w.r.t. =(t) = (z1(t), z2(t))” € R?

dzi (t)
() _ : a _( 3 1 z1(t)
a . = Aw(t)a dxzo(t) - ( 1 -3 ) < I2(t)

dt

We want to know a stability condition; whether ||x(t)|| — 0 when ¢ — oo.

Makoto Yamashita (Tokyo-Tech)
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Early SDP researches were strongly related to LMI from DE.
A simple example of DE w.r.t. =(t) = (z1(t), z2(t))” € R?

dzi (t)
() _ : a _( 3 1 z1(t)
a . = Aw(t)a dxzo(t) - ( 1 -3 ) < I2(t)

dt

We want to know a stability condition; whether ||x(t)|| — 0 when ¢ — oo.
In this case, YES.

Makoto Yamashita (Tokyo-Tech)
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Linear Matrix Inequality from Differential Equations (1 of 3)

Early SDP researches were strongly related to LMI from DE.
A simple example of DE w.r.t. =(t) = (z1(t), z2(t))” € R?

dz (1)
() _ . at _( 3 1 1 (t)
T = Am(t)a d:rdgt(t) - ( 1 -3 ) ( To (t)

We want to know a stability condition; whether || (t)|| — 0 when ¢ — oco.
In this case, YES.

First, apply the eigenvalue decomposition to the coefficient matrix.

A = PDP” (P: orthogonal PPT = I, D : diagonal)

(7 5) = (5% ) (7 ) (s )

Makoto Yamashita (Tokyo-Tech) 2011.04.15 8 / 58
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We introduce the vector # = P”a, then, from PTP =1,

da(t)
&

Axz(t) = PDP"x(t) = PTdZ—ff)

= DP"x(t)

Makoto Yamashita (Toky
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We introduce the vector # = P”a, then, from PTP =1,
=

dx(t)

— = Aw() = PDP"a(t) = PTdaf.z—f)
d”;—it) — DE(t)

= DP"x(t)

Makoto Yamashita (Tok
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We introduce the vector # = P”a, then, from PTP =1,

dfl—it) = Az(t) = PDP"2(t) = PTdZ—ff) =DP"x(t)

e () =(7 ) (50)

Makoto Yamashita (Tokyo-Tec
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We introduce the vector # = P”a, then, from PTP =1,

4

dfl—it) = Az(t) = PDP"2(t) = PTdfi—ff) =DP"x(t)
dE(t) _ e g 2 Tt
Z—t=Dw(t)=>(@>=( —4)(;28)
dzi(t) - dza(t) -~

= —271 (), a —4Zo(t)
T1(t) =71(0)e %, Ta(t) = F2(0)e ™
Jim 3(0) =0

Makoto Yamashita (Tokyo-Tech)
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We introduce the vector # = P”a, then, from PTP =1,

4

R

dfl—it) = Az(t) = PDP"2(t) = PTdfi—ff) =DP"x(t)
da(t) _ LEilt) -2 1(t)
Z—t=Dw(t)=><@>=( 4)(%(1&))
dzi(t) - dzo(t) _ -

= —271 (), a —4Zo(t)
Zi(t) =71 (0)e ', Fa(t) = F2(0)e ™
Jim 3(0) =0

x=PP 2= P&, hence lim x(t)=0

t—o0

Makoto Yamashita (Tokyo-Tech)
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We introduce the vector # = P”a, then, from PTP =1,

R

¥

dfl—it) = Az(t) = PDPTz(t) = PT d”fii ) _ P 2
da(t) Aol -2 1 (t)
o~ PEO= ( 500 ) - ( — ) ( Balt) )
dz(t) - dza(t) -

dt = —2371 (t), dt = —4x2(t)
T1(t) =71 (0)e %, Ta(t) = 2(0)e
A, =0
x = PP"x = PZ, hence tgrgo z(t)=0

The point is lim¢—, o @(t) = 0 if all the eigenvalues of A is negative.

Makoto Yamashita (T
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The point is lim¢—, o @(t) = 0 if all the eigenvalues of A is negative.
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-
For example,

The point is lim¢—, o @(t) = 0 if all the eigenvalues of A is negative.
A" <0, where \* =minA: A\ — A > O

o (*)-( ) o]

A+22>0

A+aso TA S

2<0

Makoto Yamashita (Tok
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The point is lim¢—, o @(t) = 0 if all the eigenvalues of A is negative.
& A" <0, where \* =minA: A\ — A > O
For example,

Araz0 TN

o (*1)-( -

2<0
In some applications like control theory, A(z) = >} | Axzx; a linear combination of
Ai,..., A, with variables z1,

>
_4>EO©{ A+2>0

ceey Zme
We want to know for dwdgt) =A

(z)x(t), whether ||z (¢)|| — 0 when ¢ — oc.

Makoto Yamashita (To.
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The point is lim¢—, o @(t) = 0 if all the eigenvalues of A is negative.
& A" <0, where \* =minA: A\ — A > O
For example,

oA -2 A+2>0 .
mln)\.< )\>_( —4>EO©{)\+4ZO SN =-2<0

In some applications like control theory, A(z) = >} | Axzx; a linear combination of
Ai,..., A, with variables z1, ..., zm.

We want to know for dwdit) = A(z)x(t), whether ||z(¢)|| — 0 when ¢ — oc.

We solve an SDP and check A\*.

min)\:/\I—ZAkzk =0

k=1

u]
|
I
n
it
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Control theory (LMI from DE)

Combinatorial optimization (Max-cut problems, theta functions)
Quadratic assignment problem

Sensor network localization problem

Polynomial optimization problem

Quantum chemistry

Statistics (Multi dimensional unfolding)

¢ © ¢ e ¢ ¢ € @©

Machine Learning

The applications generate extremely large-scale SDPs.

u]
|
I
n
it
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o Weak duality
@ Strong duality
@ KKT condition (Optimality Condition)
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o Weak duality
@ Strong duality
@ KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices

X, Y>-0=XeY >0

Makoto Yamashita (Toky
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o Weak duality
@ Strong duality
@ KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices
X, Y>-0=XeY >0 J

Proof: X > O has the eigenvalue decomposition with eigenvalues A1,..., A, > 0.

X = imm?
=1

(V3) - 4(};@)(1% 1/\/§)+2(_11/<)/§§>(—1/\/§ V3 )

Makoto Yamashita (Tokyo-Tec
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o Weak duality
@ Strong duality
@ KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices
X, Y>-0=XeY >0 J

Proof: X > O has the eigenvalue decomposition with eigenvalues A1,..., A, > 0.
X = Y xpp/
i=1
31 B 1/v2 —1/v/2
(33) = (V%) e wa)y+2( ) (-ve uve)
Y »

O also has Y = Z;Ll ,ujqjqf (p1, -y i > 0).

Makoto Yamashita (Tokyo-Tec
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Theoretical Aspects

@ Weak duality
@ Strong duality
@ KKT condition (Optimality Condition)

Lemma: positive semidefinite matrices
X, Y=0=XeY >0 J

Proof: X > O has the eigenvalue decomposition with eigenvalues A1,..., A, > 0.

Z Aipip’;r

i=1

31 B 1/v2 —1/v/2

(3 5) = «(va)cuve wwzyee (08 ) (-ve v
Y >OalsohasY =37, 13q;q; (p1,.-.,pun > 0). Hence,

SAppl e piaa; =Y N> upp; eq;q;
i=1 j=1 i=1 =1

D> iy (Pl g;)*> 0.

i=1 j=1

X

XeY

Makoto Yamashita (Tokyo-Tech) 2011.04.15 12 / 58
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Standard from
(P) : min:CeX

s.t.
(D) . Imax : Z bkzk
k=1

Aye X =by (k=1,...,m),
Weak Duality

X >0

st. Y Apz+Y=C, Y=O
k=1

For any feasible point (X, Y™, 21)

CeX™T > ZZI:I bkz,j

Makoto Yamashita (Tok
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Standard from

(P) : min:CeX st. AreX =b,(k=1,...,m), X >=O

(D) max:Zbkzk s.t. ZAkzk—i—Y:C, Y -0
k=1 k=1

Weak Duality
For any feasible point (X, Y™, 21) CeXtT >3 brzt

Proof:
CeX' > bzl = ZAkz,j+Y+> o Xt (Ape Xz
k=1 k=1 k=1
= D (Ao XNzl + XT oY =Y (Are XT)zf
k=1 k=1

Makoto Yamashita (Tokyo-Tech)
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Weak Duality

For any feasible point (X, Y™, 271) CeXT >3 brzt

Strong Duality

Assume Slater’s Condition (EI(_/X\, Y, %) such that feasible and X,V - 0).
If feasible point (X*, Y™, 2*) satisfies C « X*=3>"1"  brzy,
then (X*, Y™, 2z") is an optimal solution, and vice versa.

u]
|
I
n
it
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Weak Duality
For any feasible point (X, Y™, 271) CeXT >3 brzt

Strong Duality

Assume Slater’s Condition (EI(_/X\, Y, %) such that feasible and X,V - 0).
If feasible point (X*, Y™, 2*) satisfies C « X*=3>"1"  brzy,
then (X*, Y™, 2z") is an optimal solution, and vice versa.

Proof: only (=)

Makoto Yamashita (Tokyo-Tech)
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OZCQX*—ibkzz

k=1

DA
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0=CoX*—ZbkzZ=X*-Y*
k=1

DA
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m
0=CeX" "= bizi=X"eY"
Furthermore, from X*, Y™ = O

k=1

X oY =0 XY =0

DA
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0=CoX*—Zbkz;§=X*-Y*
k=1

Furthermore, from X*, Y™ = O
X oY =0 XY =0
Optimality Condition (Karush-Kuhn-Tucker Condition)

A,e X*=0b, (k=1,...,m) primal feasibility

ShiiArz+ Y =C dual feasibility
XY =0 positive semidefiniteness
XY =0 complementarity

Makoto Yamashita (Tokyo-Tec
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O=CoX*—Zbkz;§=X*oY*
k=1

Furthermore, from X*, Y™ = O
X oY =0 XY =0
Optimality Condition (Karush-Kuhn-Tucker Condition)

Ay, e X" =by (k=1,...,m) primal feasibility

ShiiArz+ Y =C dual feasibility
XY =0 positive semidefiniteness
XY =0 complementarity

This (X*,Y ", 2") is the solution we want to obtain.

Makoto Yamashita (Tokyo-Tech)
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2. Primal-Dual Interior-Point Methods
@ Central path
@ Path-following algorithm
@ Search direction
@ Schur complement matrix
o =] = T ©ae

o-Tech)
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Central Path
Optimality Condition

A,e X" =b, (k=1,...,m) primal feasibility

Do 1Akzk +Y ' =C dual feasibility

XY >0 positive semidefiniteness

X *Y* =0 complementarity
Perturbed Condition (x> 0)

Ape X(u)=b, (k=1,...,m) primal feasibility

Sy Arzi(p) + Y () =

X (), Y (p) = O
X (@)Y (u) = pI

o

dual feasibility
positive semidefiniteness
complementarity

Makoto Yamashita (Tokyo-Tech)
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Central Path

Optimality Condition

AkOX* ( ,...,m)
Zk 1Akzk+Y =C
XY >0

X*Y*:O

3.SDPA

primal feasibility

dual feasibility

positive semidefiniteness
complementarity

4.Family

Perturbed Condition (u > 0)

Are X(u)=br (k=1,...,m)
S, Arz() + Y () = C

X (), Y (p) = O

X ()Y () =

primal feasibility

dual feasibility

positive semidefiniteness
complementarity

Central Path

Central path is defined by {(X(x), Y (1), z(1)) = o > 0}.
o For any p > 0, there exists a unique point (X (1), Y (1), z(1))-
o (X (p),Y (n), z(n)) = (X, Y™, 2") when p — 0.

Makoto Yamashita (Tokyo-Te

2011.04.15
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Feasible reagion (

DA
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Feasible reagion (

Optimal solution (X*, Y™, 2*)
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Feasible reagion (

Central path

Optimal solution (X*, Y™, 2*)
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Feasible reagion (

Central path

int (X% Y°, 2%

Optimal solution (X*, Y™, 2*)
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Feasible reagion (

Central path

int (X% Y°, 2%

Optimal solution (X*, Y™, 2*)
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Central path
Feasible reagion (

Search direction (d,
int (X% Y°, 2%

Optimal solution (X*, Y™, 2*)

Makoto Yamashita (To.
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Path Following Algorithm

Central path
Feasible reagion (

Search direction (d,
int (X% Y°, 2%

Optimal solution (X*, Y™, 2*)

Makoto Yamashita (T - 2011.04.15 18 / 58
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Path Following Algorithm

Central path
Feasible reagion (

Search direction (d,
int (X% Y°, 2%

Optimal solution (X*, Y™, 2*)

Makoto Yamashita (Tokyo-Tech) 2011.04.15 18 / 58
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Path Following Algorithm

Central path
Feasible reagion (

Search direction (d,

Initia foint (X°, Y?, 2°)

Optimal solution (X*, Y™, 2*)

Makoto Yamashita (Tokyo-Tech) 2011.04.15 18 / 58
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Path Following Algorithm

Central path
Feasible reagion (

Search direction (d,

Initia foint (X°, Y?, 2°)

Optimal solution (X*, Y™, 2*)

Makoto Yamashita (Tokyo-Tech) 2011.04.15 18 / 58
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Path-Following Interior-Point Algorithm

@ Choose an initial point (X°,Y?, 2°) with X° Y = O. Set the iteration
number h = 0. Choose parameters 0 < 8 < 1,0 <y < 1.

Q Compute a search direction (dX,dY,dz).
Q To keep positive semidefiniteness, compute the maximum step length amax by

Omax = max{a: X" +adX = O,Y" + adY = O}

Q Set (XM Y+ 2hHhy — (XP YR 2") + yomax (dX,dY ,dz), h — h + 1.
Q If (X", Y", 2") satisfies a stopping criteria, then stop. Otherwise, return to 2.

Makoto Yamashita ( o-Te 2011.04.15 19 / 58
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Path-Following Interior-Point Algorithm

@ Choose an initial point (X°,Y?, 2°) with X° Y = O. Set the iteration
number h = 0. Choose parameters 0 < 8 < 1,0 <y < 1.

Q Compute a search direction (dX,dY,dz).

Q To keep positive semidefiniteness, compute the maximum step length amax by
Omax = max{a: X" +adX = O,Y" + adY = O}

Q Set (XM Y+ 2hHhy — (XP YR 2") + yomax (dX,dY ,dz), h — h + 1.

Q If (X", Y", 2") satisfies a stopping criteria, then stop. Otherwise, return to 2.

The most important computation is the search direction (dX,dY,dz).

Makoto Yamashita ( o-Te 2011.04.15 19 / 58
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The point (X (i), Y (1), z(p)) on the central path satisfies

X(p) oY (1) = ny.

Makoto Yamashita (To.
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The point (X (i), Y (1), z(p)) on the central path satisfies

X(p) oY (p) = np.
The search direction from (X", Y", 2") should head to

(X(B), Y (Bu), 2(B)) with p = XY o < g < 1.

Makoto Yamashita (Tok

DA




1.SDP 2.PDIPM 3.SDPA 4.Family

Search Direction (dX,dY,dz)

The point (X (1), Y (1), 2(1)) on the central path satisfies

X () oY (1) =np.
The search direction from (X", Y", 2") should head to
h h
(X (By2), ¥ (Bpr). 2(B)) with = X¥= 0 < g < 1.

n

The system for next point (X" +dX,Y" +dY, z" + dz)

Apeo (XM +dX)=0b, (k=1,...,m)
Spe1 Ak(zk +dz) + (Y +dY) =C
(X" +dX) (Y +dY) = Bul

@ In the moment we ignore X,Y > O,
since we control the point by the step length amax.

Makoto Yamashita (Tokyo-Tech) 2011.04.15 20 / 58
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Search Direction (dX,dY,dz)

The point (X (1), Y (1), 2(1)) on the central path satisfies

X () oY (1) =np.
The search direction from (X", Y", 2") should head to
h h
(X (By2), ¥ (Bpr). 2(B)) with = X¥= 0 < g < 1.

n

The system for next point (X" +dX,Y" +dY, z" + dz)

Apeo (XM +dX)=0b, (k=1,...,m)
Spe1 Ak(zk +dz) + (Y +dY) =C
(X" +dX) (Y +dY) = Bul

@ In the moment we ignore X,Y > O,
since we control the point by the step length amax.

@ This system is nonlinear due to the cross term dXdY in
(X" +dX)(Y" +dY) = Bul. We ignore it, and replace by
XY +dXY" + XMy = gul.

Makoto Yamashita (Tokyo- 2011.04.15 20 / 58
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The system for next point (X" +dX,Y" +dY, 2" + dz)

A;0dX =p; :=b; — A, e X" (i=1,...,m)
S, Ajdzj+dY =D:=C -7 Az} - Y"
dXY"+ X"dYy = R := ﬁuI—Xi‘Y"

Makoto Yamashita (Tokyo-Tech)
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The system for next point (X" +dX,Y" +dY, 2" + dz)

A;0dX =p; :=b; — A, e X" (i=1,...,m)
S, Ajdzj+dY =D:=C -7 Az} - Y"
dXY"+ X"dYy = R := ,BMI—Xi‘Yh

dY =D — Z;n:l Adej

Makoto Yamashita (Tokyo-Tech)
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The system for next point (X" +dX,Y" +dY, 2" + dz)

{ Ai.dX=pi :=bi—Ak.Xh

(i=1,...,m)
S, Ajdzj+dY =D:=C -7 Az} - Y"
dXY"+ X"dYy = R := ﬂpI—Xi‘

1
Yh
dY =D — Z;n:l Adej

dX = (R—X"Y)(Y") ' = (R—X"(D - Y7 Ajdz))(Y") ™

DA
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The system for next point (X" +dX,Y" +dY, 2" + dz)

S, Ajdzj+dY =D:=C -7 Az} - Y"

A;0dX =p; :=b; — A, e X" (i=1,...,m)
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dXY"+ X"dYy = R := ﬂpI—XiLYh
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The system for next point (X" +dX,Y" +dY, 2" + dz)

A;0dX =p; :=b; — A, e X" (i=1,...,m)
S Ajdzj+dY =D:=C—-Y ", Ajz} —Y"
dXY"+ X"dYy = R := ,Bp,I—XiLYh

dY =D — Z;n:l Adej

X = (R— X"dY)(Y") ™' = (R— X"(D - X1, Ayd=)(¥") !

Aie (R—X"(D—-Y"", Ajdz;))(Y") ' =pi (i=1,...,m)

E;nzl Ae (XhAj(Yh)_l)de =pi—A;e(R— XhD)(Yh)_l (i=1,...,m)
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Schur Complement Equation

The system for next point (X" 4+ dX,Y" +dY , 2" + dz)
A;0dX =p; :=b; — A, e X" (i=1,...,m)
S Ajdzj+dY =D:=C—-Y ", Ajz} —Y"
dXY" + X"dY = R := Bul — X"Y"

dY =D — Z;nzl Adej

dX = (R—X"dY)(Y") ' = (R— X"(D -3, Ajdz))(Y")™!

Aie (R—X"(D—-Y"", Ajdz;))(Y") ' =pi (i=1,...,m)

ST A e (XA (Y") Ydz =pi— Ase (R—=X"D)(Y")™" (i=1,...,m)

Schur Complement Equation

Define B € s™ by Bij = Az L] (XhAj(Yh)il)
andr ER™ by r; =p;, — A; e (R— X"D)(Y") ™.
Then Schur complement equation is

Bdz =r

Makoto Yamashita (Tokyo- 2011.04.15 21 / 58
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Schur Complement Matrix

B € S™ with Bi; = A; e (X"A;(Y")™)
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3.SDPA 4.Family
Schur Complement Matrix

B € S™ with B;; = A; e (X"A;(Y")™)
To solve Bdz = r, we apply

the Cholesky factorization B = LL”™ (L is the lower triangular matrix)
and then solve L”dz = r and Ldz = dz.

Makoto Yamashita (To.
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Computational Bottlenecks

Schur Complement Matrix
B € S™ with B;; = A; e (X"A;(Y")™!) J

To solve Bdz = r, we apply

the Cholesky factorization B = LLT (L is the lower triangular matrix)
and then solve L”dz = r and Ldz = dz.
Computational Bottlenecks

@ (ELEMENTS) Evaluation of B by B;; = A; (X" A;(Y")™)
© (CHOLESKY) the Cholesky factorization of B

ELEMENTS | CHOLESKY | Total
Stability Condition 22228 1593 | 23986
Polynomial Optimization 668 1992 2713

Time unit is second, SDPA 7, Xeon 5460 (3.16GHz)
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3. Inside of SDPA
Most improvements are for ELEMENTS and CHOLESKY
for the fastest solver for large-scale SDPs.

Q Exploiting Sparsity by three formulas F1, F2, F3
Q Multiple Threads
Q@ Sparse Cholesky factorization

Makoto Yamashita (Tokyo-Tech) 2011.04.15 23 / 58
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Standard from
(P) :min:CeX

st. ApeX =10 (k: 1,...
Aj, € S™ are very sparse in most applications. (i.e., most elements in Ay are zero)
positions.

,m), X =0
For example, in Max-cut problems, Ay has only one non-zero elements in n x n
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Standard from
(P): min:CeX st. AyeX=0b,(k=1,....,m), X =0 J

Ay € S™ are very sparse in most applications. (i.e., most elements in Ay are zero)
For example, in Max-cut problems, Ay has only one non-zero elements in n x n
positions.

k

A=k 1

The SCM is evaluated by
Bij = (XA Y ") eA;

In Max-Cut Problem, computing (X A;Y ~') is efficient?

Makoto Yamashita (Toky
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Sparsity in Input Data Matrices

Standard from
(P) :min: C e X st. AreX =b, (k=1,....,m), X >O J

Ay € S™ are very sparse in most applications. (i.e., most elements in Ay are zero)
For example, in Max-cut problems, Ay has only one non-zero elements in n X n
positions.

The SCM is evaluated by
Bij = (XA Y e A;

In Max-Cut Problem, computing (X A;Y ') is efficient?
No! Only (j,7) element of (X A;Y ') is necessary.

UeV =Y UpVpg=UeA; =Y UplAjlpg = Uj[A;;5 = Uy

p=1g=1 p=1g=1

Makoto Yamashita (Tokyo-Tech) 2011.04.15 24 / 58
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Bij = (XA Y ') e A,
If A; is dense, we first compute U; := X A; Y 71,
then take U; @ A for j =1,...,m.

DA
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3.SDPA 4.Family

Bij = (XA Y ') e A,
If A; is dense, we first compute U; := X A; Y 71,
then take U; @ A for j =1,...,m.
If A, is sparse,

n

SN IXAY MaslAjlas

(XAY e A;j

a=1p=1
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Bij = (XA Y ') e A,
If A; is dense, we first compute U; := X A; Y 71,
then take U; @ A for j =1,...,m.

If A, is sparse,

n n
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Bij = (XA Y ')e A,

If A; is dense, we first compute U; := X A; Y 71,
then take U; @ A for j =1,...,m.
If A, is sparse,

n n

u]
|
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Bij = (XA Y ')e A,

If A; is dense, we first compute U; := X A; Y 71,
then take U; @ A for j =1,...,m.
If A, is sparse,

n n
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By counting #A; (the number of nonzeros in A;), we select the better formula.
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By counting #A; (the number of nonzeros in A;), we select the better formula.
We count the number of multiplications
s U; =X AY

nx#Ai
N——
n3
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By counting #A; (the number of nonzeros in A;), we select the better formula.
We count the number of multiplications.
s U; =X AY

Bij = U-L' ° AJ
—— N——
nx#Ai #A]-
———

n3
Total n x #A; +n® +#A;.

Makoto Yamashita (Tok

DA



1.SDP 2.PDIPM 3.SDPA 4.Family

By counting #A; (the number of nonzeros in A;), we select the better formula.
We count the number of multiplications.

L UiZXAiY_l, BijZU-L.Aj.
—— N—_——
nx#Ai #A]-
N——
n3

Total n x #A; +n® + #A;.
° By =Y a0 3 [(Xan A s[Y s 8[As]as
ox#A;
#Aj

Total 2 x #Az X #AJ

Makoto Yamashita (Toky
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Three formulas Fq, Fo, F3

We change the formula by row-wise.
1 2 3 4 5 6 7 8 9

1 dense
2 Fl Fi1 Ai:dense U, =XAY !
3 Aj : dense Bi]' = Ul (] Aj
4
5 F Fo Aj:dense V,=AY!
2 Aj :sparse  Bij =3 5[XVl]ag[Ajlas

6
7 \FS Fa A sparse Bi]' = Zaﬁ Z'y,zS )
| B A;sparse  [X]o (Al s[¥ Y5 5[A a0
9 sparse

dense sparse

Makoto Yamashita (Tokyo-Tech) 2011.04.15 27 / 58
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2.PDIPM

Effect of Three Formula

3.SDPA

control10 mcp500-1
density 3.76% 4.0 x107'%
ELEMENTS Total | ELEMENTS Total
Only F; 1278.90  1293.66 1321.50  1346.90
F1,F2,F3 233.18  236.78 0.16 2.01

4.Family

Time unit is second, SDPA7, Xeon 5460 3.16 GHz, 48GB meory
controll0 and mcp500-1 are from SDPLIB.

Makoto Yamashita (Tokyo-Tech)
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@ Modern CPU (Xeon, Atom) has multiple cores.
o Easy for parallel computing.
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@ Modern CPU (Xeon, Atom) has multiple cores.

o Easy for parallel computing.

We can expect speed-up from optimized BLAS (Basic Linear Algebra Sets).
BLAS contains many matrix manipulations;

SDPA uses matrix-matrix multiplications, Cholesky factorization, etc.

Makoto Yamashita (Tc

DA



1.SDP

2.PDIPM 3.SDPA 4.Family
@ Modern CPU (Xeon, Atom) has multiple cores.

o Easy for parallel computing.

We can expect speed-up from optimized BLAS (Basic Linear Algebra Sets).
BLAS contains many matrix manipulations;

SDPA uses matrix-matrix multiplications, Cholesky factorization, etc

The SCM is evaluated by Bi; = (X A;Y 1A,
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o Modern CPU (Xeon, Atom) has multiple cores.

o Easy for parallel computing.

We can expect speed-up from optimized BLAS (Basic Linear Algebra Sets).
BLAS contains many matrix manipulations;
SDPA uses matrix-matrix multiplications, Cholesky factorization, etc.

The SCM is evaluated by Bi; = (X A;Y 1A,
The computation of i1th row is completely independent from isth row (i1 # i2).

Makoto Yamashita (Toky



1.SDP 2.PDIPM 3.SDPA 4.Family

Multiple Threading for SCM

o Modern CPU (Xeon, Atom) has multiple cores.

@ Easy for parallel computing.

We can expect speed-up from optimized BLAS (Basic Linear Algebra Sets).
BLAS contains many matrix manipulations;
SDPA uses matrix-matrix multiplications, Cholesky factorization, etc.

The SCM is evaluated by Bi; = (X A;Y 1A,
The computation of i1th row is completely independent from isth row (i1 # i2).
= Very good for multiple threading.

Makoto Yamashita (Tokyo- 2011.04.15 29 / 58
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Row-wise distribution

=

Thread-0fL
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Thia(
Thieack
Thiad
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B Thesso?
Thread-01 :

@ 4 cores available

1l I~ I

=

N

© © N o 00 A~ W N
N

2011.04.15 30 / 58



1.SDP 2.PDIPM 3.SDPA 4.Family

Row-wise distribution

=

Thread-0fL
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2.PDIPM

Row-wise distribution

=

© 0o N o o0 »~N W N

Thread-0fL

Thrjead-

Thrlai—(

Tthead-

1l I~ I

Thipad

=

hread-

N

JErexgs

Thread-04

Thread-01

3.SDPA

@ 4 cores available

@ Assign threads in cyclic
manner

@ No communication between
threads

@ Each thread concentrates its
tasks

2011.04.15

4.Family
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Row-wise distribution

1 Thread-OfL
2 | Fy Thiead-d2 @ 4 cores available
3 Thieac-43 @ Assign threads in cyclic
. Thniead- " manner
.F @ No communication between
5 2 Thiead-¢1.
threads
6 hfead-p2 .
@ Each thread concentrates its
7 F Threxe 43 tasks
8 B Thread-04 @ Excellent speed-up
9 Thread-01 i
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Computation Time and Scalability

problem threads | ELEMENTS CHOLESKY Total
thetaG51 1 134.7 (1.0) 308.6 (1.0) 494.9 (1.0)
8 26.2 (5.1) 45.8 (6.8) 86.8 (5.7)
rambo 1 56.3 (1.0) 88.1 (1.0) 146.6 (1.0)
8 11.2 (5.0) 13.5 (6.5) 28.8 (5.1)
controlll 1 77.3 (1.0) 6.8 (1.0) 86.1 (1.0)
8 29.6 (2.6) 4.1 (1.7) 35.9 (2.4)

second(speed-up), SDPAT, Xeon X5550 2.67GHz x2
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Sparsity of SCM

In some applications (like Polynomial Optimization),
the Schur complement matrix becomes sparse.

o

£
100
1500
2
250
e

EN

am

&

0 ww w0 0 w0 w0 4o 6w
e = 125035

Figure: Fully dense (Quantum Chem, 100% ) Figure: Sparse (POP, 9.26% )

Sparsity of SCM comes from the diagonal block structure.
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Input data matrices Aq,...

, Ay, can be decomposed into same size sub-matrices.

Ai O ... O
o A2 ... O
Ay = diag(A}, AR, ..., A =| ..
O O Aj
The number of sub-matrices s sometimes s > 1000.
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2.PDIPM 3.SDPA 4.Family
Input data matrices Aq,...

, A can be decomposed into same size sub-matrices

Ai O ... O
L o A . o
Ak zdza‘g(AkvAkn 7Ai) = .
O O .. A;
The number of sub-matrices s sometimes s > 1000. Then, the variable matrices
X,Y can also be decomposed.
X =diag(X', X?,...,X°),Y = diag(Y',Y?, ..., Y")

Makoto Yamashita (Tc
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4.Family
Diagonal Block Structure
Input data matrices Ai,..., A, can be decomposed into same size sub-matrices.
Ai O ... O
) O A} ... O
O O .. A;

The number of sub-matrices s sometimes s > 1000. Then, the variable matrices
X,Y can also be decomposed.

X =diag(X", X?,...,X"),Y =diag(Y',Y?,...,Y")

(XA Y e A
D UXTALY) Y e 4]

=1

Makoto Yamashita ( o-Te 2011.04.15 33 / 58
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Diagonal Block Structure

Input data matrices Ai,..., A, can be decomposed into same size sub-matrices.
Ai O ... O

) O A} ... O

o O ... A}

The number of sub-matrices s sometimes s > 1000. Then, the variable matrices
X,Y can also be decomposed.

X =diag(X", X?,...,X"),Y =diag(Y',Y?,...,Y")

Bij (XA Y e A

D UXTALY) Y e 4]

=1

If #A. =0 or #AL =0 through 1 = 1,...,s, then B;; = 0.
J J

Makoto Yamashita (T - 2011.04.15 33 / 58
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3.SDPA 4.Family
If #A. =0 or #A; =0 through [ =1,...,s, then B;; =0.
Nonzero pattern of B € ST is

S(B) = Ui_1{(i,4) : #A! # 0 and #A} # 0}
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Sparse Cholesky

If #A. =0 or #A} =0 through [ = 1,..., s, then B;; = 0.
Nonzero pattern of B € ST is

S(B) = Ui 1{(i,4) : #A! # 0 and #A} # 0}

Makoto Yamashita
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Sparse Cholesky

If #A. =0 or #A} =0 through [ = 1,..., s, then B;; = 0.
Nonzero pattern of B € ST is

S(B) = Ui 1{(i,4) : #A! # 0 and #A} # 0}

To solve the Schur complement equation Bdz = r,
we apply sparse Cholesky factorization B = LLT.
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Sparse Cholesky

If #A. =0 or #A} =0 through [ = 1,..., s, then B;; = 0.
Nonzero pattern of B € ST is

S(B) = Ui 1{(i,4) : #A! # 0 and #A} # 0}

To solve the Schur complement equation Bdz = r,
we apply sparse Cholesky factorization B = LLT.
We employ MUMPS developed by Amestoy et al.
MUMPS implements multifrontal method.

Makoto Yamashita (Tokyo-Tech) 2011.04.15 34 / 58
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@ Through all the iteration, S(B) is invariant.
@ Before the iteration, we build S(

B).
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@ Through all the iteration, S(B) is invariant.
@ Before the iteration, we build S(

B).
If % > (.70, then we use dense; otherwise sparse.
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@ Through all the iteration, S(B) is invariant.
@ Before the iteration, we build S(B).

If % > (.70, then we use dense; otherwise sparse.
We prepare different memory storage for B € S
@ Dense data format
‘We use one-dimensional storage.
B11,B12,...,Bln,le,...,Bgn,~~~ 7Bn17---7Bnn
@ Sparse data format
‘We use the set of tuples.
(17 17 Bl,1)7 (17 107 Bl,10)7 (17 117 B1711)7 (27 27 B2,2)7 ceey (’fl, n, Bn,")

Makoto Yamashita (Toky
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Effect of Sparse Cholesky

problem sfsdp500 (Sensor Network Localization)
SCM density 0.94 %

ELEMENTS CHOLESKY Total | Iter
Dense 9.83 74.94 100.09 34
Sparse 2.48 4.33 13.54 34
problem BroydenTri500 (Polynomial Optimization)

SCM density 0.48 %

ELEMENTS CHOLESKY Total | Iter
Dense 10.24 2744.45  2744.20 23
Sparse 2.72 3.33 12.13 22
problem theta6 (Combinatorial Optimization)
SCM density 100 %

ELEMENTS CHOLESKY Total | Iter
Dense 10.45 7.79 20.70 18
Sparse 10.45 7.80 20.71 18

4.Family

Time unit is second, SDPA7, Xeon 5460 3.16 GHz, 48GB meory

Makoto Yamashita (Tokyo-Tech)
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Comparison with Other Software Packages

Other software packages based on PDIPM
@ CSDP (Borcher,https://projects.coin-or.org/Csdp/)
@ SDPT3 (Toh et al, http://www.math.nus.edu.sg/ mattohkc/sdpt3.html)
@ SeDuMi (Sturm, http://sedumi.ie.lehigh.edu/)

name m  nBlock BlockSize
Quantum Chemistry
NH3 2964 22 (744 x 2,224 x 4,...,1 x 154)
Be 4743 22 (1062 x 2,324 x 4,...,1 x 190)
Sensor Network Localization
d2s4Kn0r0la4 31630 3885 (43 x 2,36 x 1,...,1 x 31392)
s5000n0r05g2FD_R 33061 4631 (73 x 1,65 x 1,64 x 2)
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Results with Other Software Packages

name SDPA  CSDP SDPT3 SeDuMi
NH3 time 495.3 5675.6 4882.9 1375.1
memory 1004 568 3676 4065
Be time 2238.3 15592.3 15513.8  5550.4
memory 1253 744 3723 4723
d2s4Kn0Or0la4 time 45.7 5162.4 4900.3 92.6
memory | 1093 8006 63181 3254
s5000n0r05g2FD_R | time 284.7 6510.9 4601.6 1005.0
memory | 2127 8730 100762 4914

Time unit is second, Memory is Mega Buytes,
Xeon 5550 (2.66GHz) x2, 72GB memory.

@ For Quantum Chem, F3 and Multiple Threading are effective.

@ For SNL, Sparse Cholesky is very important.
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Results with Other Software Packages

name SDPA  CSDP SDPT3 SeDuMi
NH3 time 495.3 5675.6 4882.9 1375.1
memory 1004 568 3676 4065
Be time 2238.3 15592.3 15513.8  5550.4
memory 1253 744 3723 4723
d2s4Kn0Or0la4 time 45.7 5162.4 4900.3 92.6
memory | 1093 8006 63181 3254
s5000n0r05g2FD_R | time 284.7 6510.9 4601.6 1005.0
memory | 2127 8730 100762 4914

Time unit is second, Memory is Mega Buytes,
Xeon 5550 (2.66GHz) x2, 72GB memory.

@ For Quantum Chem, F3 and Multiple Threading are effective.
@ For SNL, Sparse Cholesky is very important.

SDPA is the fastest solver for large-scale SDPs.
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4. SDPA Family [SDPA, SDPA-M, SDPA-C, SDPARA, SDPARA-C, SDPA-GMP]
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4. SDPA Family [SDPA, SDPA-M, SDPA-C, SDPARA, SDPARA-C, SDPA-GMP)]

Parallel

Structua Sparsity (Completion)

SDPA-GMP

Matlab Interface High Accuracy
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4. SDPA Family [SDPA, SDPA-M, SDPA-C, SDPARA, SDPARA-C, SDPA-GMP)]

Parallel

/ 2 P

Structua Sparsity (Completion)

SDPA-GMP

Matlab Interface High Accuracy

In this talk, SDPARA and SDPA-GMP are discussed.
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A parallel version of SDPA designed for extremely large-scale SDPs
@ Dense Schur complement matrix
» (ELEMENTS) Hybrid Parallel [MPI & Thread)
» (CHOLESKY) Two-Dimensional Block-Cyclic Distribution
@ Sparse Schur complement matrix
» (ELEMENTS) Formula-Cost-Based Distribution
» (CHOLESKY) Multiple-frontal method by MUMPS

Makoto Yamashita (Tok
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MPI & Thread

o We connect all PCs by MPI (Message Passing Interface).
@ Each PC has multiple CPU.
@ Each CPU has multiple threads.

Nodel(PC1) Node2(PC2)
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MPI & Thread

o We connect all PCs by MPI (Message Passing Interface).
@ Each PC has multiple CPU.
@ Each CPU has multiple threads.

l MPI (High Speed LAN cable) 1

Nodel(PC1) Node2(PC2)

Memory Space 1 Memory Space 2

m oL

DI OEEED
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Hybrid Parallel

4.Family

The case of 2 Nodes x 1 CPU x 2 Threads.
@ Assign the rows to the nodes.

1 Node-01
2 Nofle-02
3 Nofle-01
4 Nofle-02
5 Nofle-01
6 de-02
7 Node?

8 B Node-02
9 Node-01
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Hybrid Parallel

The case of 2 Nodes x 1 CPU x 2 Threads.
@ Assign the rows to the nodes.
Q Assign the rows to the threads in each node.

1 Node-01 Thread-01
2 Nofle-02 Thread-01
8 Nofle-01 Thread-02
4 Nofie-02 Thread-02
5 Nofle-01 Thread-01
6 \de-02 Thread-01
7 Node Thread-02
8 B Node-02 Thread-02
9 Node-01 Thread-01
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Parallel Cholesky factorization

@ Parallel Cholesky factorization of ScaLAPACK.

@ To enhance the performance, we redistribute the SCM.

1 2 3 4 5 6 7 8 9

1 Nod-01 B 1 2 1 2 N1
2 Node-02 2
3 Nodie-03 3 3 4 3 14 N3
4 Nogle-04 4

5
5 i 1 2 1 2 N1
6 lode-02 6

7
7 Node 3 4 3 4 N3
8 B Node-04 8

9
9 Node-01 1 2 1 2 N!

Figure: Two-Dimensional Block-Cyclic
Distribution

Figure: Row-wise distribution
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Scalability of SDPARA

Nodes Threads
1 4 16 1 2 4
ELEMENTS | 28678 7192 1826 | 28678 14252 7143
CHOLESKY 548 131 47 548 365 255
Total 29700 7764 2294 | 29700 14981 7613

Time unit is second

ELEMENTS ELEMENTS
CHOLESKY 4l CHOLESKY
16
£ z
3 3
) )
] < L
8 4 g 2
1 L 1 L
1 4 16 1 2 4
#nodes #threads

SDP: B.2P (m = 7230, n = 5990, nmax = 1450, SCM = 100%)
SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory
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MPI & Multi Threading

4.Family

#threads \ #node 1 2 4 8 16
1] 36206 18134 9190 4729 2479
8 5983 2002 1680 901 565

Time unit is second
SDP: B.2P (m = 7230, n = 6010, nmax = 1460, SCM = 100%)

SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

Computation time is reduced from

36206 seconds (Inodes x 1threads) to 565 seconds (16nodes x 8threads).
= 64 x speed-up

Makoto Yamashita (T - 2011.04.15 45 / 58
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Formula-cost-based Distribution for Sparse SCM

#A; enables us to estimate computation cost of F1, Fa, F3.
We distribute the computation to the nodes based on this estimation.

1 2 3 4 5 6

1| 150 40 30 20
2 135 20
Load on each CPU
3 70 10 Nodel : 190
4 50 5 Node3 : 188
5 B 30
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Parallel Cholesky factorization for Sparse SCM

@ Parallel Sparse Cholesky factorization from MUMPS.
@ Memory storage on each processor should be consecutive in row-wise.
@ The distribution for ELEMENTS matches this method.

1 2 3 4 5 6

1] 150 40 | 30 20
2 135 20
3 70 10
4 50 5
5 B 30
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Numerical Results on Sparse SCM
Nodes Threads
1 4 16 1 2 4
ELEMENTS | 1137 296 85 | 1137 682 368
CHOLESKY | 4053 1386 950 | 4053 3122 2500
Total 5284 1744 1074 | 5284 3895 2949
Time unit is second
ELEMENTS ELEMENTS
CHOLESKY = al CHOLESKY
16 |
z 2
8 g
g al g 2r
1 1 e !
1 4 16 1 2 4
#nodes #threads

SDP: optControl(20,8,5,0) (m = 109, 246, n = 33847, nmax = 136, SCM = 4.39%)
SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

Makoto Yamashita (Tokyo-Tech)
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20 2

B.2P.DZ. pqgt1t2 —_—

optControl(20,8,5,0) ===---==
S
N 16 - 2
% 115 «
g o
Q — u
5 2
o121 g
& ;
o i | 8
8 i 18
= : :
M 2
g =}
o @
g 405 &
£ a4 :

0 0
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
thread number

max __ 13.88 __
@ For B.2P, T8= = 2% = 1.02 = 62x speed-up on 64 threads.
max __ 1.43

@ For optControl, 72% = 522 = 6.21 = 35x speed-up on 64 threads.
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1.SDP

2.PDIPM 3.SDPA 4.Family

@ Comparison with PCSDP

@ Dense SCM

developed by Ivanov and deKlerk based on CSDP by Borcher
Quantum Chemistry

@ Sparse SCM

Sensor Network Localization Problem generated by SFSDP

Makoto Yamashita (Tok

DA
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SDPARA vs PCSDP on Dense SCM

#threads \ #node 1 2 4 8 16
PCSDP(8) | 53763 27854 14273 7995 4050
SDPARA(1) | 36206 18134 9190 4729 2479
SDPARA(8) 5983 2002 1680 901 565

Time unit is second
SDP: B.2P (m = 7230, n = 6010, nmax = 1460, SCM = 100%)
SDPARA 7.3.1, Xeon X5460, 3.16GHz x2, 48GB memory

@ SDPARA is much faster than PCSDP.
@ SDPARA combines MPI and Multi-threading.
@ Scalability of SDPARA is better than PCSDP.

Makoto Yamashita (Tokyo- 2011.04.15 51 / 58
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SDPARA vs PCSDP on Sparse SCM

#sensors 1,000 (m=16450; density=1.23%)

#Nodes 1 2 4 8 16
PCSDP O.M. | 1527 | 887 | 591 368
SDPARA 28.2 | 221 | 16.7 | 13.8 27.3

#sensors | 35,000 (m=>527096; density=6.53 x 10~ >%)

#Nodes 1] 2] 4] 8] 16
PCSDP Out of memory if #sensors > 4000
SDPARA | 1080 [ 845 [ 614 | 540 | 506

@ Sparse Cholesky has a great impact.
@ SDPARA can solve extremely large-scale SDPs in a short time.
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SDPA-GMP

@ PD-IPM usually attains numerical accuracy 1076 ~ 1075,

@ Some applications require 107%°.

@ double precision in C language (approx. 107'%) is NOT enough.

@ GMP (Gnu Multiple Precision) library can handle arbitrary accuracy.

SDPA replaces BLAS (Matrix manipulation libraries) by MLAPACK library with
the help of GMP.

http://mplapack.sourceforge.net/
Here, we report the numerical results of SDPA-GMP on Graph Partition Problem.

Makoto Yamashita ( o-Te 2011.04.15 53 / 58
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1.SDP

2.PDIPM

3.SDPA 4.Family
[GPP)

min CeX st.ec’ e X =0,eie] e X =1(i=1,.
GPP does not satisfy the Slater’s condition.

..,n), X =0
{XeS":ee" e X =0,e;e] e X =1(i=1,...,n), X0} =10

PDIPM gets into numerical instability near optimal solution.

Makoto Yamashita (To.

DA



1.SDP 2.PDIPM 3.SDPA 4.Family

A perturbation on GPP (Graph Partition Problem)

[GPP] min CeX st.ee’ e X =0,e;e] e X =1(i=1,...,n),X = O
GPP does not satisfy the Slater’s condition.
{XeS":ee" e X =0,e;e] e« X =1(i=1,...,n),X>0} =10

PDIPM gets into numerical instability near optimal solution.
The é-perturbed problem

[GPP(€)] min Ce X s.t. ee’ o X< E,eieiTonl(izl,...,n),XtO

has an interior, for example, X = (1 — a)I + aee” with a =

n(n—1)"
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A perturbation on GPP (Graph Partition Problem)

[GPP] min CeX s.t. ee’ e X =0,e;e; e X = 1i=1,...,n), X = O
GPP does not satisfy the Slater’s condition.
{XeS":ee" e X =0,e;e] e« X =1(i=1,...,n),X>0} =10

PDIPM gets into numerical instability near optimal solution.
The éperturbed problem

[GPP(€)] min CeX st.ee’ e X<é¢eef «X=1(i=1,...,n),X =0

—-n

hofn

has an interior, for example, X = (1 — a)I + aee” with a =
We can control the numerical hardness by the parameter €.
The small pp(d) in Toh’s paper indicates the closeness to the infeasible region.

n(n—1)"

€ le-1 le-4 le-7  1e-10 le-15 | O
pp(d) | 2.0e-4  2.0e-7 4.9e-9 4.8¢e9 4.8e9 |0

Makoto Yamashita (Tokyo-Tech) 2011.04.15
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Numerical Results on GPP

€ CSDP  SDPT3 SeDuMi  SDPA GMP
1.0e-1 | Accuracy | 3.95e-9 1.21e-11 2.16e-10 1.08e-8 | 4.80e-48
Time 5.67 6.42 245.86 2.03 | 77760.19

Iter 23 21 27 19 206

1.0e-7 | Accuracy | 4.37e-9 1.11e-6 1.48e-4  4.27e-7 | 4.21e-48
Time 6.57 6.64 303.81 2.37 | 78385.60

Iter 26 20 30 23 209

1.0e-15 | Accuracy | 2.76e-8 3.83e-9 1.08e-4 1.63e-7 | 2.97e-48
Time 5.50 6.26 332.12 2.26 | 82115.52

Iter 27 19 33 21 219

Accuracy is the maximum of DIMACS errors.
Time unit is second.
GMP uses 300 digits.

@ SDPA-GMP needs long-long-long computation time.
o SDPA-GMP attains extremely high accuracy.

Makoto Yamashita (Tokyo-Tech) 2011.04.15 55 / 58



1.SDP 2.PDIPM

SDPA Online Solver

3.SDPA

@ SDPA and SDPA Family are useful to solve SDPs.

<

However, its install is not easy (In particular, optimized BLAS).

@ SDPARA requires a parallel computing environment.

SDPA
SDPARA (on PC-cluster)
SDPARA-C (on PC-cluster)

©

©

©

]

4 50PA Celen S Ecooation W Page

4.Family

. SDPA Online Solver Main Page.
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o SDP (SemiDefinite Programs) has many applications.

o SDPA is the fastest solver (on single) for large-scale SDPs.
@ SDPARA can solve the largest SDPs.

@ SDPA-GMP obtains high accuracy.

http://sdpa.sourceforge.net/
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Thank you very much for your attention.

Makoto Yamashita (Tokyo-Tech)
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