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Consider two primaries, let us say the Earth with mass 1− µ and
the Moon with mass µ ∈ [0, 1], moving around each other in a
circular orbit.

E (t) = (−µ cos t, µ sin t) M(t) = ((1− µ) cos t,−(1− µ) sin t)

Then the movement of third massless particle, say a satellite, is
determined by the following Hamiltonian

H(q, p) =
1

2
|p|2 − 1− µ

|q − E (t)|
− µ

|q −M(t)|
.

This gives a (time-dependent) dynamical system via the Hamilton
equations:

ṗj = −∂H

∂qj
q̇j =

∂H

∂pj
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Surprisingly, Jacobi found an integral by using a rotating
coordinate system. This is the following Hamiltonian,

HJ(q, p) =
1

2
|p|2 + q1p2 − q2p1 −

1− µ
|q + µ|

− µ

|q − (1− µ)|
,

which is no longer time-dependent.

For µ 6= 0, 1, this system is not integrable. Note that the HJ is
preserved by the Hamilton equations. Also note that the equations
are singular: satellite-Earth or satellite-Moon collisions are possible:
the hypersurfaces HJ = E are not compact.
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With respect to the symplectic form

ω = dp ∧ dq

the Hamilton equations can be seen as the flow of the Hamilton
vector field XHJ

for HJ ,

iXHJ
ω = −dHJ .

The dynamics change dramatically by changing the energy level.
This is particularly clear if the energy level passes a critical point of
the Hamiltonian HJ . This Hamiltonian has five critical points,
called Lagrange points.
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I H = E < H(L1): three connected component: close to Earth,
close to the Moon, and the region near infinity. There is not
enough energy to go from the Earth to the Moon.
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Figure: Hill’s region for H = E < H(L1): the q-coordinates of the
satellite will always stay in this region
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I H = E ∈]H(L1),H(L2)[: two connected components. An
Earth-Moon component, and the region near infinity. There is
sufficient energy to go from the Earth to the Moon, but not
enough to escape to infinity.
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Figure: Hill’s region for H = E ∈]H(L1),H(L2)[
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I H = E ∈]H(L2),H(L3)[: only one connected component; one
can escape to infinity via the Moon.
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Figure: Hill’s region for H = E ∈]H(L2),H(L3)[
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I H = E ∈]H(L3),H(L4) = H(L5)[: one connected component
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Figure: Hill’s region for H = E ∈]H(L3),H(L4) = H(L5)[

I H = E > H(L4) = H(L5): one connected component
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Regularizing collisions: the Kepler problem

HK =
1

2
|p|2 − 1

|q|
.

Consider the level set HK = −c. The Hamiltonian

K = |q|(HK + c) =
1

2
(|p|2 + 2c)|q| − 1

on the level set K = 0 has the same dynamics (but different
parametrization) as HK = −c . Finally, the dynamics do not
change if we use

Q =
1

4
(|p|2 + 2c)2|q|2

on the level set Q = 1.
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The Hamiltonian

Q =
1

4
(|p|2 + 2c)2|q|2

can also be seen as the Hamiltonian for the geodesic flow on
SgT ∗S2 after stereographic projection. This allows us to
compactify level sets of HK to RP3. Also, we can see the
dynamics of the Kepler problem as geodesics on the round S2.

A similar regularization works for the 3-body problem. Note we
need to regularize both near the Earth and the Moon. The
dynamics are much more complicated than those of the Kepler
problem.
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Contact manifolds

Definition
A contact manifold (M, ξ = kerα) is a 2n + 1-dimensional
manifold M with a maximally non-integrable field of hyperplanes
ξ, i.e.

α ∧ dαn 6= 0.

ξ is called the contact structure and α a contact form.
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I Dynamical systems. Given a contact form α on M, we can
define the Reeb field by

iRdα = 0, iRα = 1

I The Reeb flow on SgT ∗M is the geodesic flow.

I Dynamics depend on the choice of form α.

Remark
The later role of the contact condition is taming the dynamics.
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Definition
Two contact manifolds (M, ξ = kerα) and (N, η = ker β) are said
to be contactomorphic if there is a diffeomorphism ψ : M → N
such that

ψ∗β = f α

for a non-zero function f .

This means that ψ sends contact planes to contact planes

Theorem (Darboux)

Let (M, ξ = kerα) be a contact manifold. Every p ∈ M has a
neighborhood U such that (U, α) ∼= (R2n+1, α0).

Contact manifolds have no local invariants.
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Definition
A symplectic manifold (W 2n, ω) is a smooth manifold with a
closed, non-degenerate 2-form ω, i.e. ωn 6= 0.

Examples: (R2n, ω = d~x ∧ d~y) and (T ∗M, dλcan = dp ∧ dq) for
any smooth manifold M.

Definition
Let (W , ω) be a symplectic manifold and M ⊂W a hypersurface.
A vector field X defined on a neighborhood of M is called
Liouville field for M if X is transverse to TM and LXω = ω

Proposition

If X is Liouville for M ⊂ (W , ω), then (M, iXω) is contact.

We see that (S2n−1,~xd~y − ~yd~x) and (ST ∗M, λcan = pdq) are
contact.
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Theorem (Albers, Frauenfelder, Paternain, vK)

The (regular) compact level sets of the regularized, planar
restricted 3-body problem are contact up to energy slightly above
the first Lagrange point.

In fact, below the first Lagrange point, a regularized level set of
the planar restricted 3-body problem is contactomorphic to
(RP3, α0) ∼= (S3/Z2, α0). Above the first Lagrange point it is
contactomorphic to (RP3, α0)#(RP3, α0).
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The proof is elementary: we find Liouville vector fields transverse
to level sets of the form

q∂q

This is peculiar, since one usually has p∂p for mechanical systems.

Figure: Liouville vector fields to ”contact” the moon

Beyond the first Lagrange points we interpolate the Liouville vector
fields for the Earth and the Moon.
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Finite energy foliations

Let M be a 3-manifold with a non-vanishing vector field X . In
order to understand the flow of X we want to discretize the flow
by a surface of section S : this surface should be transverse to the
flow and an orbit intersecting S must return.

We then get the return map

φ : S −→ S .
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With the return map we can understand the dynamics more easily.
For instance, fixed points of φ and its iterates are periodic orbits of
the original flow.

Hofer, Wysocki and Zehnder found an abstract means to construct
surfaces of section using holomorphic curve methods (solutions to
a certain PDE). In order to control the behavior of these
holomorphic curves, the contact condition is of great importance.

Otto van Koert Contact geometry and the 3-body problem



Introduction
Contact geometry

Symplectic geometry
Dynamics and finite energy foliations

Surfaces of section and holomorphic curves
Connected sums
Conley-Zehnder indices

Let J be a compatible almost complex structure for a symplectic
manifold (W 2n, ω = dλ) with contact end (M, λ).
This means that J : TW → TW satisfies J2 = − Id, ω(. . . , J . . .)
is inner product on TW .

Consider the non-linear Cauchy-Riemann equation for a map
u : Σ→W , where (Σ, j) is a punctured Riemann surface,

du + J ◦ du ◦ j = 0.

Near the punctures we impose asymptotic boundary conditions: u
should converge to a periodic Reeb orbit. Solutions are called
holomorphic curves. Alternatively, one can impose a finite energy
condition.
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γ+

γ−1
γ−2

Figure: Finite energy J-curve in a symplectic manifold

We collect the solutions of this PDE up to automorphism of Σ in a
moduli space: MW 2n

(γ+1 , . . . , γ
+
k ; γ−1 , . . . , γ

−
l ). For regular J this

is an orbifold of dimension∑
j µCZ (γ+j )−

∑
j µCZ (γ−j ) + (n − 3)(2− k − l).
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Here µCZ is the Conley-Zehnder index, a kind of winding number
of the linearized flow near an orbit.

Remark
For ST ∗M the Reeb flow correponds to the geodesic flow.
Furthermore, the Conley-Zehnder index of a periodic is equal to the
Morse-index of a geodesic, i.e. the index of the energy functional

E (γ) =

∫ b

a
g(γ̇, γ̇)dt
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Let (M, λ, J) be a contact manifold with compatible complex
structure J. Extend J to the symplectization R×M: write J̃

Definition
A finite energy foliation is a smooth foliation F for R×M such
that

I every leaf F is the projection of an embedded J̃-holomorphic
curve of finite energy.

I the foliation respects R-translations in the symplectization
direction.

Furthermore, there is a uniform energy bound for the holomorphic
curves.

Such an energy bound implies that the curve is asymptotic to
periodic Reeb orbits.
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γ+

Figure: Finite energy foliation asymptotic to γ+

With the above dimension formula, we see that such a foliation
requires Reeb orbits with sufficiently high Conley-Zehnder index.
Best case: all indices of contractible Reeb orbits are at least 3: this
is called dynamically convex. We obtain a finite energy foliation
consisting of planes.
In particular, we get a disk-like surface of section.
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Lemma
(S3, α0 = i

2

∑
j(zjdz̄j − z̄jdzj) ) carries a finite energy foliation.

The symplectization of S3 satisfies
(R× S3, detα0) ∼= (C2 − {0}, ω0) and the complex structure i on
C2 is adjusted to the symplectization.
There is a finite energy foliation consisting of planes: use the
family parametrized by a ∈ C

ua : C −→ C2 − {0}
z 7−→ (z , a).

For a 6= 0 this is a finite energy plane projecting down to a disk
with boundary (e iφ, 0). a = 0 corresponds to the bounding orbit.
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Above the Lagrange point it is known that index 2-orbits appear:
there is no longer a global surface of section.
A similar phenomenon already happens in S3:

Figure: Breaking of a finite energy foliation in S3#S3

The blue segments indicate a rigid cylinder and the red segments
two rigid planes.
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How to obtain dynamical convexity below the Lagrange point?

I via Finsler geometry

I via direct computation (only for mass ratio µ = 0)

I via convexity of the Levi-Civita embedding

But none of these methods work all the time.
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Definition
Let M be a smooth manifold. A Finsler structure on M consists of
F : TM → R≥0 such that

I F : TM − s0 → R>0 is smooth.

I F (x , λv) = λF (x , v) for λ > 0.

I gij :=
(
1
2F 2

)
yi ,yj

is positive definite.

Note that gij defines a family of metrics in each tangent space
TxM (as a function of the fiber coordinate).
Many notions in Riemannian geometry have analogues in Finsler
geometry: curvature, geodesics
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Proposition

The unit (co)-tangent bundle of a Finsler manifold carries a
natural contact form. Finsler geodesics correspond to periodic
Reeb orbits of this form.

Standard examples are Riemannian norms
√

g(. . . , . . .), where gij
just returns the Riemannian metric.
Given a Riemannian metric g and a small 1-form α, we can define
a Randers metric,

F (x , y) :=
√

gx(y , y) + αx(y).

Theorem (Cieliebak, Frauenfelder, vK)

The rotating Kepler-problem (µ = 0-case) is Finsler for all energies
below the first Lagrange point.
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If we consider the level set HK = −c , then the Finsler structure
has the form

F (p, q) =
1

4
(|p|2 + 2c)|q|

(
1 +

√
1 +

16(q1p2 − q2p1)

|q|(|p|+ 2c)2
.

)

here p is the base point, and q the vector (again in stereographic
projection).

Theorem (Harris, Paternain)

Suppose F is a Finsler metric on S2 such that the curvature
K ≥ δ > 0. If the minimal length of closed geodesics is greater
than π/

√
δ, then SFT ∗S2 is dynamically convex.

There are different (and stronger) versions, but the basic idea is
that positive curvature is good for dynamically convexity.
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Unfortunately, we have

Theorem (Cieliebak, Frauenfelder, vK)

The flag-curvature of the Finsler metric associated with the
rotating Kepler problem becomes negative.
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On the other hand, we might be able to use this as a tool to find
hyperbolic orbits.
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Fortunately, one can compute the Conley-Zehnder/Maslov indices
in the rotating Kepler problem more directly: The upshot is the
following.

Theorem (Albers, Fish, Frauenfelder, vK)

The rotating Kepler problem is dynamically convex for
H = E < −3/2.

Corollary

For µ sufficiently small, there exists c(µ) ≥ 0 such that the
restricted 3-body problem is dynamically convex for
H = E < H(L1)− c(µ).

Here c(µ)→ 0 as µ→ 0.
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Below the first Lagrange point a regularized component of the
3-body problem is RP3: we lift to its double cover S3 by the
Levi-Civita map
For the Kepler problem we have:

H(q, p) =
1

2
|p|2 − 1

|q|
.

Using the Levi-Civita map

q = 2z2

p =
w

z̄

we can describe the dynamics at energy level H = −c by the
Hamiltonian

K̃ =
1

2

|w |2

|z |2
− 1

2|z |2
+ c .
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This leads to the regularized Hamiltonian,

K = |w |2 + 2c |z |2 − 1.

Note that the level set K = 0 bounds a convex set.
This is also the case in general.

Theorem (Albers, Fish, Frauenfelder, Hofer, vK)

For all µ ∈]0, 1[ there exists c(µ) > 0 such that regularized level
sets H = E < H(L1)− c(µ) are convex. Furthermore, c(µ)→ 0 as
µ→ 1.

Corollary

Such regularized level sets are dynamically convex.
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Thank you

謝謝
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