
Real Analytic Metrics on S2

with
Total Absence of Finite Blocking

Lihuei Liu

March 7, 2012

1 / 61



Security

Definition
Let M be a Riemannian manifold. The pair (x , y) ∈ M ×M is
called secure if there exists a finite set P ⊂ M \ {x , y} such that
every geodesic from x to y passes through a point of P. Such P is
called a finite blocking set.
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Insecurity

Definition
(x , y) is insecure if no finite blocking set exists.

Example

x

y
Sphere

Definition
(M, g) is totally insecure if each (x , y) ∈ M ×M is insecure.
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Remark

Remark
(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

• For genus > 1, all metrics are totally insecure.

• For genus = 1, there exists a C 2-open and C∞-dense set, G,
of metrics, such that for any g ∈ G, (M, g) is totally insecure.

• The methods they used show that compact manifolds with
negative curvature are totally insecure.

(2) Flat metrics are secure due to Gutkin and Schroeder(2006).

(3) Compact manifolds without conjugate points whose geodesic
flows have positive topological entropy are totally insecure due to
Burns and Gutkin(2008), independently, Lafont and
Schmidt(2007).
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Main Result

What happens to the case of compact surfaces with genus zero?

Question: Is there any smooth totally insecure metric on
compact surfaces of genus zero?

Theorem (M. Gerber and L. Liu, 2011)

There exists a totally insecure real analytic
metric on S2.
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Construction of Real Analytic
Metrics g̃
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Construction of Real Analytic Metrics g̃

Take two copies of regular hexagons with all right angles on
hyperbolic disks.

Hyperbolic Disk Hyperbolic Disk
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Construction of Real Analytic Metrics g̃

a. Gluing these two copies together to obtain a pair of pants.
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Construction of Real Analytic Metrics g̃

b. Smoothly adding monotone curvature caps onto it.
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Construction of Real Analytic Metrics g̃

Definition

• A cap is defined to be a closed two-dimensional disk with
nonnegative curvature such that the boundary is the trace of
a real analytic geodesic.

• We say that a cap has monotone curvature if it is radially
symmetric and its curvature is a nondecreasing function of
distance from the boundary.
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Construction of Real Analytic Metrics g̃

We obtain a surface S with C∞ Riemannian metric g .

( S ,  g )

- 1 < k < 0 

k > 0

k = 0

k = -1

k > 0 k > 0

The geodesic flow for (S , g) is ergodic by Burns and Gerber(1989).
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Construction of Real Analytic Metrics g̃
The compact surface (S , g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C = Ci , for i ∈ {1, 2, 3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of
∂C.

The above condition implies that g is real analytic in a
neighborhood of ∂C.

Theorem (Cartan,1957)

Let S be a compact surface with a real analytic differentiable
structure, and let g be a C∞ Riemannian metric on S. Suppose
that Γ is a union of disjoint closed real analytic curves on S and U
is a neighborhood of Γ on which g is real analytic. Then for any
k ∈ N there exists a real analytic metric g̃ on S such that g and g̃
agree up to order k on Γ. Moreover, g̃ can be taken arbitrarily to
g in the C∞ topology.

12 / 61



Construction of Real Analytic Metrics g̃
The compact surface (S , g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C = Ci , for i ∈ {1, 2, 3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of
∂C.

The above condition implies that g is real analytic in a
neighborhood of ∂C.

Theorem (Cartan,1957)

Let S be a compact surface with a real analytic differentiable
structure, and let g be a C∞ Riemannian metric on S. Suppose
that Γ is a union of disjoint closed real analytic curves on S and U
is a neighborhood of Γ on which g is real analytic. Then for any
k ∈ N there exists a real analytic metric g̃ on S such that g and g̃
agree up to order k on Γ. Moreover, g̃ can be taken arbitrarily to
g in the C∞ topology.

12 / 61



Construction of Real Analytic Metrics g̃
The compact surface (S , g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C = Ci , for i ∈ {1, 2, 3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of
∂C.

The above condition implies that g is real analytic in a
neighborhood of ∂C.

Theorem (Cartan,1957)

Let S be a compact surface with a real analytic differentiable
structure, and let g be a C∞ Riemannian metric on S. Suppose
that Γ is a union of disjoint closed real analytic curves on S and U
is a neighborhood of Γ on which g is real analytic. Then for any
k ∈ N there exists a real analytic metric g̃ on S such that g and g̃
agree up to order k on Γ. Moreover, g̃ can be taken arbitrarily to
g in the C∞ topology.

12 / 61



Construction of Real Analytic Metrics g̃

c. Applying Cartan’s theorem to the surface (S , g), we obtain a
real analytic metric g̃ on S such that g̃ and g agree up to second
order on ∂C and g̃ is close to g in the C∞ topology.

Theorem (Burns and Gerber,1989)

Let (S , g) be the compact surface we constructed previously. If h
is a C 3 Riemannian metric on S satisfying

• h and g agree to second order on ∂Ci , i = 1, 2, 3, and

• h is sufficiently C 3 close to g everywhere,

then the geodesic flow for h is ergodic with respect to Liouville
measure (which is positive on open sets). Moreover the family of
metrics {h} include real analytic metrics.

d. Therefore the geodesic flow for (S , g̃) is ergodic.
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Construction of a closed
geodesic γ on (S , g̃)
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Construction of a closed geodesic for g̃

Construction of a closed geodesic γ in the region N where
the curvature in N is between −1− ε and −1 + ε.

( s ,  g )

k > 0

k = 0

k > 0 k > 0

ϒ
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Construction of a closed geodesic for g

a. First, we construct a closed geodesic in the region k = −1 on
(S , g).

α
α α

α

α α

Hyperbolic   Disk

❶❸

❺
α
α α

α

α α

Hyperbolic   Disk

❹❻

❷
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Construction of a closed geodesic for g̃

b. The closed g -geodesic, say γg , we constructed lies in the region
k = −1 on (S , g). Thus the orbit of the geodesic flow for g along

γg is transversally hyperbolic.

c. By b. there exists a closed g̃ -geodesic γ with self-intersection
points in the region N where dist(N , ∂Ci ) > δ, i = 1, 2, 3 for some

δ > 0.
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Existence of asymptotic
geodesics to γ on (S , g̃)
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Existence of asymptotic geodesics to γ

For each cap Ci , i = 1, 2, 3, we choose closed disks Di and Ei in S
that are radially symmetric about the center of Ci for the metric g
such that Ci ⊂ intDi and Di ⊂ intEi . We require the disks Ei
satisfy Ei ∩ Ej = ∅ for i 6= j and the trace of γ ⊂ S \ (∪3

i=1Ei ).

Definition
Let x ∈ D = Di ⊂ intE = intEi , for i = 1, 2, 3. Let σ be the
g -geodesic from x to a point on ∂E with length distg (x , ∂E).

• If x is not the center of D in the radially symmetric g -metric,
then the unit vector v0 in the g̃ -metric that is a positive
multiple of σ′(0) is called a radial vector at x .

• If x is the center of D, then any v0 ∈ T 1,g̃
x S is called a radial

vector at x .
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Existence of asymptotic geodesics to γ

Lemma
1. For all x ∈ S, there exist v+ and v− ∈ T 1

x S such that γv+(t)
and γv−(t) are asymptotic to γ and −γ, respectively, as t →∞.
Moreover, if x ∈ D, then v+ and v− can be chosen to be
approximately radial vectors.

ϒ

x

Geodesics  asymptotic  to  ϒ
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Lemma
2. Given x , y ∈ S , ε > 0, there exist T = T (ε) and an infinite
family of distinct unit speed geodesics

γn : [0, Ln] −→ S , with Ln −→∞

from x to y such that

0 < dist(γn|[T ,Ln−T ], γ) < ε

p

x

q

ϒn

y

ϒ
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Lemma
3. If T > 0, (x , z) ∈ (S , g̃)× (S , g̃), and
γn : [0,T ]→ (S , g̃), n = 1, 2, · · · is an infinite sequence of distinct
unit speed geodesics with γn(0) = x, then there are at most
finitely many positive integers n such that z ∈ γn((0,T ]).

22 / 61



Proof of Lemma 3
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Proof of Lemma 3

Example

S2 with round metric and the ellipsoid of revolution
x2

1
a2 +

x2
2
a2 +

x2
3
b2 = 1 in R3 are real analytic surfaces that fail to satisfy

the conclusion of Lemma 3.

Theorem ( Lojasiewicz,1964)

Let M be a connected real analytic surface, K is a compact subset
of M, and f : M −→ R is a real analytic function that does not
vanish identically on M, then there exist finitely many points
p1, p2, ..., pn and finitely many real analytic curves α1, α2, ..., αm

such that

{z ∈ K : f (z) = 0} = K ∩ {{p1, p2, ..., pn} ∪ α1 ∪ α2 ∪ ... ∪ αm}.
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Proof of Lemma 3

Proof: Suppose this lemma were false.

Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.

25 / 61



Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.

25 / 61



Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.

25 / 61



Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.

25 / 61



Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.

25 / 61



Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
and γn(tn) = z for some tn ∈ (0,T ].

1. By passing to a subsequence of {γn}∞n=1 and reindexing, we
may assume that limn→∞ tn = t0 ∈ (0,T ] and
limn→∞ vn = v0 ∈ T 1

x S where vn = γ′n(0).

2. Let
f (v) = (dist(expx v , z))2

where v ∈ TxS and ‖v‖ ≤ T .

3. Since g̃ is real analytic, the map y 7→ (dist(y , z))2 is real
analytic in a neighborhood of z(z = expx t0v0).

4. There exists an open disk M about t0v0 in TxS such that
f |M is real analytic. Let K be a closed disk about t0v0 that is
contained in M.
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Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite
sequence γn : [0,T ]→ S of unit speed geodesics with γn(0) = x
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Proof of Lemma 3

5. Since f (v) = 0 for infinitely many v ′s in K, by theorem there
exists a curve α(s), −δ < s < δ in TxS such that
f (α(s)) = 0, −δ < s < δ.

6. For each s, expx(tα(s)), 0 ≤ t ≤ 1 is a geodesic from x to z .

7. By the first variation formula for arc length, d
ds ‖α(s)‖ ≡ 0.

That implies there exists L > 0 such that ‖α(s)‖ ≡ L.

8. f vanishes on an arc of the circle {v ∈ TxS : ‖v‖ = L}. It
follows that f vanishes on the circle {v ∈ TxS : ‖v‖ = L}.
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Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z .

\begin{center}
\includegraphics[width=7.0cm,height=5 

cm]{liu10.pdf}
\end{center}

x

z

L L L L L L

10. Same argument shows 9 with x and z switched.

11. It follows that every geodesic starting at x hits z infinitely
many times.

12. By Lemma 1, there exists a geodesic starting at x that
becomes asymptotic to γ, which contradicts 11.
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Proof of Theorem
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Proof of Theorem

Fact: A pair of points (x , y) is insecure if there exists an infinite
family of geodesics {γn}∞n=1 from x to y such that no three of
{γn}∞n=1 are concurrent at any point except x and y .
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Proof of Theorem
Proof: Let (x , y) ∈ S × S . We want to show that there exist an
infinite family of geodesics from x to y such that no three are
concurrent at any point except at x and y .

1. By induction, suppose we have γ1, γ2, ...., γk such that no
three are concurrent except at x and y .

2. We want to produce another geodesic γk+1 joining x to y
such that no three of {γ1, γ2, ....., γk , γk+1} are concurrent
except at x and y .

3. Let z1, z2, ....zm be the set of points in S \ {x , y} that are
intersection points of the γi , γj , 1 ≤ i < j ≤ k .

4. Let
Σ = {p : p is a self intersection point of γ}
α1 = min{dist(zi , γ) : zi /∈ γ, 1 ≤ i ≤ m}

α2 = min{dist(zi ,Σ) : zi ∈ γ, zi /∈ Σ, 1 ≤ i ≤ m}
α = min{α1, α2} > 0.
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Proof of Theorem
5. We apply Lemma 2 with ε < α to obtain an infinite family of

distinct unit speed geodesics

σn : [0, Ln] −→ S

from x to y such that

0 < dist(σn|[T ,Ln−T ], γ) < ε.

It follows that

σn|[T ,Ln−T ] ∩ {zi : zi /∈ γ} = ∅.

• Let

Ω = {q : q ∈ σn|[T ,Ln−T ] ∩ the image of γ, n = 1, 2, ...}.

We have
0 < dist(Ω,Σ) < Cε

where C > 0 is independent of n.
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Proof of Theorem

It follows that

σn|[T ,Ln−T ] ∩ {zi : zi ∈ γ} = ∅

if we choose ε small enough that Cε < α.

• σn |[T ,Ln−T ] doesn’t meet any of {z1, z2, ...., zm}.
• If infinitely many of {σn |[0,T ]: n = 1, 2, ...} meet one of
{z1, z2, ..., zm}, then infinitely many of them would go through
the same point, which is a contraction to Lemma 3.

• The argument holds for the family {σn |[Ln−T ,Ln]: n = 1, 2, ...}.
• We can pick γk+1 from the collection {σn}∞n=1 such that no

three of {γ1, γ2, ..., γk+1} are concurrent except at x and y .

6. Thus by induction we obtain an infinite family of geodesics
from x to y such that no three are concurrent except at x and
y .
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Construction of Cones and Line
Fields
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Construction of Cones and Line Fields

Recall that a Riemannian metric <,> on S induces a Riemannian
metric on TS :

� ξ, η �=< ξH , ηH > + < ξV , ηV >

where H and V denote the horizontal and vertical components
respectively.

Let ξ ∈ TwTS and σ(t) = (p(t),W (t)) be a curve in TS that is
tangent to ξ at w .
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Construction of Cones and Line Fields

p(t)

p(0)
w=W(0)

W (t) ∈ Tp(t)S

ξ ↔ (ξH , ξV )

ξH = p′(0)

ξV = D
dt |t=0W (t)

We identify ξ with (ξH , ξV ).
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Construction of Cones and Line Fields

Example

0H

Point curve at x

x
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Construction of Cones and Line Fields

Let w ∈ T 1S and set

P(w) = {ξ ∈ TwT 1S :< ξH ,w >= 0 =< ξV ,w >}.

• Note that < ξV ,w >= 0 is always true for ξ ∈ TwT 1S . So
P(w) is a 2-dimensional subspace of TwT 1S .

• P(w) is the orthogonal complement of the tangent vector to
the geodesic flow in TwT 1S .

• Let ξ ∈ TwT 1S . If J(t) is a Jacobi field along the geodesic
γw (t) with ξH = J(0) and ξV = J ′(0), then J(t)⊥γ′w (t) for
all t.

• If ϕt is the geodesic flow on T 1S , then the distribution P is
invariant under dϕt .
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Construction of Cones and Line Fields

w
ϕt(w)

P(ϕt(w))P(w)

dϕt (P(w))=P(ϕt(w))

The distribution P is invariant under dϕt
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Construction of Cones and Line Fields

Let ξ ∈ TwT 1S and J(t) be a perpendicular Jacobi field along the
geodesic γw (t) with J(0) = ξH and J ′(0) = ξV .

Then J(t) = j(t)N(t) where N(t) is a normal field along γw (t)
and j(t) satisfies the scalar Jacobi equation:

j ′′(t) + K (γw (t))j(t) = 0

where K is the Gaussian curvature of the surface S .
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Construction of Cones and Line Fields

From the usual procedure for constructing horocycles (limit curves
of geodesic circles) in regions of nonpositive curvature, we know
that for each x ∈ Di \ Ci there exist exactly two vectors
vx ,j ∈ T 1

x S , j = 1, 2 (corresponding to two possible orientations on
∂Ci ) such that

• γvx,j (t) ∈ int(Di \ Ci ) for all t < 0,

• γvx,j is asymptotic to ∂Ci as t → −∞.

Consider x ∈ int(Di \ Ci ) and x ∈ Ci .
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Construction of Cones and Line Fields

Case 1 x ∈ int(Di \ Ci )

If w ∈ T 1
x S , w 6= vx ,j , j = 1, 2, then γw (t) exits Di in negative

time. So one of the following must occur:

• There exists a < 0 such that γw (t) ∈ int(Di \ Ci ) for t ∈ (a, 0]
and γw (a) ∈ ∂Di ;

• There exist a < c < d < 0 such that γw (t) ∈ int(Di \ Ci ) for
t ∈ (a, c) ∪ (d , 0], γw (t) ∈ intCi for t ∈ (c , d) and
γw (a) ∈ ∂Di

Case 2 x ∈ Ci
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Construction of Cones and Line Fields

Definition
For w ∈ T 1

x S , we define cones K+
w , K−w ⊂ P(w) by

K+
w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≥ 0}

and
K−w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≤ 0}.

The K+
w cones correspond to perpendicular Jacobi fields with

jj ′ ≥ 0.

Definition

a. If x ∈ intD, for D = Di , i ∈ {1, 2, 3} and w ∈ T 1
x S is such

that there exists a < 0 with γw (t) ∈ intD for t ∈ (a, 0] and
γw (a) ∈ ∂D, we define the unstable cone Ku

w by,

Ku
w = dϕ−aK+

γ′w (a).

42 / 61



Construction of Cones and Line Fields

Definition
For w ∈ T 1

x S , we define cones K+
w , K−w ⊂ P(w) by

K+
w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≥ 0}

and
K−w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≤ 0}.

The K+
w cones correspond to perpendicular Jacobi fields with

jj ′ ≥ 0.

Definition

a. If x ∈ intD, for D = Di , i ∈ {1, 2, 3} and w ∈ T 1
x S is such

that there exists a < 0 with γw (t) ∈ intD for t ∈ (a, 0] and
γw (a) ∈ ∂D, we define the unstable cone Ku

w by,

Ku
w = dϕ−aK+

γ′w (a).

42 / 61



Construction of Cones and Line Fields

Definition
For w ∈ T 1

x S , we define cones K+
w , K−w ⊂ P(w) by

K+
w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≥ 0}

and
K−w = {ξ ∈ P(w) : 〈ξH , ξV 〉 ≤ 0}.

The K+
w cones correspond to perpendicular Jacobi fields with

jj ′ ≥ 0.

Definition

a. If x ∈ intD, for D = Di , i ∈ {1, 2, 3} and w ∈ T 1
x S is such

that there exists a < 0 with γw (t) ∈ intD for t ∈ (a, 0] and
γw (a) ∈ ∂D, we define the unstable cone Ku

w by,

Ku
w = dϕ−aK+

γ′w (a).

42 / 61



Construction of Cones and Line Fields

b. For all other w ∈ T 1S , we define

Ku
w = K+

w .

Similarly we define the stable cone Ks as follows.

Definition

a. If x ∈ intD, for D = Di , i ∈ {1, 2, 3} and w ∈ T 1
x S is such

that there exists b > 0 with γw (t) ∈ intD for t ∈ [0, b) and
γw (b) ∈ ∂D, we define the stable cone Ks

w by,

Ks
w = dϕ−bK−γ′w (b).

b. For all other w ∈ T 1S , we define

Ks
w = K−w .
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Construction of Cones and Line Fields

The unstable(stable) cones are invariant for dϕt , t ≥ 0(t ≤ 0).
That is,

dϕtKu
w ⊂ Ku

ϕtw , for t ≥ 0,

dϕtKs
w ⊂ Ks

ϕtw , for t ≤ 0.

Moreover, if the basepoint of ϕt̄w , for some t̄ ∈ (0, t), lies outside
D, then

dϕtKu
w ⊂ intKu

ϕtw , for t > 0,

dϕtKs
w ⊂ intKs

ϕtw , for t < 0.

44 / 61



Construction of Cones and Line Fields

Let
N0 = S \ ∪3

i=1Di .

u
w

u
w

t
tKKd

)(
int)(


 

0' jj
0

td

)(wP

))(( wP t

)(wtw'j
j 'j j

u
wK

On the region

(jj ′)′ = (j ′)2 + jj ′′ = (j ′)2 − Kj2 > 0 if K < 0.
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Construction of Cones and Line Fields
Let w ∈ T 1S . Note that {dϕt(Ku

ϕ−t(w))}t>0 is a nested sequence
of cones. We define

Eu
w =

⋂
t>0

dϕt(Ku
ϕ−t(w)).

a. Eu
w is a line on P(w).

b. The line field {Eu
w , w ∈ T 1S} obtained from the unstable

cone family is continuous at w ∈ T 1S \ T 1(∪3
i=1∂Ci ).

c. We can integrate the line field to produce curves which we
call the unstable curves.

Similarly we can define the stable cone

Ks
w = P(w) \ Ku

w

and the stable line field

E s
w =

⋂
t>0

dϕ−t(Ks
ϕt(w)).
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Construction of Cones and Line Fields

Lyapunov Function

For w ∈ T 1S , let

P(w) = {ξ ∈ TwT 1S :< ξH ,w >= 0 =< ξV ,w >}.

Let ξ ∈ P(w). Consider the coordinates (u, v) in the (j , j ′)
coordinate system.
Define the Lyapunov function by

Q(ξ) = sgn(uv)
√
|uv |.

Then
Q(ξ) ≤ ‖ξ‖ =

√
u2 + v 2.
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Construction of Cones and Line Fields
Lyapunov Length

Suppose σ(s), τ1 ≤ s ≤ τ2, is a curve in T 1S such that
σ′(s) ∈ P(w). We define the Lyapunov length of σ by

LQ(σ) =

∫ τ2

τ1

|Q(σ′(s))|ds.

The usual length of σ is defined by

L(σ) =

∫ τ2

τ1

‖σ′(s)‖ds.

• If σ is a approximately unstable curve(σ′(s) ∈ Ku
σ(s)), then

LQ(ϕ−t(σ)) is a decreasing function of t.

• If σ is a approximately stable curve(σ′(s) ∈ Ks
σ(s)), then

LQ(ϕt(σ)) is a decreasing function of t.
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Outline of Proofs of Parts of
Lemma 1 and Lemma 2
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Outline of Proofs of Lemma 1

1. Take a tubular neighborhood N0 of γ. Let V be the vector
field on N0 such that every geodesic σ with σ′(0) = V (σ(0)),
is asymptotic to γ.

Approximately 
unstable curve

Stable horocycle

x

0v

V
V

γ

2. Take a wedge around (x , v0), W(s) = (x , v(s)), ‖v(s)‖ ≡ 1,
−ε ≤ s ≤ ε. Consider the flow ϕt(W(s)).
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Outline of Proofs of Lemma 1

3. If x ∈ D then v0 is chosen to be an approximately radial
vector so that W ′(s) is in the unstable cone Ku

W(s).

4. Let 0 < t0 < t̃0 < t̃1 < t1. Consider

A = {ϕt(W(s)) : −ε ≤ s ≤ ε, t0 ≤ t ≤ t1}

and

Ã = δ−neighborhood of {ϕt(W(s)) : −ε
2
≤ s ≤ ε

2
, t̃0 ≤ t ≤ t̃1}.

5. For δ sufficiently small, every vector w ∈ Ã can be joined to a
vector in A by a stable curve.
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Outline of Proofs of Lemma 1

6. Let 0 < ε0. Let

U0 = {v ∈ T 1
p S , p ∈ N0 : ^(v ,V (p)) < ε0, 〈v ,

∂

∂τ1
〉 < ε0

and 〈v , ∂

∂τ2
〉 > 〈V (p),

∂

∂τ2
〉}

where (τ1, τ2) is a Fermi coordinate on N0. Let U1 be an open
set such that U1 ⊂ U0.

7. Note that Ã and U1 have positive Liouville measures. By the
ergodic theorem there exists w0 ∈ Ã such that ϕt(w0) ∈ U1

for arbitrarily large t.

8. Let σ(s) be a stable curve from w0 to v1 ∈ A.

9. We can show that there exists arbitrarily large t such that
ϕt(v1) ∈ U0.
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Outline of Proofs of Lemma 1

10. Let
Ht = the horocycle through ϕt(v1)

and
ϕt(W(s)) = (σ(t, s), v(t, s)), − ε ≤ s ≤ ε.

Stable horocycle

Approximately 
unstable curve 0ε<

Ht(s)σ(t,s)

Φt(v1)

V(Ht(s))

If ε0 is sufficiently small, then there exists t̃ > 0 such that
there exists second intersection point of the curves Ht̃(s) and
σ(t̃, s) within N0 and on the same side of γ.
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Outline of Proofs of Lemma 1

11. Applying the intermediate value theorem to the angle between
V (Ht(s)) and v(t, s) along Ht(s) there exists
s̃ ∈ (s0, s1) ⊂ (−ε, ε) such that v(t̃, s̃) = V (σ(t̃, s̃)).
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Outline of Proofs of Lemma 2
1. Let x , y ∈ S and ε > 0. By Lemma 1, there exist vx at x and

vy at y such that the geodesics γvx and γvy are asymptotic to
the closed geodesic γ and −γ respectively on (S , g̃).

2. Take wedges Wx = (x , vx(s)) , −εx ≤ s ≤ εx and
Wy = (y , vy (s)), −εy ≤ s ≤ εy around (x , vx) and (y , vy )
respectively.

x y

γ
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Outline of Proofs of Lemma 2

3. Let
Nε = {p ∈ S : dist(p, γ) < ε}

4. Let T > 0 be such that

dist(γvx (T ,∞), γ) <
ε

2

dist(γvy (T ,∞), γ) <
ε

2
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Outline of Proofs of Lemma 2

5. γvx and γvy intersect infinitely many times in N ε
4
. Let

γvx (tn) = γvy (sn) be the nth intersection point in N ε
4
.

4
ε 2

ε

x y

εΝ

xvγ
yvγ

γ
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Outline of Proofs of Lemma 2

6. Let
ϕt(Wx(s)) = (σx(t, s), vx(t, s))

and
ϕt(Wy (s)) = (σy (t, s), vy (t, s)).

There exists a subsequence {nk}∞k=1 such that

^(
d

ds
|s=0σx(tnk , s),

d

ds
|s=0σy (snk , s)), k = 1, 2...

are small enough that the second intersection points, say

σx(tnk , εk(x)) = σy (snk , εk(y))

k = 1, 2...., of the curves are within N ε
2
.
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Outline of Proofs of Lemma 2

• Note that the intersection points are on the same side of the
geodesic γ by restricting Wx to [0, εk(x)] or [−ε̃k(x), 0] and
same thing is true for wedge Wy .

7. We know that the Lyapunov length of
ϕt(approximately unstable curves) is a nondecreasing function
of t. So we obtain σx(t, s) ∼ γvx (t) on [0, tnk ] for each
s ∈ [0, εk(x)]. The same is true for the case of y .

8. Similar argument as 11 in proof of Lemma 1 leads to an
infinite family of geodesics γnk , k = 1, 2, ... from x to y such
that dist(γnk |[T ,Lnk−T ], γ) < ε, k = 1, 2, ...
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Open Problems
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Open Problems

1. Find a totally insecure metric on Sn for n > 2.
Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C∞ metrics(not known for Cω) on Sn such that
the geodesic flow is ergodic.

2. If we use the C∞ metric g on S2(before perturbing), is
(S2, g) totally insecure?

3. Can we find a metric g on S2 with positive curvature
everywhere such that (S2, g) is totally insecure?

4. Well-known conjecture: (M, g) is secure =⇒ (M, g) is flat?
Special case: Show there does not exist a secure metric on S2.
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