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Take Home Question

Given a nonnegative matrix A, write

A =
k∑

i=1

uik>i

where ui ,ki ≥ 0 and k is minimal.
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Nonnegative Rank

I Given A ∈ Rm×n
+ , write

A = UV .

• U ∈ Rm×k
+ and V ∈ Rk×n

+ with k ≤ min{m, n}
• Always possible.

I Interested in the smallest k rendering this factorization.
• Denote by rank+(A).

I A trivial fact —

rank(A) ≤ rank+(A) ≤ min{m,n}.

I A challenge —
• Determining the exact nonnegative rank is NP-hard.
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This Is Not ...

I A = UV is a special nonnegative factorization of A.
I Should be unequivocally distinquished from what is known as the

nonnegative matrix factorization (NMF).
• Misnamed!
• Is only a low rank approximation from

min
U∈Rm×p

+ ,V∈Rp×n
+

‖A− UV‖F .

• p < min{m, n} is preassigned.
• Many numerical techniques.
• Cannot guarantee the required equality in a complete factorization

even with p = rank+(A).
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NMF Fails!

I Almost all NMF techniques adapt conventional mathematical
programming schemes.

I The objective function in NMF is non-convex.
I The factors U and V retrieved by NMF techniques are typically

local minimizers only.
I Cannot ensure equality to A.
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Nonnegative Rank Factorization

R(m,n) :=
{

A ∈ Rm×n
+ | rank(A) = rank+(A)

}
.

I Interested in
• Identifying if A ∈ R(m, n).
• Procuring a nonnegative factorization for A ∈ R(m, n).

I Is called a nonnegative rank factorization (NRF) of A.
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An Example

I Not every nonnegative matrix has an NRF.
I The simplest non-NRF matrix:

C =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 .
• rank(C ) = 3.
• rank+(C ) = 4.

I There is a necessary and sufficient condition qualifying an NRF
matrix (Thomas’1974).

• Not suitable for computation.
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Probability Simplex

I Given A ∈ Rm×n
+ , define

σ(A) := diag{‖a1‖1, . . . , ‖an‖1}
ϑ(A) := Aσ(A)−1.

I Columns of ϑ(A) are points on the probability simplex Dm in Rm
+.

Dm :=
{

a ∈ Rm
+|1>ma = 1

}
,
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Convex Hull of ϑ(A) ∈ R3×11
+

1

1

1

Probability Simplex

Convex Hull of Columns
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.
.
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Minimal Convex Polytope
I A = UV = (UD−1)(DV ) with any invertible diagonal matrix D.

• May assume σ(U) = In.
I Write

A = ϑ(A)σ(A) = UV = ϑ(U)ϑ(V )σ(V ).

• It must be such that

ϑ(A) = ϑ(U)ϑ(V ),

σ(A) = σ(V ).

• Columns of ϑ(A) are in the convex hull of ϑ(U).

Lemma
The nonnegative rank rank+(A) stands for the minimal number of
vertices on Dm so that the resulting convex polytope encloses all
columns of the pullback ϑ(A).
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Visualizing ϑ(C )

x
y

z

D
S

A1

A2

A3

A4

I Suffices to represent the probability simplex D4 by the unit
tetrahedron S in the first octant of R3.

I Columns of ϑ(C ) can be interpreted as points A1,A2,A3,A4.
• Coplanar because rank(ϑ(C )) = 3.
• Four “edges" sitting on separate facets of the tetrahedron.
• The minimum number of vertices for a convex set in the unit

tetrahedron to cover D is four.
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How Often Can This Happen?

Question

(R2R+) : Given an arbitrary nonnegative 4 by 4 matrix of rank 3, what
is the probability that its nonnegative rank is 3?

I No easy answer!

Question

Sylvester’s Four-Point Problem What is the probability of four
random, independent, and uniform points from a compact set such
that none of them lies in the triangle formed by the other three?

I “This problem does not admit of a determinate solution!"
(Sylvester’1865).
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Flipped Side Question

Question

(R+2R) : Given an arbitrary nonnegative 4 by 4 matrix of nonnegative
rank 3, what is the probability that its rank is 3?

Theorem
Given k < min{m,n}, let R+(k) denote the manifold of nonnegative
matrices in Rm×n

+ with nonnegative rank k. Then the conditional
probability of rank(A) = k, given A ∈ R+(k), is one.

I Matrices which have an NRF are generic.
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Almost Surely?

I If A = UV with randomly generated U ∈ Rm×k
+ and V ∈ Rk×n

+ ,
• Almost surely we have rank(A) = k .
• The converse is not true.

I Those matrices whose rank are not equal to the nonnegative
rank form a measure zero set.

• Not necessarily mean that the set is “unobservable", nor that
nontrivial “exceptions" are difficult to come by.
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Euclidean Distance Matrices

I Given n distinct points in Rr :

E(q1, . . .qn) :=
[
‖qi − qj‖2

2
]
.

• Of rank r + 2, regardless of the number n of points.
• If r = 1, then generically of nonnegative rank n (Chu’2010).
• Certainly not have the generic phenomenon described above.
• Form a large and characterizable set, but is too specific to have a

nonzero measure.
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Perturbation Theory

I Very little perturbation analysis for NRF in general has been
studied in the literature.

I Some open questions:
1. Given a nonnegative matrix A which has an NRF, under what

condition will the perturbed nonnegative matrix A + E still have an
NRF?

2. Given a nonnegative matrix A which has an NRF, let U and V be
the nonnegative factors found by our (or any) numerical algorithm
so that UV is a numerical NRF of A. Is UV the exact NRF of some
perturbed nonnegative matrix A + E?
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Local Rank Condition

Theorem
Given an m × n non-negative matrix with rank+(A) = k, then

1. There exists a ball B(A; ε) such that rank+(N) ≥ k for all
N ∈ B(P; ε).

2. For any ε > 0, there exists N ∈ B(A; ε) such rank+(N) = rank+(A)
and N 6= λA for any λ.
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Chipping Away a Nonnegative Portion

I B ≥ 0 is a nonnegative component (NC) of A ≥ 0 iff A− B ≥ 0.
• Compute the “maximum" rank-one NC of A (Levin’1985).
• The residual after an NC subtraction might have higher rank.
• Might end up with an infinite series of NC matrices.

I B ≥ 0 is a nonnegative element (NE) of A ≥ 0 iff B is a rank-one
NC and rank(A− B) = rank(A)− 1.

I The matrix C has many NCs, but has no NE at all.
I Need to gradually distribute A over a sequence of NEs.
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A Major Difficulty

I A has an NRF, =⇒ A =
∑k

i=1 uik>i .
• Each uik>i is an NE.

I Miss the particular sequence of NE’s (not known to begin with)?
• Any bad choices of NE’s in the intermediate stages could cause the

rank reduction process to break down.
I Get stuck at a matrix that has no more NE at all.

I A major challenge:
• Could not foresee which NE would be a “good" NE to continue on

the rank reduction.
• Finding the right NE’s is precisely why the NRF problem is so

challenging.
• A weakness of our approach.

I Still might be the first sensible way to crack the nut!
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Wedderburn Rank Reduction Formula
Theorem
Let u ∈ Rm and v ∈ Rn. Then the matrix

B := A− σ−1uv>

satisfies the rank subtractivity rank(B) = rank(A)− 1 if and only if
there are vectors x ∈ Rn and y ∈ Rm such that

u = Ax, v = A>y, σ = y>Ax.

Theorem
Suppose U ∈ Rm×k , R ∈ Rk×k , and V ∈ Rn×k . Then

rank(A− UR−1V>) = rank(A)− rank(UR−1V>)

if and only if there exist X ∈ Rn×k and Y ∈ Rm×k such that

U = AX , V = A>Y , and R = Y>AX .
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Applications

I Provide a mechanism to break down a matrix into a sum of
rank-one matrices.

• Define a sequence {Ak} of matrices by

Ak+1 := Ak − (y>k Ak xk )−1Ak xk y>k Ak .

• Properly chosen vectors xk ∈ Rn and yk ∈ Rm satisfying
y>k Ak xk 6= 0.

• The process can be continued so long as Ak 6= 0.
• The sequence {Ak} must be finite.

I Almost all classical matrix decompositions can be found in this
way (Chu, Funderlic, Golub’1995).
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Wedderburn for NRF
I For NRF,

• Break down a nonnegative matrix by taking away one NE a time.
• An NE must assume the Wedderburn form

(y>k Ak xk )−1Ak xk y>k Ak .

• Ak+1 must be nonnegative after the subtraction.
I The most difficult part.

I Two probable causes for premature termination.
• A is not a matrix in R(m, n) to begin with.

I A welcome conclusion.
I Notion of maximal nonnegative rank splitting of A.

• Bad starting points have branched Ak into a “dead end" , i.e., Ak
has no NE.

I A restart might remedy the problem.

I Only a heuristic way to find the (approximate) NRF.
I Need more analysis to conclude whether A has an NRF or not.
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Maximin Problem

max
xk∈Rn,yk∈Rm

min
[
Ak − Ak xk y>k Ak

]
,

subject to Ak xk ≥ 0,
y>k Ak ≥ 0,
y>k Ak xk = 1,

I Ak − Ak xk y>k Ak ≤ Ak .
• maximizer of min

[
Ak − Ak xk y>k A

]
always exists.

I Nonnegative objective value =⇒ Ak+1 ≥ 0.
• A feasible NE is found.
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A Pathological Example

I Consider A = [C ; c].
• c ≥ 0 is random.
• rank+(A) = rank(A) = 4.
• Splitting A by its rows is automatically an NRF.

I The matrix ∆ := [04,c] an NE.
• Leave behind a nonnegative matrix A−∆ = [C ; 0] of rank 3.
• [C ; 0] does not have any NRF.
• Iteration would get stuck.

I Restart =⇒
1.0000 1.0000 0 0 0.0781
1.0000 0 1.0000 0 0.6690

0 1.0000 0 1.0000 0.5002
0 0 1.0000 1.0000 0.2180

 =


0.0000 0.0000 0.8624 0
0.0000 0.3862 0 0
3.4544 0 0 0
0.0000 0.0000 0.0000 1.7018




0 0.2895 0.0000 0.2895 0.1448
2.5895 0.0000 2.5895 0.0000 1.7325
1.1596 1.1596 0.0000 0.0000 0.0905

0 0 0.5876 0.5876 0.1281

 .
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Multiple Rank Reduction

max
Xk∈Rm×r ,Yk∈Rn×r

min
[
Ak − Ak Xk Y>k Ak

]
,

subject to Ak Xk ≥ 0,
Y>k Ak ≥ 0,
Y>k Ak Xk = Ir×r ,

Theorem
If a nonnegative matrix has a nonnegative rank-r reduction, then it
must have r nonnegative rank-one reductions.



Background Generic Phenomenon Wedderburn Formula Algorithm Other Applications Conclusion

Completely Positive Matrices

I A ∈ Rn×n
+ is completely positive (CP) iff

A = BB>.

• B ≥ 0 is not necessarily square.
• Interested in the smallest number of columns of B.

I Denoted by rankcp(A).

I Two questions (Berman’2003):
• Determine whether a given nonnegative semi-definite matrix is CP.
• Determine the cp-rank and compute its CP factorization.

I More stringent than NRF.
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Symmetric Wedderburn Formula

max
xk∈Rn

min
[
Ak − Ak xk x>k Ak

]
subject to Ak xk ≥ 0

x>k Ak xk = 1
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Maximal Nonnegative Rank Splitting

Question

(MNRS): Given a nonnegative matrix A, find a splitting

A = B + C,

where both B and C are nonnegative matrices satisfying

rank(B) = rank+(B),

rank(A) = rank(B) + rank(C),

and rank(B) is maximized.

I If A ∈ R(m,n), then trivially B = A and C = 0.
I If A /∈ R(m,n),

• A might still has a few NEs.
• Retrieve all possible NEs of A.
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Conclusion

I Detecting the nonnegative rank and computing the
corresponding nonnegative factorization for a general
nonnegative matrix are very challenging tasks both in theory and
in practice.

I No existing algorithms can guarantee to find the NRF.
I Exploit the Wedderburn rank reduction formula to downdate a

nonnegative matrix.
I Only a possible computational tool for the NRF problem.
I Need more perturbation analysis for NRF in general.
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