Back	gı	ro	u	n
000				
00				

Wedderburn Formula

Algorithm

Other Application

Conclusion

Nonnegative Rank Factorization A Heuristic Approach via Rank Reduction

(Work in Progress)

Moody T. Chu (Joint work with Bo Dong and Matthew Lin)

North Carolina State University

March 8, 2012 @ National Cheng Kung University

Background Generic Phenon 000 0000 00 0000 00 0000 00 0000	Nenon Wedderburn Formula	Algorithm 000	Other Applications	
--	--------------------------	------------------	--------------------	--

一曲新詞酒-杯,去年天氣舊亭臺, 夕陽西下幾時回. 無可奈何花落去,似曾相識燕歸來, 小園香俓獨徘徊.

--- 宋.宴殊.浣溪沙

Backg	round	
000		
00		

Wedderburn Formula

Algorithm

Other Application

Conclusion

Take Home Question

Given a nonnegative matrix A, write

$$A = \sum_{i=1}^k \mathbf{u}_i \mathbf{k}_i^ op$$

where $\mathbf{u}_i, \mathbf{k}_i \ge 0$ and k is minimal.

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Generic Phenomenon

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Outline

Background

Nonnegative Rank Nonnegative Rank Factorization

Generic Phenomenon

Geometry of NRF Probability Issues Perturbation Theory

Wedderburn Formula

Subtractivity Rank Reduction

Algorithm

Maximin Problem

Other Applications

Completely Positive Matrices Maximal Nonnegative Rank Splitting

Backgrou	n
000	
00	

Wedderburn	Formula
00	
000	

Algorithm

Other Application

Conclusion

Nonnegative Rank

• Given $A \in \mathbb{R}^{m \times n}_+$, write

A = UV.

- $U \in \mathbb{R}^{m \times k}_+$ and $V \in \mathbb{R}^{k \times n}_+$ with $k \le \min\{m, n\}$
- Always possible.
- ► Interested in the *smallest k* rendering this factorization.
 - Denote by rank₊(A).
- A trivial fact —

$$\operatorname{rank}(A) \leq \operatorname{rank}_+(A) \leq \min\{m, n\}.$$

- A challenge
 - Determining the exact nonnegative rank is NP-hard.

Background
000
00

Wedderburn Formula

Algorithm

Other Applications

Conclusion

This Is Not ...

- A = UV is a special nonnegative factorization of A.
- Should be unequivocally distinguished from what is known as the nonnegative matrix factorization (NMF).
 - Misnamed!
 - Is only a low rank approximation from

$$\min_{U\in\mathbb{R}^{m\times p}_+, V\in\mathbb{R}^{p\times n}_+} \|A-UV\|_{F}.$$

- $p < \min\{m, n\}$ is preassigned.
- Many numerical techniques.
- Cannot guarantee the required equality in a complete factorization even with p = rank₊(A).

Background	
000	
00	

Wedderburn Formula

Algorithm

Other Application

Conclusion

NMF Fails!

- Almost all NMF techniques adapt conventional mathematical programming schemes.
- The objective function in NMF is non-convex.
- The factors U and V retrieved by NMF techniques are typically local minimizers only.
- Cannot ensure equality to A.

Background	
•0	

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Nonnegative Rank Factorization

$$\mathfrak{R}(m,n) := \left\{ A \in \mathbb{R}^{m \times n}_+ \mid \operatorname{rank}(A) = \operatorname{rank}_+(A) \right\}.$$

- Interested in
 - Identifying if $A \in \mathfrak{R}(m, n)$.
 - Procuring a nonnegative factorization for $A \in \mathfrak{R}(m, n)$.
 - ► Is called a *nonnegative rank factorization* (NRF) of *A*.

Background	ļ
000	
0.	

Wedderburn Formula

Algorithm

Other Applications

Conclusion

An Example

- Not every nonnegative matrix has an NRF.
- The simplest non-NRF matrix:

$$\mathscr{C} = \left[\begin{array}{rrrrr} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right].$$

- $\operatorname{rank}(\mathscr{C}) = 3.$ • $\operatorname{rank}(\mathscr{C}) = 4$
- $\operatorname{rank}_+(\mathscr{C}) = 4.$
- There is a necessary and sufficient condition qualifying an NRF matrix (Thomas'1974).
 - Not suitable for computation.

Background	
000	
00	

Wedderburn Formula

Algorithm

other Applications

Conclusion

Probability Simplex

• Given $A \in \mathbb{R}^{m \times n}_+$, define

$$\begin{aligned} \sigma(A) &:= \operatorname{diag}\{\|\mathbf{a}_1\|_1, \dots, \|\mathbf{a}_n\|_1\} \\ \vartheta(A) &:= A\sigma(A)^{-1}. \end{aligned}$$

• Columns of $\vartheta(A)$ are points on the probability simplex \mathcal{D}_m in \mathbb{R}^m_+ .

$$\mathcal{D}_m := \left\{ \mathbf{a} \in \mathbb{R}^m_+ | \mathbf{1}_m^\top \mathbf{a} = \mathbf{1} \right\},$$

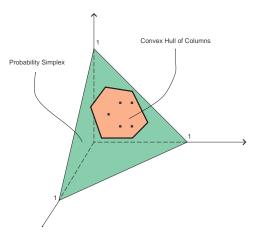
Background	Generic Phenomenon	Wedderburn Formula	Algorithm	Other Ap
000	0000 0000 00	00 000	000	00 0

В

Other Applications

Conclusion

Convex Hull of $\vartheta(A) \in \mathbb{R}^{3 \times 11}_+$



Backg	round
000	
00	

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Minimal Convex Polytope

• $A = UV = (UD^{-1})(DV)$ with any invertible diagonal matrix D.

• May assume $\sigma(U) = I_n$.

Write

$$\mathbf{A} = \vartheta(\mathbf{A})\sigma(\mathbf{A}) = \mathbf{U}\mathbf{V} = \vartheta(\mathbf{U})\vartheta(\mathbf{V})\sigma(\mathbf{V}).$$

It must be such that

$$\vartheta(A) = \vartheta(U)\vartheta(V),$$

 $\sigma(A) = \sigma(V).$

• Columns of $\vartheta(A)$ are in the convex hull of $\vartheta(U)$.

Lemma

The nonnegative rank $\operatorname{rank}_+(A)$ stands for the minimal number of vertices on \mathcal{D}_m so that the resulting convex polytope encloses all columns of the pullback $\vartheta(A)$.

Background	Generic Phenomenon ○○○● ○○○○ ○○	Wedderburn Formula	Algorithm 000	Other Applications	Conclusion
		Visualizing	$\vartheta(\mathscr{C})$		
	S —	Z	D A2		

Suffices to represent the probability simplex D₄ by the unit tetrahedron S in the first octant of ℝ³.

A1

- ► Columns of $\vartheta(\mathscr{C})$ can be interpreted as points A_1, A_2, A_3, A_4 .
 - Coplanar because $rank(\vartheta(\mathscr{C})) = 3$.
 - Four "edges" sitting on separate facets of the tetrahedron.
 - The minimum number of vertices for a convex set in the unit tetrahedron to cover *D* is four.

Backg	round	
000		
00		

Wedderburn Formula

Algorithm

Dther Applications

Conclusion

How Often Can This Happen?

Question

 $(\mathbf{R2R}_+)$: Given an arbitrary nonnegative 4 by 4 matrix of rank 3, what is the probability that its nonnegative rank is 3?

No easy answer!

Question

Sylvester's Four-Point Problem *What is the probability of four random, independent, and uniform points from a compact set such that none of them lies in the triangle formed by the other three?*

 "This problem does not admit of a determinate solution!" (Sylvester'1865).

Background	d
000	
00	

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Flipped Side Question

Question

 $(\mathbf{R}_{+}\mathbf{2R})$: Given an arbitrary nonnegative 4 by 4 matrix of nonnegative rank 3, what is the probability that its rank is 3?

Theorem

Given $k < \min\{m, n\}$, let $R_+(k)$ denote the manifold of nonnegative matrices in $\mathbb{R}^{m \times n}_+$ with nonnegative rank k. Then the conditional probability of rank(A) = k, given $A \in R_+(k)$, is one.

Matrices which have an NRF are generic.

Wedderburn	Formula
00	
000	

Algorithm

Other Applications

Conclusion

Almost Surely?

- ▶ If A = UV with randomly generated $U \in \mathbb{R}^{m \times k}_+$ and $V \in \mathbb{R}^{k \times n}_+$,
 - Almost surely we have rank(A) = k.
 - The converse is not true.
- Those matrices whose rank are not equal to the nonnegative rank form a measure zero set.
 - Not necessarily mean that the set is "unobservable", nor that nontrivial "exceptions" are difficult to come by.

Background	
000	
00	

Wedderburn Formula

Algorithm

Other Application

Conclusion

Euclidean Distance Matrices

• Given *n* distinct points in \mathbb{R}^r :

$$E(\mathbf{q}_1,\ldots\mathbf{q}_n):=\left[\|\mathbf{q}_i-\mathbf{q}_j\|_2^2
ight].$$

- Of rank r + 2, regardless of the number *n* of points.
- If r = 1, then generically of nonnegative rank *n* (Chu'2010).
- Certainly not have the generic phenomenon described above.
- Form a large and characterizable set, but is too specific to have a nonzero measure.

Background	
000	
00	

Perturbation Theory

- Very little perturbation analysis for NRF in general has been studied in the literature.
- Some open questions:
 - Given a nonnegative matrix A which has an NRF, under what condition will the perturbed nonnegative matrix A + E still have an NRF?
 - 2. Given a nonnegative matrix A which has an NRF, let U and V be the nonnegative factors found by our (or any) numerical algorithm so that UV is a numerical NRF of A. Is UV the exact NRF of some perturbed nonnegative matrix A + E?

000
00

0.

Wedderburn Formula

Algorithm

Other Application

Conclusion

Local Rank Condition

Theorem

Given an $m \times n$ non-negative matrix with $\operatorname{rank}_+(A) = k$, then

- 1. There exists a ball $B(A; \epsilon)$ such that $\operatorname{rank}_+(N) \ge k$ for all $N \in B(P; \epsilon)$.
- **2.** For any $\epsilon > 0$, there exists $N \in B(A; \epsilon)$ such $\operatorname{rank}_+(N) = \operatorname{rank}_+(A)$ and $N \neq \lambda A$ for any λ .

Backg	round	
000		
00		

Algorithm

Chipping Away a Nonnegative Portion

- $B \ge 0$ is a nonnegative component (NC) of $A \ge 0$ iff $A B \ge 0$.
 - Compute the "maximum" rank-one NC of A (Levin'1985).
 - The residual after an NC subtraction might have higher rank.
 - Might end up with an infinite series of NC matrices.
- ► $B \ge 0$ is a *nonnegative element* (NE) of $A \ge 0$ iff *B* is a rank-one NC and rank(A B) =rank(A) 1.
- ► The matrix 𝒞 has many NCs, but has no NE at all.
- ► Need to gradually distribute A over a sequence of NEs.

- Background
- **Generic Phenomenon**0000
 0000
 000

Wedderburn Formula

Algorithm

Other Application

Conclusion

A Major Difficulty

- A has an NRF, $\Longrightarrow A = \sum_{i=1}^{k} \mathbf{u}_i \mathbf{k}_i^{\top}$.
 - Each $\mathbf{u}_i \mathbf{k}_i^{\top}$ is an NE.
- Miss the particular sequence of NE's (not known to begin with)?
 - Any bad choices of NE's in the intermediate stages could cause the rank reduction process to break down.
 - Get stuck at a matrix that has no more NE at all.
- A major challenge:
 - Could not foresee which NE would be a "good" NE to continue on the rank reduction.
 - Finding the right NE's is precisely why the NRF problem is so challenging.
 - A weakness of our approach.
 - Still might be the first sensible way to crack the nut!

Backg	rou	nd
000		
00		

Wedderburn Rank Reduction Formula

Theorem

Let $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$. Then the matrix

$$B := A - \sigma^{-1} \mathbf{u} \mathbf{v}^{\top}$$

satisfies the rank subtractivity $\operatorname{rank}(B) = \operatorname{rank}(A) - 1$ if and only if there are vectors $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$ such that

$$\mathbf{u} = A\mathbf{x}, \quad \mathbf{v} = A^{\top}\mathbf{y}, \quad \sigma = \mathbf{y}^{\top}A\mathbf{x}.$$

Theorem

Suppose $U \in \mathbb{R}^{m \times k}$, $R \in \mathbb{R}^{k \times k}$, and $V \in \mathbb{R}^{n \times k}$. Then

$$\operatorname{rank}(A - UR^{-1}V^{\top}) = \operatorname{rank}(A) - \operatorname{rank}(UR^{-1}V^{\top})$$

if and only if there exist $X \in \mathbb{R}^{n \times k}$ and $Y \in \mathbb{R}^{m \times k}$ such that

U = AX, $V = A^{\top}Y$, and $R = Y^{\top}AX$.

Backg	round	
000		
00		

Wedderburn	Formula
00	
000	

Algorithm

Other Application

Conclusion

Applications

- Provide a mechanism to break down a matrix into a sum of rank-one matrices.
 - Define a sequence {*A_k*} of matrices by

$$A_{k+1} := A_k - (\mathbf{y}_k^\top A_k \mathbf{x}_k)^{-1} A_k \mathbf{x}_k \mathbf{y}_k^\top A_k.$$

- Properly chosen vectors $\mathbf{x}_k \in \mathbb{R}^n$ and $\mathbf{y}_k \in \mathbb{R}^m$ satisfying $\mathbf{y}_k^\top A_k \mathbf{x}_k \neq 0$.
- The process can be continued so long as $A_k \neq 0$.
- The sequence $\{A_k\}$ must be finite.
- Almost all classical matrix decompositions can be found in this way (Chu, Funderlic, Golub'1995).

round	Generic
	0000
	0000
	00

eneric	Phenomenon	
000		
000		

Wedderburn	Formula
00	
000	

Algorithm

Wedderburn for NRF

- ► For NRF,
 - Break down a nonnegative matrix by taking away one NE a time.
 - An NE must assume the Wedderburn form

$$(\mathbf{y}_k^{\top} \mathbf{A}_k \mathbf{x}_k)^{-1} \mathbf{A}_k \mathbf{x}_k \mathbf{y}_k^{\top} \mathbf{A}_k.$$

- A_{k+1} must be nonnegative after the subtraction.
 - The most difficult part.
- Two probable causes for premature termination.
 - A is not a matrix in $\mathfrak{R}(m, n)$ to begin with.
 - A welcome conclusion.
 - Notion of maximal nonnegative rank splitting of A.
 - Bad starting points have branched A_k into a "dead end", i.e., A_k has no NE.
 - A restart might remedy the problem.
- Only a heuristic way to find the (approximate) NRF.
- ▶ Need more analysis to conclude whether A has an NRF or not.

Backg	ro	u	n
000			
00			

Wedderburn Formula

Algorithm ●○○ Other Applications

Conclusion

Maximin Problem

$$\max_{\mathbf{x}_k \in \mathbb{R}^n, \mathbf{y}_k \in \mathbb{R}^m} \min \left[A_k - A_k \mathbf{x}_k \mathbf{y}_k^\top A_k \right],$$

 $\begin{array}{ll} \text{subject to} & A_k \mathbf{x}_k \geq \mathbf{0}, \\ \mathbf{y}_k^\top A_k \geq \mathbf{0}, \\ \mathbf{y}_k^\top A_k \mathbf{x}_k = \mathbf{1}, \end{array}$

 $\triangleright \ \mathbf{A}_k - \mathbf{A}_k \mathbf{x}_k \mathbf{y}_k^\top \mathbf{A}_k \leq \mathbf{A}_k.$

- maximizer of min $[A_k A_k \mathbf{x}_k \mathbf{y}_k^\top A]$ always exists.
- Nonnegative objective value $\implies A_{k+1} \ge 0$.
 - A feasible NE is found.

Wedderburn	Formula
00	
000	

Algorithm

Other Applications

Conclusion

A Pathological Example

▶ Consider A = [𝔅; c].

- $\mathbf{c} \geq 0$ is random.
- $\operatorname{rank}_+(A) = \operatorname{rank}(A) = 4.$
- Splitting A by its rows is automatically an NRF.
- The matrix $\Delta := [\mathbf{0}_4, \mathbf{c}]$ an NE.
 - Leave behind a nonnegative matrix $A \Delta = [\mathscr{C}; \mathbf{0}]$ of rank 3.
 - [&; 0] does not have any NRF.
 - Iteration would get stuck.

▶ Restart ⇒

```
0 0.0781
                                                                            0 0.2895 0.0000 0.2895 0.1448
1 0000 1 0000
                                        0.0000 0.0000 0.8624
                                                                 0
                                                                       2,5895 0,0000 2,5895 0,0000 1,7325
1 0000
           0 1.0000
                        0 0.6690
                                        0.0000 0.3862
                                   =
                  0 1.0000 0.5002
                                        3.4544
                                                                       1.1596 1.1596 0.0000 0.0000 0.0905
    0 1.0000
                                                                 0
           0 1.0000 1.0000 0.2180
                                      0.0000 0.0000 0.0000 1.7018
                                                                            0
                                                                                   0 0.5876 0.5876 0.1281
```

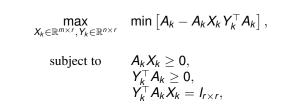
Backg	ro	u	n
000			
00			

Wedderburn Formula

Algorithm ○○● Dther Applications

Conclusion

Multiple Rank Reduction



Theorem

If a nonnegative matrix has a nonnegative rank-r reduction, then it must have r nonnegative rank-one reductions.

Backg	rou	n
000		
00		

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Completely Positive Matrices

• $A \in \mathbb{R}^{n \times n}_+$ is completely positive (CP) iff

 $A = BB^{\top}$.

- $B \ge 0$ is not necessarily square.
- Interested in the smallest number of columns of B.
 - Denoted by rank_{cp}(A).
- Two questions (Berman'2003):
 - Determine whether a given nonnegative semi-definite matrix is CP.
 - Determine the cp-rank and compute its CP factorization.
 - More stringent than NRF.

Backgrou	nc
000	
00	

Wedderburn Formula

Algorithm

Other Applications

Conclusion

Symmetric Wedderburn Formula

$$\max_{\mathbf{x}_k \in \mathbb{R}^n} \min \left[\mathbf{A}_k - \mathbf{A}_k \mathbf{x}_k \mathbf{x}_k^\top \mathbf{A}_k \right]$$

subject to
$$A_k \mathbf{x}_k \ge 0$$

 $\mathbf{x}_k^\top A_k \mathbf{x}_k = 1$

Backgro	u	n
000		
00		

Wedderburn Formula

Algorithm

Maximal Nonnegative Rank Splitting

Question

(MNRS): Given a nonnegative matrix A, find a splitting

$$\boldsymbol{A}=\boldsymbol{B}+\boldsymbol{C},$$

where both B and C are nonnegative matrices satisfying

$$\operatorname{rank}(B) = \operatorname{rank}_{+}(B),$$

 $\operatorname{rank}(A) = \operatorname{rank}(B) + \operatorname{rank}(C),$

and rank(B) is maximized.

- If $A \in \mathfrak{R}(m, n)$, then trivially B = A and C = 0.
- ▶ If $A \notin \Re(m, n)$,
 - A might still has a few NEs.
 - Retrieve all possible NEs of A.

Background	
000	
00	

Wedderburn Formula

Algorithm

Other Applicatio

Conclusion

- Detecting the nonnegative rank and computing the corresponding nonnegative factorization for a general nonnegative matrix are very challenging tasks both in theory and in practice.
- No existing algorithms can guarantee to find the NRF.
- Exploit the Wedderburn rank reduction formula to *downdate* a nonnegative matrix.
- Only a possible computational tool for the NRF problem.
- Need more perturbation analysis for NRF in general.