Basics Singular Curves	Local Bearing
0000 0000	000
000 00000000000000000000000000000000000	0000
000 00000000000000000000000000000000000	

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

DNA-like Structure of Nonlinear Functions

Moody T. Chu (Joint work with Zhenyue Zhang)

North Carolina State University

March 8, 2012 @ National Cheng Kung University

Basics	Singular Curves	Local Bearing
000 000 000	0000 000000000000000000000000000000000	000

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Disclaimer

- This talk is about mathematics, not biology.
- > This talk is elementary, involving only fundamental calculus.
- > This work is just a beginning. More need be done.

Basics
000
000
000

Base Pairing

Applications

Conclusion

The importance of DNA is well documented.

- Found in all living organisms.
- Supplies the information for building all cell proteins.

- Basic structure of DNA:
 - Two strands coiled around to form a double helix.
 - Each rung of the spiral ladder consists of a pair of chemical groups called bases (of which there are four types)
 - Base pairing combines A to T and C to G, and the sequence on one strand is complementary to that on the other.
 - The specific sequence of bases constitutes the genetic information.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
000	000000000000000	

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Take Home Message

- There is a considerably similar structure in all nonlinear functions.
 - The structure determines the properties of the underlying function?

Base Pairing

Applications

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Base Pairing

Applications

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Base Pairing

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Base Pairing

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Base Pairing

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Base Pairing

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Outline

Basics

Gradient Adaption Singular Value Decomposition Deformation Effect

Singular Curves

Dynamical Systems Examples Critical Curves

Local Bearing

Curvilinear Coordinate System Generic Behaviors

Base Pairing

Concavity Property Pairings and Traits

Applications

Basics	Singular Curves	Local	Bea
000	0000	000	
000	000000000000000000000000000000000000000	000	
000	000000000000000000		

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Gradient

Given a scalar function

$$\eta: \mathbb{R}^n \longrightarrow \mathbb{R},$$

define the gradient of η by

$$\nabla \eta := \left[\frac{\partial \eta}{\partial x_1}, \dots, \frac{\partial \eta}{\partial x_n}\right].$$

Significance:

- Points in the direction where the function $\eta(\mathbf{x})$ ascends most rapidly.
- Attainable maximum rate of change is precisely $\|\nabla \eta(\mathbf{x})\|$.

Basics	Singular Curves
000	0000
000	000000000000000000000000000000000000000
000	0000000000000000

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Gradient Adaption

- Heat transfer by conduction.
 - Opposite to the temperature gradient and is perpendicular to the equal-temperature surfaces.
- Osmosis.
 - Passive transport of substances across the cell membrane down a concentration gradient without requiring energy use.
- Image gradients.
 - Fundamental building blocks in image processing such as edge detection and computer vision.

Basics	Singular Curves L
000	0000
000	000000000000000000000000000000000000000
000	000000000000000

aring

Base Pairing

Applications

Conclusion

Jacobian

Given a vector function

$$f:\mathbb{R}^n\longrightarrow\mathbb{R}^m,$$

define the Jacobian of f by

$$Jf := \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- A natural generalization of the gradient.
- Both offer linear approximations.
- Does not indicate critical directions or rates of change?

Base Pairing

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Singular Value Decomposition

► Any given matrix $A \in \mathbb{R}^{m \times n}$ enjoys a factorization of the form

 $A = V \Sigma U^{\top}.$

• Known as a singular value decomposition (SVD) of A.

Singular vectors:

• $V \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{n \times n}$ are orthogonal matrices.

- Singular values:
 - $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal with nonnegative elements

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\kappa} > \sigma_{\kappa+1} = \ldots = 0.$$

•
$$\kappa = \operatorname{rank}(A)$$
.

Basics	Singular Curves	Loca
000		000
000	000000000000000000000000000000000000000	000
000	000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Applications

- A long conceived notion popping up in various disciplines.
- Frequent appearance in a remarkably wide range of important applications.
- A few examples
 - Data analysis.
 - Dimension reduction.
 - Signal processing.
 - Image compression.
 - Principal component analysis.
 - •

Variational Formulation

- Many ways to characterize the SVD of a matrix A.
- Cast as an optimization problem over the unit disk:

 $\max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|.$

- Unit stationary points $\mathbf{u}_i \in \mathbb{R}^n$ = Right singular vectors.
- Singular values = ||Au_i||.
- In the neighborhood of the origin:
 - Right singular vectors = Directions where the linear map A changes most critically.
 - Singular values = Extent of deformation.
- Similar role by the left singular vectors by the duality theory.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
•00	00000000000000000	
0 00	0000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Linear Approximation

▶ Nearby any given point $\tilde{\mathbf{x}}$, approximate $f(\mathbf{x})$ by the affine map

$$g(\mathbf{x}) := f(\widetilde{\mathbf{x}}) + f'(\widetilde{\mathbf{x}})(\mathbf{x} - \widetilde{\mathbf{x}}).$$

- ► Under the function *g*,
 - The unit sphere centered at x gets mapped into an ellipsoid centered at f(x).
 - Semi-axes are aligned with the left singular vectors of $f'(\tilde{\mathbf{x}})$.
 - Semi-axis lengths are precisely the singular values.

Basics	Singular Curves	Local	Bearin
000	0000	000	
000	000000000000000000000000000000000000000	000	
000	000000000000000000		

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Infinitesimal Deformation

- Reducing the radius of the sphere,
 - Downsizes the ellipsoid proportionally.
 - Does not alter the directions of the semi-axes.
 - g becomes a more accurate approximation of f.
- The gradually reduced ellipsoids silhouette the images of the gradually reduced spheres under *f*.
- The SVD information of the linear operator f'(x) manifests the infinitesimal deformation property of the nonlinear map f at x.

Basics Singular Curves	Local Bearing
000 0000	000
000 00000000000000000000000000000000000	000
000 00000000000000000000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Directional Derivatives

Consider the norm of the directional derivative

$$\lim_{t\to 0} \left\| \frac{f(\widetilde{\mathbf{x}} + t\mathbf{u}) - f(\widetilde{\mathbf{x}})}{t} \right\| = \|f'(\widetilde{\mathbf{x}})\mathbf{u}\|.$$

- **u** is an arbitrary unit vector.
- Along which direction will the norm of the directional derivative be maximized?
 - The right singular vectors of f'(x)!
- This is the generalization of the conventional gradient to vector functions.

Base Pairing

Applications

Conclusion

Singular Vector Field

- At every point $\mathbf{x} \in \mathbb{R}^n$,
 - Have a set of orthonormal vectors pointing in particular directions related to the variation of *f*.
 - These orthonormal vectors form a natural frame point by point.
- Tracking down the "motion" of these frames might help to reveal some innate peculiarities of the underlying function f.

000 0000 000	
000 00000000000000000000000000000000000	
000 00000000000000000000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Dynamical Systems

- Let (σ_i, u_i, v_i) = the *i*th singular triplet of f'(x_i). Interested in the solution flows:
 - $\mathbf{x}_i(t) \in \mathbb{R}^n$ defined by

$$\dot{\mathbf{x}}_i := \pm \mathbf{u}_i(\mathbf{x}_i), \quad \mathbf{x}_i(0) = \widetilde{\mathbf{x}}.$$

• $\mathbf{y}_i(t) \in \mathbb{R}^m$ defined by

$$\dot{\mathbf{y}}_i := \pm \sigma_i(\mathbf{x}_i) \mathbf{v}_i(\mathbf{x}_i), \quad \mathbf{y}_i(\mathbf{0}) = f(\widetilde{\mathbf{x}}).$$

Minor notes:

- Scaling ensures $\mathbf{y}_i(t) = f(\mathbf{x}_i(t))$.
- Select the sign \pm so as to avoid discontinuity jump.
- Integrate in both forward and backward time.

000 0000 000	Basics	Singular Curves Local Bea
	000	0000 000
000 00000000000000000000000000000000000	000	000000000000000000000000000000000000000
000 000000000000	000	00000000000000

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Critical Points

- The vector field may not be well defined at certain points.
 - When singular values coalesce.
 - f'(x) has multiple singular vector
 - Makes $\dot{\mathbf{x}}_i$ (or $\dot{\mathbf{y}}_i$) discontinuous.
- Not an issue of the factorization.
 - An analytic factorization as a whole for a function analytic in **x** does exist.
 - The continuity of a fixed order singular vectors, say, u₁(x), may not be maintained.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
000	0000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

First Singular Curve

- Moves in the direction along which f(x) changes most rapidly, when measured in the Euclidean norm.
- Serves as the backbone in the moving frame.
- ▶ Can be demonstrated and explained in the case $f : \mathbb{R}^2 \to \mathbb{R}^n$.
 - Parametric surfaces.
- More need be done in higher dimensional spaces.

Basics	Singular Curves Loo	cal
000	0000 00	
000	•00000000000000000000000000000000000000	00
000	000000000000000	

Bas

Base Pairing

Applications

Conclusion

Example 1

Bearing

$$\left[\begin{array}{c} \sin{(x_1 + x_2)} + \cos{(x_2)} - 1\\ \cos{(2x_1)} + \sin{(x_2)} - 1 \end{array}\right]$$

Basics	Singular Curves	Local Bearing	E
000	0000	000	(
000	000000000000000000000000000000000000000	000 000	0
000	000000000000000000000000000000000000000	C	

Applications

Conclusion

Right Singular Curves for Example 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basics	Singular Curves	Local	Bearing
000	0000	000	
000	000000000000000000000000000000000000000	000	
000	000000000000000		

Applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusion

Example 2a

 $\left[\begin{array}{c} e^{x_1}\cos(x_2)\\ 20e^{x_1}\sin(x_1) \end{array}\right]$

Basics	Singular Curves	Local Bearing	Base
000	0000	000	000
000	000000000000000000000000000000000000000	0000	00
000	000000000000000000000000000000000000000		

Applications

Conclusion

Right Singular Curves for Example 2a

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000 000
000	000000000000000000000000000000000000000)

Applications

Conclusion

Example 2b

$$\left[\begin{array}{c} e^{x_1}\cos(x_2)\\ e^{x_1}\sin(x_1)\\ x_2 \end{array}\right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Local Bearing

Base Pairing

Applications

Conclusion

Right Singular Curves for Example 2b

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basics	Singular Curves	Local
000	0000	000
000	000000000000000000000000000000000000000	000 00
000	000000000000000000000000000000000000000	

Applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusion

Example 3

 $\left[\begin{array}{c}4+x_1\cos(x_2/2)\\x_2\\x_1\sin(x_1x_2/2)\end{array}\right]$

Basics	Singular Curves	Local Bearing
	0000	000
000	0000000000000	00000 000
000	0000000000000	00

Applications

Conclusion

Right Singular Curves for Example 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Basics	Singular Curves	Local Bearing
000	000000000000000000000000000000000000000	000
000	0000000000000000	

Applications

Conclusion

Example 4

 $\left[\begin{array}{c}e^{x_1}\cos(20x_2)\\20e^{\sin(x_2)}\sin(x_1)\end{array}\right]$

Basics	Singular Curves	Local Bearin
000		000
000	000000000000000000000000000000000000000	000000000
000	000000000000000000000000000000000000000	00

Applications

Conclusion

Right Singular Curves for Example 4

◆□▶★@▶★≧▶★≧▶ ≧ のQで

Basics	Singular Curves	Local	Bearing
000 000 000	0000 000000000000000000000000000000000	000	

Applications

Conclusion

Example 5

$$\begin{bmatrix} \sin(x_1^2 + x_2^2)\cos(x_2) \\ 2e^{-2x_2^2x_1^2}\cos(10\sin(x_1)) \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Basics	Singular Curves	Local Bearing	Base Pairing	Applications	Conclus
000 000 000	0000 000000000000000000000000000000000	000	00000		

Right Singular Curves for Example 5

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Basics	Singular Curves	Local	Bearing
000	0000	000	
000	000000000000000000000000000000000000000	000	
000	0000000000000000000		

Applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusion

Example 6

$$\begin{bmatrix} -270x_1^4x_2^3 - 314x_1x_2^4 - 689x_1x_2^3 + 1428\\ 36x_1^7 + 417x_1^6x_2 - 422x_1^5x_2^2 - 270x_1^4x_2^3 + 1428x_1^3x_2^4 - 1475x_1^2x_2^5 + 510x_1x_2^6\\ -200x_1^6 - 174x_1^5x_2 - 966x_1^4x_2^2 + 529x_1^3x_2^3 + 269x_1^2x_2^4 + 49x_1x_2^5 - 267x_2^6 + 529x_1^4x_2\\ + 1303x_1^2x_2^3 - 314x_1x_2^4 + 262x_2^5 + 36x_1^4 - 788x_1^2x_2^2 - 689x_1x_2^3 + 177x_2^4 \end{bmatrix} \end{bmatrix}$$

0 X₁ 2

з

-5 -5

-3

-2

-1

4

5

Conclusion

Basics	Singular Curves
000	0000
000	000000000000000
000	000000000000000000000000000000000000000

Local Bearing

Base Pairing

Applications

Conclusion

Example 7

$$\left[\begin{array}{c} x_1 - \frac{x_1^2}{3} + x_1 x_2^2 \\ x_2 - \frac{x_2^3}{6} + x_2 x_1^3 \\ x_1^2 - x_2^3 \end{array}\right]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

sics	Singular Curves
0	
0	000000000000000000000000000000000000000
0	000000000000000

Ba: 00 00 Local Bearing

Base Pairing

Applications

Conclusion

Right Singular Curves for Example 7

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Basics	Singular Curves	Local Bearing
000	0000	000
000	00000000000000000000	000
000	000000000000000000	

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusion

Example 8

$$\begin{bmatrix} \frac{1}{2} \left(2\rho^2 - \phi^2 - \psi^2 + 2\phi\psi(\phi^2 - \psi^2) + \psi\rho(\rho^2 - \psi^2) + \rho\phi(\phi^2 - \rho^2) \right) \\ \frac{\sqrt{3}}{2} \left(\phi^2 - \psi^2 + \left(\psi\rho(\psi^2 - \rho^2) + \rho\phi(\phi^2 - \rho^2) \right) \right) \\ \left(\rho + \phi + \psi\right) \left(\left(\rho + \phi + \psi\right)^3 + 4(\phi - \rho)(\psi - \phi)(\rho - \psi) \right) \end{bmatrix}$$

with
$$\begin{cases} \rho = \cos(x_1)\sin(x_2) \\ \phi = \sin(x_1)\sin(x_2) \\ \psi = \cos(x_2) \end{cases}$$

Basics 000 000 000	Singular Curves	Local Bearing 000 0000 000 0	Base Pairing 00000 00	Applications
	Right	Singular C	urves for E	xample 8

Conclusion

Basics	Singular Curves	Local Bearing	Base Pairing	Applications	Co
000	0000	000	00000		
000	000000000000000000000000000000000000000	000	00		
000	•00000000000000				

Why?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Basics	Singular Curves
000	
000	000000000000000000000000000000000000000
000	000000000000000000000000000000000000000

Local Bearir 000 000000 000 Base Pairing

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

A Closer Look

Write

$$f'(\mathbf{x}) = \left[\mathbf{a}_1(\mathbf{x}), \mathbf{a}_2(\mathbf{x}) \right].$$

Define scalar functions

$$\begin{cases} n(\mathbf{x}) &:= \|\mathbf{a}_2(\mathbf{x})\|^2 - \|\mathbf{a}_1(\mathbf{x})\|^2, \\ o(\mathbf{x}) &:= 2\mathbf{a}_1(\mathbf{x})^\top \mathbf{a}_2(\mathbf{x}). \end{cases}$$

- *n*(**x**) measures the disparity of lengths.
- o(x) measures nearness of orthogonality.

ear

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Critical Curves

Define

$$\left\{ \begin{array}{rl} \mathcal{N} & := & \left\{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{n}(\mathbf{x}) = \mathbf{0} \right\}, \\ \mathcal{O} & := & \left\{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{o}(\mathbf{x}) = \mathbf{0} \right\}. \end{array} \right.$$

• Each forms generically a 1-dimensional manifold in \mathbb{R}^2 .

- Possibly composed of multiple curves or loops.
- Will play the role of "polynucleotide" connecting a string of interesting points.

Basics	Singular Curves
000	0000
000	000000000000000000000000000000000000000
000	000000000000000000000000000000000000000

Ba 00

Base Pairing

Applications

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusion

First Right Singular Pair

► The first singular value of *f*′(**x**):

$$\sigma_1(\mathbf{x}) := \left(\frac{1}{2} \left(\|\mathbf{a}_1(\mathbf{x})\|^2 + \|\mathbf{a}_2(\mathbf{x})\|^2 + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2} \right) \right)^{1/2}$$

The first right singular vector:

$$\mathbf{u}_1(\mathbf{x}) := rac{\pm 1}{\sqrt{1 + \omega(\mathbf{x})^2}} \left[egin{array}{c} \omega(\mathbf{x}) \\ 1 \end{array}
ight].$$

with

$$\omega(\mathbf{x}) := \begin{cases} \frac{o(\mathbf{x})}{n(\mathbf{x}) + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2}}, & \text{if } n(\mathbf{x}) > 0, \\ \frac{-n(\mathbf{x}) + \sqrt{o(\mathbf{x})^2 + n(\mathbf{x})^2}}{o(\mathbf{x})}, & \text{if } n(\mathbf{x}) < 0. \end{cases}$$

• Take the limit if $\omega(\mathbf{x})$ becomes infinity.

Basics	Singular Curves	Local Bearing	Base P
000		000	
000	000000000000000000000000000000000000000	0000 000	00
000	000000000000000000000000000000000000000	0	

Applications

(日) (日) (日) (日) (日) (日) (日)

Crossings

- When singular curves coming across critical curves, their tangent vectors point in specific directions.
- Orientations of tangent vectors:
 - At $\mathcal{N} \mathcal{O}$, are parallel to either $[1, 1]^{\top}$ or $[1, -1]^{\top}$, depending on whether $o(\mathbf{x})$ is positive or negative.
 - At $\mathcal{O} \mathcal{N}$, are parallel to $[0, 1]^{\top}$ or $[1, 0]^{\top}$, depending on whether $n(\mathbf{x})$ is positive or negative.

Basics	Singular Curves
000	0000
000	00000000000000000
000	000000000000000000000000000000000000000

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Singular Points

- $\mathcal{N} \cap \mathcal{O}$ = singular points.
- At singular points,
 - Singular values coalesce.
 - The (right) singular vectors become ambiguous.
 - Singular curves are "terminated" or "reborn".
- ► The angles cut by *N* and *O* at the singular point affects the intriguing dynamics observed.
 - The 1-dimensional manifolds ${\cal N}$ and ${\cal O}$ string singular points together along their strands.

Basics	
000	
000	
000	

Singular Curves

Local Bearing

Base Pairing

Applications

Critical Curves and Singular Curves for Example 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion

・ロット (雪) ・ (日) ・ (日) э.

・ロット (雪) (日) (日) ъ

Base Pairing

Applications

Conclusion

Critical Curves for Example 4

Basics	
000	
000	
000	

Base Pairing

Applications

Conclusion

Critical Curves for Example 5

(ロ・《聞・《臣・《臣・ 臣・のへで)

Basics	Singular Curves	Local Bearing	Base Pairing	Applications
000 000 000	0000 000000000000000000000000000000000	000 0000 000 0	00000 00	
	Bight	Singular C	urves for F	- xample 6

Conclusion

≣▶ ≣ ∽۹..

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Basics	Singular Curves	Local Bearing	Base Pairing	Applications	Co
000	0000	000	00000		
000	000000000000000000000000000000000000000	000	00		
000	00000000000000				

Critical Curves for Example 8

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Curvilinear Coordinate System

- Denote the α-halves portions of N and O by by n_α and o_α, where
 - The crossing singular vectors are parallel to the unit vectors $\mathbf{u}_{n_{\alpha}} := \frac{1}{\sqrt{2}} [1, 1]^{\top}$ and $\mathbf{u}_{o_{\alpha}} := [0, 1]^{\top}$.
- Flag the sides of n_{α} and o_{α} by arrows.
 - Naturally divides the neighborhood of **x**₀ into "quadrants" distinguished by the signs (sgn(*n*(**x**)), sgn(*o*(**x**)).
- When the "orientation" is changed, the nearby dynamical behavior might also change its topology.

Basics	Singular Curves	Local Bearing	Base Pairing
000	0000	000	00000
000	000000000000000000000000000000000000000	0000 000	00
000	000000000000000000000000000000000000000	0	

Application

Conclusion

A Scenario of Propellant

Red segments = tangent vectors crossing the critical curves.

- Take into account the signs of $o(\mathbf{x})$ and $n(\mathbf{x})$.
- Invariant on each half of the critical curves.
- Flows of singular curves near x₀ should move away from x₀ as a repellant.

Dusios Oliguiai Ourves	
0000 0000	
000 00000000000000000000000000000000000	1
000000000000000000000000000000000000000	

Local Bearing

Base Pairing

Applications

Conclusion

A Scenario of Roundabout

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000 •00
000	000000000000000000000000000000000000000	

Applications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Conclusion

Generic Behaviors

- Divide the plane into eight sectors with a central angle $\frac{\pi}{4}$.
- Relative position of n_α and o_α with respect to these sectors is critical for deciding the local behavior.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	0000 000
000	000000000000000000000000000000000000000	00

Applications

Conclusion

E 990

Basics	Singular Curves
000	0000
000	000000000000000000000000000000000000000
000	0000000000000000

Local Bearing

Base Pairing

Applications

Conclusion

Mutative Cases

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
000	000000000000000000	

Applications

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Second Derivative

• Express $\omega(\mathbf{x})$ as

$$\omega(\mathbf{x}) := \begin{cases} \operatorname{sgn}\left(o(\mathbf{x})\right) - \frac{n(\mathbf{x})}{o(\mathbf{x})} + \frac{\operatorname{sgn}(o(\mathbf{x}))n(\mathbf{x})^2}{2o(\mathbf{x})^2} + O\left(n(\mathbf{x})^3\right), & \text{near } n(\mathbf{x}) = 0, \\ \frac{o(\mathbf{x})}{2n(\mathbf{x})} - \frac{o(\mathbf{x})^3}{8n(\mathbf{x})^3} + \frac{o(\mathbf{x})^5}{16n(\mathbf{x})^5} + O\left(o(\mathbf{x})^7\right), & \text{near } o(\mathbf{x}) = 0 \text{ and if } n(\mathbf{x}) > 0, \\ \frac{-1}{\frac{o(\mathbf{x})}{2n(\mathbf{x})} - \frac{o(\mathbf{x})^3}{8n(\mathbf{x})^3} + \frac{o(\mathbf{x})^5}{16n(\mathbf{x})^5} + O\left(o(\mathbf{x})^7\right), & \text{near } o(\mathbf{x}) = 0 \text{ and if } n(\mathbf{x}) < 0. \end{cases}$$

The first derivative of x₁(t) is related to ω(x₁(t)).

- The first term of ω(x) estimates the the second derivative of x₁(t).
- Can characterize the concavity property observed.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000000000
000	000000000000000000000000000000000000000	000

Applications

Variation near \mathcal{N}

A typical point on the critical curve \mathcal{N}

- ▶ In the direction $\mathbf{u}_{n_{\alpha}}$, $\omega(\mathbf{x}(t))$ must be increased if $\mathbf{x}(t)$ moves to the side where $n(\mathbf{x}) < 0$.
 - The slope of u₁(x(t)) must be less than 1.
- Only four basic ways to cross N.

Basics	Singular Curves	Local Bearing	
	0000	000	
000	000000000000000000000000000000000000000	000	
000	000000000000000		

Applications

Conclusion

Four Bases along $\mathcal N$

・ロト・西ト・西ト・西・ うくぐ

000 0000000000000000000000000000000000	
000 00000000000000000000000000000000000	
000 00000000000000000000000000000000000	

Applications

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

Variation near \mathcal{O}

Basics	Singular Curves	Local	Bea
000	0000	000	
000	000000000000000000000000000000000000000	000	
000	000000000000000000		

Applications

Conclusion

Four Bases along \mathcal{O}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
000	000000000000000000000000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

Pairing

- > Entire dynamics can be classified into 8 categories.
 - These base parings are Aa, Ac, Bb, Bd, Ca, Cc, Db, and Dd only, with no other possible combinations.
- Each base pairing results in 8 dynamics in the regular cases and 2 in the mutative cases.
 - Distinctive by their characteristic traits.
 - Fascinating, but no time in this talk.
- Identify each dynamics by two letters of base paring at the upper left corner.

Basics	Singular Curves	Local Bearing
	0000	000
000	000000000000000000000000000000000000000	000 000
000	000000000000000000000000000000000000000)

Applications

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Trait Characterization

- Base pairings characterize dynamical details.
- Can also characterize the general behavior by a single quantity.
 - Define θ(n_α, o_α) = Angles measured clockwise from τ_n and to τ_o.
 - Assume the generic condition that *τ_n* is not forming an angle ^π/₄ with the north.
 - Singular point x₀ is
 - A repeller, if 0 < θ(n_α, o_α) < π.
 - A roundabout, if $\theta(n_{\alpha}, o_{\alpha}) > \pi$.
- Crossovers/hybrids are possible.
- •
- Too detailed to include here.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000 000
000	000000000000000000000000000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Making Mosaics

- Classify of all possible local behaviors.
 - A simplistic collection of "tiles" for the delicate and complex "mosaics".
- ► Inherent characteristics of the underlying function arrange these local pieces together along the strands of N and O to form the various patterns.

Basics	Singular Curves	Local Bearing
000	0000	000
000	000000000000000000000000000000000000000	000
000	00000000000000000	

Applications

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion

A Comparison

- Consider examples 2a and 2b.
 - · Easy critical curves.
 - \mathcal{O} forms horizontal lines with alternating $o(\mathbf{x})$ in between.
 - N forms closed loops.
 - One additional vertical, continuous, ogee $\mathcal N$ curve in Example 2b.
 - $n(\mathbf{x}) > 0$ inside the loops and to the left of the ogee curve.

Similar, but different dynamics.

Basics	Singular Curves	Local Bearing	Base Pairing
000	0000	000	00000
000	000000000000000000000000000000000000000	000	00
000	0000000000000000000		

Applications

Base Pairing

Applications

Conclusion

A Jigsaw Puzzle

α –Halves and Base Pairings for Example 1

∃ 2000

cs	Singular Curves	Local	Bea
)	0000	000	
)	000000000000000000000000000000000000000	000	
)	000000000000000000000000000000000000000		

Base Pairing

Applications

Conclusion

Conclusion

- Gradient adaption is an important mechanism occurring in nature.
 - Its generalization to the Jacobian does not "discriminate" directions per se.
- Adaption information is coded in the singular curves.
 - Forms a natural moving frame telling intrinsic properties per the given function.
 - Results in intricate and complicated patterns.
- Global behavior in general and interpretation in specific are not conclusively understood yet.
 - Two stands joined by singular points with one of eight distinct base pairings make up the underlying function.
 - Amazingly analogous to the DNA structure essential for all known forms of life.
- Are the patterns discovered "the trace of DNA" within an abstract, "inorganic" function?