Ultrasound Nakagami imaging and its medical applications

超音波Nakagami影像的發展與醫學應用

Po-Hsiang Tsui (崔博翔)

Department of Medical Imaging and Radiological Science, College of Medicine, Chang Gung University

長庚大學醫學院醫學影像暨放射科學系

Medical imaging

Sound is a Pressure Wave

NOTE: "C" stands for compression and "R" stands for rarefaction

Ultrasound

- Acoustic waves with frequencies higher than 20 kHz
- Need a medium to propagate
- Longitudinal wave
- Non-ionizing radiation

How to generate ultrasound?

Ultrasound transducer

Medical ultrasound system

Ultrasonic imaging

- Noninvasive
- Soft tissues
- Real time
- Portable
- Non-ionizing
- Good resolution

Speckle due to scattering

N. Liasis et al. / European Journal of Radiology 65 (2008) 427-433

Demo: reflection and scattering

Why is the sky blue?

Rayleigh scattering

Rayleigh scattering intensity for a single particle

$$I = I_0 \frac{8\pi^4 \alpha^2}{\lambda^4 R^2} (1 + \cos^2 \theta)$$

Clouds are white

Scattering behavior of light depends on particles properties in the air

Ultrasonic scattering

Scattering behavior should depend on scatterer structures

What is the scattering behavior of ultrasound in tissues?

Ultrasonic echo model

The resolution cell has N scatterers, and then the complex ultrasonic echoes can be modeled as

$$\mathbf{A} = Ae^{j\theta} = \sum_{n=1}^{N} a_i e^{j\theta_i} = A_r + A_i$$

If N is large, according to central limit theorem, A_r and A_i are Gaussian distributed random variables, and the joint distribution of A_r and A_i is

$$p_{A_rA_i}(A_r, A_i) = \frac{1}{2\pi\sigma^2} e^{-(\frac{A_r^2 + A_i^2}{2\sigma^2})}$$

Change from rectilinear to polar coordinate,

$$A = \sqrt{A_r^2 + A_i^2}, \qquad p_{A\phi}(A,\phi) = \frac{A}{2\pi\sigma^2} e^{-(\frac{A^2}{2\sigma^2})} \quad A > 0$$

So the pdf of envelope A is the marginal density

$$p_{A}(A) = \int_{-\pi}^{\pi} p_{A\phi}(A,\phi) \, d\phi = \frac{A}{\sigma^{2}} e^{-(\frac{A^{2}}{2\sigma^{2}})}$$

Rayleigh distribution

When the resolution cell has a large number of scatterers, the envelope statistics of echo would follow Rayleigh distribution

$$p_A(A) = \frac{A}{\sigma^2} e^{-(\frac{A^2}{2\sigma^2})}$$

Rayleigh distribution is inadequate

History of developing general models

Rayleigh distribution (Burckhardt 1978)

- for Rayleigh
- Rician and generalized Rician distributions (Joynt 1979; Wagner et al. 1987)
 - for Rayleigh and post-Rayleigh
- **K-distribution** (Weng et al. 1991; Shankar et al. 1993)
 - for pre-Rayleigh and Rayleigh
- Generalized K- and homodyned K-distributions (Shankar 1995; Dutt and Greenleaf 1994)
 - for pre-Rayleigh, Rayleigh, and post-Rayleigh
 - the complex nature of these models limited their practical applications

Nakagami distribution (Shankar 2000)

 $\Gamma(.)$ is the Gamma function, U(.) is the step function, and *r* means envelope

$$f(r) = \frac{2m^m r^{2m-1}}{\Gamma(m)\Omega^m} \exp(-\frac{m}{\Omega}r^2)U(r)$$

The Nakagami parameter m and the scaling parameter Ω can be estimated by

$$m = \frac{[E(R^2)]^2}{E[R^2 - E(R^2)]^2}$$

 $\Omega = E(R^2)$

Nakagami parameter - a predictor for tissue characterization

Previous studies

Phantom (Tsui and Wang 2004)

Blood (Huang et al. 2007)

Breast mass (Shankar et al. 2001)

Bone (Wang and Tsai 2001)

Problems for clinical purpose

- Not an image mode. Not convenient and friendly for clinical physicians.
- Hard to locally characterize biological tissues

Our strategy: Nakagami imaging

Using a sliding window to construct a parameter map

Envelope image

Nakagami image

How to determine the window size?

The appropriate size is determined when $\overline{m}_{w} = \overline{m}$

(sidelength = 3 times pulselength)

How to display the Nakagami image?

- Grayscale is not suitable for Nakagami image, because Nakagami parameter has physical meanings associated with envelope distribution and scatterer properties.
- We used blue for pre-Rayleigh, white for Rayleigh, and red for post-Rayleigh.

B-scan and Nakagami images

B-mode image

Nakagami image

Simulations and experiments

Simulation model

<u>B-mode image</u> is obtained from the convolution of Gaussian pulse with a cross-sectional scatterer distribution

Nakagami imaging

Low scatterer concentration (4/mm²) Relative backscattering coefficient: 4

High scatterer concentration (32/mm²) Relative backscattering coefficient: 1

Cataract study

Nuclear cataract

Cortical cataract

Liver fibrosis in rats

Normal case

Fibrosis (score<1)

Liver fibrosis assessment

Results as a function of fibrosis stage

3-D Nakagami imaging for fibrosis detection

Tissue ablation

Nakagami image

Before t before (antenna) t= 0

enna) heating 40 sec heating 70 sec heating and stop stop (antenna) 100 sec 280 sec

stop 300 sec

Breast mass classification

Breast tumor classification

 ✓ Patients come from Taiwan University Hospital
 ✓ In vivo scan by Terason 2000

At threshold = 0.64, Sensitivity: 88.6% Specificity: 74.3% Accuracy: 81.4%

Nakagami	Pathology			
image	Malignant	Benign	Total	
0.64	31 (TP)	9 (FP)	40	
0.64	4 (FN)	26 (TN)	30	
Total	35	35	70	

Fibroadenomas

Invasive ductal carcinoma

Vocal fold characterization

50 MHz results

60 MHz results

Blood flow estimation

Medium hardness assessment

Medium hardness assessment

Temperature estimation

Results of phantoms

Results of liver tissues

Results of ablation (1)

Results of ablation (2)

Comparison

	B-mode image	Nakagami image
Image pixel	Grayscale	Nakagami parameter
Image physical meaning	Echo intensity	Envelope statistics
Image type	Qualitative	Quantitative
Resolution	Relatively better	Relatively poor
Medical applications	Morphology analysis	Scatterer characterization

Thank you for your attention

