Real Analytic Metrics on S^{2} with
 Total Absence of Finite Blocking

Lihuei Liu

March 7, 2012

Security

Definition

Let M be a Riemannian manifold. The pair $(x, y) \in M \times M$ is called secure if there exists a finite set $P \subset M \backslash\{x, y\}$ such that every geodesic from x to y passes through a point of P. Such P is called a finite blocking set.

Security

Definition

Let M be a Riemannian manifold. The pair $(x, y) \in M \times M$ is called secure if there exists a finite set $P \subset M \backslash\{x, y\}$ such that every geodesic from x to y passes through a point of P. Such P is called a finite blocking set.

Finite Blocking Set

Insecurity

Definition

(x, y) is insecure if no finite blocking set exists.

Insecurity

Definition

(x, y) is insecure if no finite blocking set exists.
Example

Insecurity

Definition

(x, y) is insecure if no finite blocking set exists.
Example

Definition

(M, g) is totally insecure if each $(x, y) \in M \times M$ is insecure.

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

- For genus > 1, all metrics are totally insecure.

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

- For genus >1, all metrics are totally insecure.
- For genus $=1$, there exists a C^{2}-open and C^{∞}-dense set, \mathcal{G}, of metrics, such that for any $g \in \mathcal{G},(M, g)$ is totally insecure.

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

- For genus > 1, all metrics are totally insecure.
- For genus $=1$, there exists a C^{2}-open and C^{∞}-dense set, \mathcal{G}, of metrics, such that for any $g \in \mathcal{G},(M, g)$ is totally insecure.
- The methods they used show that compact manifolds with negative curvature are totally insecure.

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

- For genus > 1, all metrics are totally insecure.
- For genus $=1$, there exists a C^{2}-open and C^{∞}-dense set, \mathcal{G}, of metrics, such that for any $g \in \mathcal{G},(M, g)$ is totally insecure.
- The methods they used show that compact manifolds with negative curvature are totally insecure.
(2) Flat metrics are secure due to Gutkin and Schroeder(2006).

Remark

Remark

(1) The totally insecurity problem on compact surfaces of genus
≥ 1 is already known due to Bangert-Gutkin(2010).

- For genus > 1, all metrics are totally insecure.
- For genus $=1$, there exists a C^{2}-open and C^{∞}-dense set, \mathcal{G}, of metrics, such that for any $g \in \mathcal{G},(M, g)$ is totally insecure.
- The methods they used show that compact manifolds with negative curvature are totally insecure.
(2) Flat metrics are secure due to Gutkin and Schroeder(2006).
(3) Compact manifolds without conjugate points whose geodesic flows have positive topological entropy are totally insecure due to Burns and Gutkin(2008), independently, Lafont and Schmidt(2007).

Main Result

What happens to the case of compact surfaces with genus zero?

Main Result

What happens to the case of compact surfaces with genus zero?
Question: Is there any smooth totally insecure metric on compact surfaces of genus zero?

Main Result

What happens to the case of compact surfaces with genus zero?
Question: Is there any smooth totally insecure metric on compact surfaces of genus zero?

Theorem (M. Gerber and L. Liu, 2011)
There exists a totally insecure real analytic metric on S^{2}.

Construction of Real Analytic
 Metrics \tilde{g}

Construction of Real Analytic Metrics \tilde{g}

Take two copies of regular hexagons with all right angles on hyperbolic disks.

Construction of Real Analytic Metrics \tilde{g}

Take two copies of regular hexagons with all right angles on hyperbolic disks.

Construction of Real Analytic Metrics \tilde{g}

a. Gluing these two copies together to obtain a pair of pants.

Construction of Real Analytic Metrics \tilde{g}

a. Gluing these two copies together to obtain a pair of pants.

Construction of Real Analytic Metrics \tilde{g}

b. Smoothly adding monotone curvature caps onto it.

Construction of Real Analytic Metrics \tilde{g}

b. Smoothly adding monotone curvature caps onto it.

Construction of Real Analytic Metrics \tilde{g}

Definition

- A cap is defined to be a closed two-dimensional disk with nonnegative curvature such that the boundary is the trace of a real analytic geodesic.

Construction of Real Analytic Metrics \tilde{g}

Definition

- A cap is defined to be a closed two-dimensional disk with nonnegative curvature such that the boundary is the trace of a real analytic geodesic.
- We say that a cap has monotone curvature if it is radially symmetric and its curvature is a nondecreasing function of distance from the boundary.

Construction of Real Analytic Metrics \tilde{g}

We obtain a surface S with C^{∞} Riemannian metric g.

Construction of Real Analytic Metrics \tilde{g}

We obtain a surface S with C^{∞} Riemannian metric g.

The geodesic flow for (S, g) is ergodic by Burns and Gerber(1989).

Construction of Real Analytic Metrics \tilde{g}

The compact surface (S, g) we constructed satifies the following condition: If s is the signed distance from the boundary of a cap $\mathcal{C}=\mathcal{C}_{i}$, for $i \in\{1,2,3\}$, with $s>0$ in the interior of \mathcal{C}, then the curvature with respect to g is s for points in a neighborhood of $\partial \mathcal{C}$.

Construction of Real Analytic Metrics \tilde{g}

The compact surface (S, g) we constructed satifies the following condition: If s is the signed distance from the boundary of a cap $\mathcal{C}=\mathcal{C}_{i}$, for $i \in\{1,2,3\}$, with $s>0$ in the interior of \mathcal{C}, then the curvature with respect to g is s for points in a neighborhood of $\partial \mathcal{C}$.

The above condition implies that g is real analytic in a neighborhood of $\partial \mathcal{C}$.

Construction of Real Analytic Metrics \tilde{g}

The compact surface (S, g) we constructed satifies the following condition: If s is the signed distance from the boundary of a cap $\mathcal{C}=\mathcal{C}_{i}$, for $i \in\{1,2,3\}$, with $s>0$ in the interior of \mathcal{C}, then the curvature with respect to g is s for points in a neighborhood of $\partial \mathcal{C}$.

The above condition implies that g is real analytic in a neighborhood of $\partial \mathcal{C}$.

Theorem (Cartan,1957)
Let S be a compact surface with a real analytic differentiable structure, and let g be a C^{∞} Riemannian metric on S. Suppose that Γ is a union of disjoint closed real analytic curves on S and \mathcal{U} is a neighborhood of Γ on which g is real analytic. Then for any $k \in \mathbb{N}$ there exists a real analytic metric \tilde{g} on S such that g and \tilde{g} agree up to order k on Γ. Moreover, \tilde{g} can be taken arbitrarily to g in the C^{∞} topology.

Construction of Real Analytic Metrics \tilde{g}

c. Applying Cartan's theorem to the surface (S, g), we obtain a real analytic metric \tilde{g} on S such that \tilde{g} and g agree up to second order on $\partial \mathcal{C}$ and \tilde{g} is close to g in the C^{∞} topology.

Construction of Real Analytic Metrics \tilde{g}

c. Applying Cartan's theorem to the surface (S, g), we obtain a real analytic metric \tilde{g} on S such that \tilde{g} and g agree up to second order on $\partial \mathcal{C}$ and \tilde{g} is close to g in the C^{∞} topology.

Theorem (Burns and Gerber,1989)

Let (S, g) be the compact surface we constructed previously. If h is a C^{3} Riemannian metric on S satisfying

- h and g agree to second order on $\partial \mathcal{C}_{i}, i=1,2,3$, and
- h is sufficiently C^{3} close to g everywhere,
then the geodesic flow for h is ergodic with respect to Liouville measure (which is positive on open sets). Moreover the family of metrics $\{h\}$ include real analytic metrics.

Construction of Real Analytic Metrics \tilde{g}

c. Applying Cartan's theorem to the surface (S, g), we obtain a real analytic metric \tilde{g} on S such that \tilde{g} and g agree up to second order on $\partial \mathcal{C}$ and \tilde{g} is close to g in the C^{∞} topology.

Theorem (Burns and Gerber,1989)

Let (S, g) be the compact surface we constructed previously. If h is a C^{3} Riemannian metric on S satisfying

- h and g agree to second order on $\partial \mathcal{C}_{i}, i=1,2,3$, and
- h is sufficiently C^{3} close to g everywhere, then the geodesic flow for h is ergodic with respect to Liouville measure (which is positive on open sets). Moreover the family of metrics $\{h\}$ include real analytic metrics.
d. Therefore the geodesic flow for (S, \tilde{g}) is ergodic.

Construction of a closed geodesic γ on (S, \tilde{g})

Construction of a closed geodesic for \tilde{g}

Construction of a closed geodesic γ in the region \mathcal{N} where the curvature in \mathcal{N} is between $-1-\epsilon$ and $-1+\epsilon$.

Construction of a closed geodesic for g

a. First, we construct a closed geodesic in the region $k=-1$ on (S, g).

Construction of a closed geodesic for g

a. First, we construct a closed geodesic in the region $k=-1$ on (S, g).

Construction of a closed geodesic for \tilde{g}

b. The closed g-geodesic, say γ_{g}, we constructed lies in the region $k=-1$ on (S, g). Thus the orbit of the geodesic flow for g along γ_{g} is transversally hyperbolic.

Construction of a closed geodesic for \tilde{g}

b. The closed g-geodesic, say γ_{g}, we constructed lies in the region $k=-1$ on (S, g). Thus the orbit of the geodesic flow for g along γ_{g} is transversally hyperbolic.
c. By b. there exists a closed \tilde{g}-geodesic γ with self-intersection points in the region \mathcal{N} where $\operatorname{dist}\left(\mathcal{N}, \partial \mathcal{C}_{i}\right)>\delta, i=1,2,3$ for some $\delta>0$.

Existence of asymptotic geodesics to γ on (S, \tilde{g})

Existence of asymptotic geodesics to γ

For each cap $\mathcal{C}_{i}, i=1,2,3$, we choose closed disks \mathcal{D}_{i} and \mathcal{E}_{i} in S that are radially symmetric about the center of \mathcal{C}_{i} for the metric g such that $\mathcal{C}_{i} \subset \operatorname{int} \mathcal{D}_{i}$ and $\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}_{i}$. We require the disks \mathcal{E}_{i} satisfy $\mathcal{E}_{i} \cap \mathcal{E}_{j}=\emptyset$ for $i \neq j$ and the trace of $\gamma \subset S \backslash\left(\cup_{i=1}^{3} \mathcal{E}_{i}\right)$.

Existence of asymptotic geodesics to γ

For each cap $\mathcal{C}_{i}, i=1,2,3$, we choose closed disks \mathcal{D}_{i} and \mathcal{E}_{i} in S that are radially symmetric about the center of \mathcal{C}_{i} for the metric g such that $\mathcal{C}_{i} \subset \operatorname{int} \mathcal{D}_{i}$ and $\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}_{i}$. We require the disks \mathcal{E}_{i} satisfy $\mathcal{E}_{i} \cap \mathcal{E}_{j}=\emptyset$ for $i \neq j$ and the trace of $\gamma \subset S \backslash\left(\cup_{i=1}^{3} \mathcal{E}_{i}\right)$.

Definition

Let $x \in \mathcal{D}=\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}=\operatorname{int} \mathcal{E}_{i}$, for $i=1,2,3$. Let σ be the g-geodesic from x to a point on $\partial \mathcal{E}$ with length $\operatorname{dist}_{g}(x, \partial \mathcal{E})$.

Existence of asymptotic geodesics to γ

For each cap $\mathcal{C}_{i}, i=1,2,3$, we choose closed disks \mathcal{D}_{i} and \mathcal{E}_{i} in S that are radially symmetric about the center of \mathcal{C}_{i} for the metric g such that $\mathcal{C}_{i} \subset \operatorname{int} \mathcal{D}_{i}$ and $\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}_{i}$. We require the disks \mathcal{E}_{i} satisfy $\mathcal{E}_{i} \cap \mathcal{E}_{j}=\emptyset$ for $i \neq j$ and the trace of $\gamma \subset S \backslash\left(\cup_{i=1}^{3} \mathcal{E}_{i}\right)$.

Definition

Let $x \in \mathcal{D}=\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}=\operatorname{int} \mathcal{E}_{i}$, for $i=1,2,3$. Let σ be the g-geodesic from x to a point on $\partial \mathcal{E}$ with length $\operatorname{dist}_{g}(x, \partial \mathcal{E})$.

- If x is not the center of \mathcal{D} in the radially symmetric g-metric, then the unit vector v_{0} in the \tilde{g}-metric that is a positive multiple of $\sigma^{\prime}(0)$ is called a radial vector at x.

Existence of asymptotic geodesics to γ

For each cap $\mathcal{C}_{i}, i=1,2,3$, we choose closed disks \mathcal{D}_{i} and \mathcal{E}_{i} in S that are radially symmetric about the center of \mathcal{C}_{i} for the metric g such that $\mathcal{C}_{i} \subset \operatorname{int} \mathcal{D}_{i}$ and $\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}_{i}$. We require the disks \mathcal{E}_{i} satisfy $\mathcal{E}_{i} \cap \mathcal{E}_{j}=\emptyset$ for $i \neq j$ and the trace of $\gamma \subset S \backslash\left(\cup_{i=1}^{3} \mathcal{E}_{i}\right)$.

Definition

Let $x \in \mathcal{D}=\mathcal{D}_{i} \subset \operatorname{int} \mathcal{E}=\operatorname{int} \mathcal{E}_{i}$, for $i=1,2,3$. Let σ be the g-geodesic from x to a point on $\partial \mathcal{E}$ with length $\operatorname{dist}_{g}(x, \partial \mathcal{E})$.

- If x is not the center of \mathcal{D} in the radially symmetric g-metric, then the unit vector v_{0} in the \tilde{g}-metric that is a positive multiple of $\sigma^{\prime}(0)$ is called a radial vector at x.
- If x is the center of \mathcal{D}, then any $v_{0} \in T_{x}^{1, \tilde{g}} S$ is called a radial vector at x.

Existence of asymptotic geodesics to γ

Lemma

1. For all $x \in S$, there exist v_{+}and $v_{-} \in T_{x}^{1} S$ such that $\gamma_{v_{+}}(t)$ and $\gamma_{v-}(t)$ are asymptotic to γ and $-\gamma$, respectively, as $t \rightarrow \infty$. Moreover, if $x \in \mathcal{D}$, then v_{+}and v_{-}can be chosen to be approximately radial vectors.

Existence of asymptotic geodesics to γ

Lemma

1. For all $x \in S$, there exist v_{+}and $v_{-} \in T_{x}^{1} S$ such that $\gamma_{v_{+}}(t)$ and $\gamma_{v_{-}}(t)$ are asymptotic to γ and $-\gamma$, respectively, as $t \rightarrow \infty$. Moreover, if $x \in \mathcal{D}$, then v_{+}and v_{-}can be chosen to be approximately radial vectors.

Geodesics asymptotic to \curlyvee

Lemma

2. Given $x, y \in S, \varepsilon>0$, there exist $T=T(\varepsilon)$ and an infinite family of distinct unit speed geodesics

$$
\gamma_{n}:\left[0, L_{n}\right] \longrightarrow S, \text { with } L_{n} \longrightarrow \infty
$$

from x to y such that

$$
0<\operatorname{dist}\left(\left.\gamma_{n}\right|_{\left[T, L_{n}-T\right]}, \gamma\right)<\varepsilon
$$

Lemma

2. Given $x, y \in S, \varepsilon>0$, there exist $T=T(\varepsilon)$ and an infinite family of distinct unit speed geodesics

$$
\gamma_{n}:\left[0, L_{n}\right] \longrightarrow S, \text { with } L_{n} \longrightarrow \infty
$$

from x to y such that

$$
0<\operatorname{dist}\left(\left.\gamma_{n}\right|_{\left[T, L_{n}-T\right]}, \gamma\right)<\varepsilon
$$

Lemma

3. If $T>0,(x, z) \in(S, \tilde{g}) \times(S, \tilde{g})$, and $\gamma_{n}:[0, T] \rightarrow(S, \tilde{g}), n=1,2, \cdots$ is an infinite sequence of distinct unit speed geodesics with $\gamma_{n}(0)=x$, then there are at most finitely many positive integers n such that $z \in \gamma_{n}((0, T])$.

Proof of Lemma 3

Proof of Lemma 3

Example

S^{2} with round metric and the ellipsoid of revolution $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{a^{2}}+\frac{x_{3}^{2}}{b^{2}}=1$ in \mathbb{R}^{3} are real analytic surfaces that fail to satisfy the conclusion of Lemma 3.

Proof of Lemma 3

Example

S^{2} with round metric and the ellipsoid of revolution $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{a^{2}}+\frac{x_{3}^{2}}{b^{2}}=1$ in \mathbb{R}^{3} are real analytic surfaces that fail to satisfy the conclusion of Lemma 3.

Theorem (Łojasiewicz, 1964)

Let \mathbb{M} be a connected real analytic surface, \mathbb{K} is a compact subset of \mathbb{M}, and $f: \mathbb{M} \longrightarrow \mathbb{R}$ is a real analytic function that does not vanish identically on \mathbb{M}, then there exist finitely many points $p_{1}, p_{2}, \ldots, p_{n}$ and finitely many real analytic curves $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that

$$
\{z \in \mathbb{K}: f(z)=0\}=\mathbb{K} \cap\left\{\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \cup \alpha_{1} \cup \alpha_{2} \cup \ldots \cup \alpha_{m}\right\} .
$$

Proof of Lemma 3

Proof: Suppose this lemma were false.

Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

Proof of Lemma 3

Proof: Suppose this lemma were false.Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

1. By passing to a subsequence of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ and reindexing, we may assume that $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in(0, T]$ and $\lim _{n \rightarrow \infty} v_{n}=v_{0} \in T_{x}^{1} S$ where $v_{n}=\gamma_{n}^{\prime}(0)$.

Proof of Lemma 3

Proof: Suppose this lemma were false. Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

1. By passing to a subsequence of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ and reindexing, we may assume that $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in(0, T]$ and $\lim _{n \rightarrow \infty} v_{n}=v_{0} \in T_{x}^{1} S$ where $v_{n}=\gamma_{n}^{\prime}(0)$.
2. Let

$$
f(v)=\left(\operatorname{dist}\left(\exp _{x} v, z\right)\right)^{2}
$$

where $v \in T_{x} S$ and $\|v\| \leq T$.

Proof of Lemma 3

Proof: Suppose this lemma were false. Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

1. By passing to a subsequence of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ and reindexing, we may assume that $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in(0, T]$ and $\lim _{n \rightarrow \infty} v_{n}=v_{0} \in T_{x}^{1} S$ where $v_{n}=\gamma_{n}^{\prime}(0)$.
2. Let

$$
f(v)=\left(\operatorname{dist}\left(\exp _{x} v, z\right)\right)^{2}
$$

where $v \in T_{x} S$ and $\|v\| \leq T$.
3. Since \tilde{g} is real analytic, the map $y \mapsto(\operatorname{dist}(y, z))^{2}$ is real analytic in a neighborhood of $z\left(z=\exp _{x} t_{0} v_{0}\right)$.

Proof of Lemma 3

Proof: Suppose this lemma were false. Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

1. By passing to a subsequence of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ and reindexing, we may assume that $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in(0, T]$ and $\lim _{n \rightarrow \infty} v_{n}=v_{0} \in T_{x}^{1} S$ where $v_{n}=\gamma_{n}^{\prime}(0)$.
2. Let

$$
f(v)=\left(\operatorname{dist}\left(\exp _{x} v, z\right)\right)^{2}
$$

where $v \in T_{x} S$ and $\|v\| \leq T$.
3. Since \tilde{g} is real analytic, the map $y \mapsto(\operatorname{dist}(y, z))^{2}$ is real analytic in a neighborhood of $z\left(z=\exp _{x} t_{0} v_{0}\right)$.
4. There exists an open $\operatorname{disk} \mathcal{M}$ about $t_{0} v_{0}$ in $T_{x} S$ such that $\left.f\right|_{\mathcal{M}}$ is real analytic. Let \mathcal{K} be a closed disk about $t_{0} v_{0}$ that is contained in \mathcal{M}.

Proof of Lemma 3

Proof: Suppose this lemma were false. Then there exists an infinite sequence $\gamma_{n}:[0, T] \rightarrow S$ of unit speed geodesics with $\gamma_{n}(0)=x$ and $\gamma_{n}\left(t_{n}\right)=z$ for some $t_{n} \in(0, T]$.

1. By passing to a subsequence of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ and reindexing, we may assume that $\lim _{n \rightarrow \infty} t_{n}=t_{0} \in(0, T]$ and $\lim _{n \rightarrow \infty} v_{n}=v_{0} \in T_{x}^{1} S$ where $v_{n}=\gamma_{n}^{\prime}(0)$.
2. Let

$$
f(v)=\left(\operatorname{dist}\left(\exp _{x} v, z\right)\right)^{2}
$$

where $v \in T_{x} S$ and $\|v\| \leq T$.
3. Since \tilde{g} is real analytic, the map $y \mapsto(\operatorname{dist}(y, z))^{2}$ is real analytic in a neighborhood of $z\left(z=\exp _{x} t_{0} v_{0}\right)$.
4. There exists an open $\operatorname{disk} \mathcal{M}$ about $t_{0} v_{0}$ in $T_{x} S$ such that $\left.f\right|_{\mathcal{M}}$ is real analytic. Let \mathcal{K} be a closed disk about $t_{0} v_{0}$ that is contained in \mathcal{M}.

Proof of Lemma 3

5. Since $f(v)=0$ for infinitely many $v^{\prime} s$ in \mathcal{K}, by theorem there exists a curve $\alpha(s),-\delta<s<\delta$ in $T_{x} S$ such that $f(\alpha(s))=0,-\delta<s<\delta$.

Proof of Lemma 3

5. Since $f(v)=0$ for infinitely many $v^{\prime} s$ in \mathcal{K}, by theorem there exists a curve $\alpha(s),-\delta<s<\delta$ in $T_{x} S$ such that $f(\alpha(s))=0,-\delta<s<\delta$.
6. For each $s, \exp _{x}(t \alpha(s)), 0 \leq t \leq 1$ is a geodesic from x to z.

Proof of Lemma 3

5. Since $f(v)=0$ for infinitely many $v^{\prime} s$ in \mathcal{K}, by theorem there exists a curve $\alpha(s),-\delta<s<\delta$ in $T_{x} S$ such that $f(\alpha(s))=0,-\delta<s<\delta$.
6. For each $s, \exp _{x}(t \alpha(s)), 0 \leq t \leq 1$ is a geodesic from x to z.
7. By the first variation formula for arc length, $\frac{d}{d s}\|\alpha(s)\| \equiv 0$. That implies there exists $L>0$ such that $\|\alpha(s)\| \equiv L$.

Proof of Lemma 3

5. Since $f(v)=0$ for infinitely many $v^{\prime} s$ in \mathcal{K}, by theorem there exists a curve $\alpha(s),-\delta<s<\delta$ in $T_{x} S$ such that $f(\alpha(s))=0,-\delta<s<\delta$.
6. For each $s, \exp _{x}(t \alpha(s)), 0 \leq t \leq 1$ is a geodesic from x to z.
7. By the first variation formula for arc length, $\frac{d}{d s}\|\alpha(s)\| \equiv 0$. That implies there exists $L>0$ such that $\|\alpha(s)\| \equiv L$.
8. f vanishes on an arc of the circle $\left\{v \in T_{x} S:\|v\|=L\right\}$. It follows that f vanishes on the circle $\left\{v \in T_{x} S:\|v\|=L\right\}$.

Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.

Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.

Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.

10. Same argument shows 9 with x and z switched.

Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.

10. Same argument shows 9 with x and z switched.
11. It follows that every geodesic starting at x hits z infinitely many times.

Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.

10. Same argument shows 9 with x and z switched.
11. It follows that every geodesic starting at x hits z infinitely many times.
12. By Lemma 1, there exists a geodesic starting at x that becomes asymptotic to γ, which contradicts 11 .

Proof of Theorem

Proof of Theorem

Fact: A pair of points (x, y) is insecure if there exists an infinite family of geodesics $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ from x to y such that no three of $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ are concurrent at any point except x and y.

Proof of Theorem

Proof: Let $(x, y) \in S \times S$. We want to show that there exist an infinite family of geodesics from x to y such that no three are concurrent at any point except at x and y.

Proof of Theorem

Proof: Let $(x, y) \in S \times S$. We want to show that there exist an infinite family of geodesics from x to y such that no three are concurrent at any point except at x and y.

1. By induction, suppose we have $\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}$ such that no three are concurrent except at x and y.

Proof of Theorem

Proof: Let $(x, y) \in S \times S$. We want to show that there exist an infinite family of geodesics from x to y such that no three are concurrent at any point except at x and y.

1. By induction, suppose we have $\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}$ such that no three are concurrent except at x and y.
2. We want to produce another geodesic γ_{k+1} joining x to y such that no three of $\left\{\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}, \gamma_{k+1}\right\}$ are concurrent except at x and y.

Proof of Theorem

Proof: Let $(x, y) \in S \times S$. We want to show that there exist an infinite family of geodesics from x to y such that no three are concurrent at any point except at x and y.

1. By induction, suppose we have $\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}$ such that no three are concurrent except at x and y.
2. We want to produce another geodesic γ_{k+1} joining x to y such that no three of $\left\{\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}, \gamma_{k+1}\right\}$ are concurrent except at x and y.
3. Let $z_{1}, z_{2}, \ldots . z_{m}$ be the set of points in $S \backslash\{x, y\}$ that are intersection points of the $\gamma_{i}, \gamma_{j}, 1 \leq i<j \leq k$.

Proof of Theorem

Proof: Let $(x, y) \in S \times S$. We want to show that there exist an infinite family of geodesics from x to y such that no three are concurrent at any point except at x and y.

1. By induction, suppose we have $\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}$ such that no three are concurrent except at x and y.
2. We want to produce another geodesic γ_{k+1} joining x to y such that no three of $\left\{\gamma_{1}, \gamma_{2}, \ldots ., \gamma_{k}, \gamma_{k+1}\right\}$ are concurrent except at x and y.
3. Let $z_{1}, z_{2}, \ldots . z_{m}$ be the set of points in $S \backslash\{x, y\}$ that are intersection points of the $\gamma_{i}, \gamma_{j}, 1 \leq i<j \leq k$.
4. Let

$$
\begin{gathered}
\Sigma=\{p: p \text { is a self intersection point of } \gamma\} \\
\alpha_{1}=\min \left\{\operatorname{dist}\left(z_{i}, \gamma\right): z_{i} \notin \gamma, 1 \leq i \leq m\right\} \\
\alpha_{2}=\min \left\{\operatorname{dist}\left(z_{i}, \Sigma\right): z_{i} \in \gamma, z_{i} \notin \Sigma, 1 \leq i \leq m\right\} \\
\alpha=\min \left\{\alpha_{1}, \alpha_{2}\right\}>0 .
\end{gathered}
$$

Proof of Theorem

5. We apply Lemma 2 with $\varepsilon<\alpha$ to obtain an infinite family of distinct unit speed geodesics

$$
\sigma_{n}:\left[0, L_{n}\right] \longrightarrow S
$$

from x to y such that

$$
0<\operatorname{dist}\left(\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}, \gamma\right)<\varepsilon
$$

Proof of Theorem

5. We apply Lemma 2 with $\varepsilon<\alpha$ to obtain an infinite family of distinct unit speed geodesics

$$
\sigma_{n}:\left[0, L_{n}\right] \longrightarrow S
$$

from x to y such that

$$
0<\operatorname{dist}\left(\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}, \gamma\right)<\varepsilon
$$

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \notin \gamma\right\}=\emptyset .
$$

Proof of Theorem

5. We apply Lemma 2 with $\varepsilon<\alpha$ to obtain an infinite family of distinct unit speed geodesics

$$
\sigma_{n}:\left[0, L_{n}\right] \longrightarrow S
$$

from x to y such that

$$
0<\operatorname{dist}\left(\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}, \gamma\right)<\varepsilon
$$

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \notin \gamma\right\}=\emptyset .
$$

- Let

$$
\Omega=\left\{q:\left.q \in \sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap \text { the image of } \gamma, n=1,2, \ldots\right\} .
$$

We have

$$
0<\operatorname{dist}(\Omega, \Sigma)<C \varepsilon
$$

where $C>0$ is independent of n.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

- $\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}$ doesn't meet any of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

- $\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}$ doesn't meet any of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.
- If infinitely many of $\left\{\left.\sigma_{n}\right|_{[0, T]}: n=1,2, \ldots\right\}$ meet one of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$, then infinitely many of them would go through the same point, which is a contraction to Lemma 3.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

- $\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}$ doesn't meet any of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.
- If infinitely many of $\left\{\left.\sigma_{n}\right|_{[0, T]}: n=1,2, \ldots\right\}$ meet one of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$, then infinitely many of them would go through the same point, which is a contraction to Lemma 3.
- The argument holds for the family $\left\{\left.\sigma_{n}\right|_{\left[L_{n}-T, L_{n}\right]}: n=1,2, \ldots\right\}$.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

- $\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}$ doesn't meet any of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.
- If infinitely many of $\left\{\left.\sigma_{n}\right|_{[0, T]}: n=1,2, \ldots\right\}$ meet one of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$, then infinitely many of them would go through the same point, which is a contraction to Lemma 3.
- The argument holds for the family $\left\{\left.\sigma_{n}\right|_{\left[L_{n}-T, L_{n}\right]}: n=1,2, \ldots\right\}$.
- We can pick γ_{k+1} from the collection $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ such that no three of $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k+1}\right\}$ are concurrent except at x and y.

Proof of Theorem

It follows that

$$
\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]} \cap\left\{z_{i}: z_{i} \in \gamma\right\}=\emptyset
$$

if we choose ε small enough that $C \varepsilon<\alpha$.

- $\left.\sigma_{n}\right|_{\left[T, L_{n}-T\right]}$ doesn't meet any of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$.
- If infinitely many of $\left\{\left.\sigma_{n}\right|_{[0, T]}: n=1,2, \ldots\right\}$ meet one of $\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$, then infinitely many of them would go through the same point, which is a contraction to Lemma 3.
- The argument holds for the family $\left\{\left.\sigma_{n}\right|_{\left[L_{n}-T, L_{n}\right]}: n=1,2, \ldots\right\}$.
- We can pick γ_{k+1} from the collection $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ such that no three of $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k+1}\right\}$ are concurrent except at x and y.

6. Thus by induction we obtain an infinite family of geodesics from x to y such that no three are concurrent except at x and y.

Construction of Cones and Line Fields

Construction of Cones and Line Fields

Recall that a Riemannian metric $<,>$ on S induces a Riemannian metric on TS:

$$
\ll \xi, \eta \gg=<\xi_{H}, \eta_{H}>+<\xi_{v}, \eta_{V}>
$$

where H and V denote the horizontal and vertical components respectively.

Construction of Cones and Line Fields

Recall that a Riemannian metric $<,>$ on S induces a Riemannian metric on TS:

$$
\ll \xi, \eta \gg=<\xi_{H}, \eta_{H}>+<\xi_{V}, \eta_{V}>
$$

where H and V denote the horizontal and vertical components respectively.

Let $\xi \in T_{w} T S$ and $\sigma(t)=(p(t), W(t))$ be a curve in $T S$ that is tangent to ξ at w.

Construction of Cones and Line Fields

$$
\begin{aligned}
& W(t) \in T_{p(t)} S \\
& \xi \leftrightarrow\left(\xi_{H}, \xi_{V}\right) \\
& \xi_{H}=p^{\prime}(0) \\
& \xi_{V}=\left.\frac{D}{d t}\right|_{t=0} W(t)
\end{aligned}
$$

Construction of Cones and Line Fields

$$
\begin{aligned}
& W(t) \in T_{p(t)} S \\
& \xi \leftrightarrow\left(\xi_{H}, \xi_{V}\right) \\
& \xi_{H}=p^{\prime}(0) \\
& \xi_{V}=\left.\frac{D}{d t}\right|_{t=0} W(t)
\end{aligned}
$$

We identify ξ with $\left(\xi_{H}, \xi_{V}\right)$.

Construction of Cones and Line Fields

Example

Point curve at x

Construction of Cones and Line Fields

Let $w \in T^{1} S$ and set

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\} .
$$

Construction of Cones and Line Fields

Let $w \in T^{1} S$ and set

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\}
$$

- Note that $\left\langle\xi_{V}, w\right\rangle=0$ is always true for $\xi \in T_{w} T^{1} S$. So $P(w)$ is a 2-dimensional subspace of $T_{w} T^{1} S$.

Construction of Cones and Line Fields

Let $w \in T^{1} S$ and set

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\}
$$

- Note that $\left\langle\xi_{V}, w\right\rangle=0$ is always true for $\xi \in T_{w} T^{1} S$. So $P(w)$ is a 2-dimensional subspace of $T_{w} T^{1} S$.
- $P(w)$ is the orthogonal complement of the tangent vector to the geodesic flow in $T_{w} T^{1} S$.

Construction of Cones and Line Fields

Let $w \in T^{1} S$ and set

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\} .
$$

- Note that $\left\langle\xi_{V}, w\right\rangle=0$ is always true for $\xi \in T_{w} T^{1} S$. So $P(w)$ is a 2-dimensional subspace of $T_{w} T^{1} S$.
- $P(w)$ is the orthogonal complement of the tangent vector to the geodesic flow in $T_{w} T^{1} S$.
- Let $\xi \in T_{w} T^{1} S$. If $J(t)$ is a Jacobi field along the geodesic $\gamma_{w}(t)$ with $\xi_{H}=J(0)$ and $\xi_{V}=J^{\prime}(0)$, then $J(t) \perp \gamma_{w}^{\prime}(t)$ for all t.

Construction of Cones and Line Fields

Let $w \in T^{1} S$ and set

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\} .
$$

- Note that $\left.<\xi_{V}, w\right\rangle=0$ is always true for $\xi \in T_{w} T^{1} S$. So $P(w)$ is a 2-dimensional subspace of $T_{w} T^{1} S$.
- $P(w)$ is the orthogonal complement of the tangent vector to the geodesic flow in $T_{w} T^{1} S$.
- Let $\xi \in T_{w} T^{1} S$. If $J(t)$ is a Jacobi field along the geodesic $\gamma_{w}(t)$ with $\xi_{H}=J(0)$ and $\xi_{V}=J^{\prime}(0)$, then $J(t) \perp \gamma_{w}^{\prime}(t)$ for all t.
- If φ^{t} is the geodesic flow on $T^{1} S$, then the distribution P is invariant under $d \varphi^{t}$.

Construction of Cones and Line Fields

The distribution P is invariant under $d \varphi^{t}$

Construction of Cones and Line Fields

Let $\xi \in T_{w} T^{1} S$ and $J(t)$ be a perpendicular Jacobi field along the geodesic $\gamma_{w}(t)$ with $J(0)=\xi_{H}$ and $J^{\prime}(0)=\xi_{V}$.

Construction of Cones and Line Fields

Let $\xi \in T_{w} T^{1} S$ and $J(t)$ be a perpendicular Jacobi field along the geodesic $\gamma_{w}(t)$ with $J(0)=\xi_{H}$ and $J^{\prime}(0)=\xi_{V}$. Then $J(t)=j(t) N(t)$ where $N(t)$ is a normal field along $\gamma_{w}(t)$ and $j(t)$ satisfies the scalar Jacobi equation:

$$
j^{\prime \prime}(t)+K\left(\gamma_{w}(t)\right) j(t)=0
$$

where K is the Gaussian curvature of the surface S.

Construction of Cones and Line Fields

From the usual procedure for constructing horocycles (limit curves of geodesic circles) in regions of nonpositive curvature, we know that for each $x \in \mathcal{D}_{i} \backslash \mathcal{C}_{i}$ there exist exactly two vectors $v_{x, j} \in T_{x}^{1} S, j=1,2$ (corresponding to two possible orientations on $\partial \mathcal{C}_{i}$) such that

- $\gamma_{v_{x, j}}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for all $t<0$,
- $\gamma_{v_{x, j}}$ is asymptotic to $\partial \mathcal{C}_{i}$ as $t \rightarrow-\infty$.

Construction of Cones and Line Fields

From the usual procedure for constructing horocycles (limit curves of geodesic circles) in regions of nonpositive curvature, we know that for each $x \in \mathcal{D}_{i} \backslash \mathcal{C}_{i}$ there exist exactly two vectors $v_{x, j} \in T_{x}^{1} S, j=1,2$ (corresponding to two possible orientations on $\partial \mathcal{C}_{i}$) such that

- $\gamma_{v_{x, j}}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for all $t<0$,
- $\gamma_{v_{x, j}}$ is asymptotic to $\partial \mathcal{C}_{i}$ as $t \rightarrow-\infty$.

Consider $x \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ and $x \in \mathcal{C}_{i}$.

Construction of Cones and Line Fields

Case $1 x \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$

Construction of Cones and Line Fields

Case $1 x \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$
If $w \in T_{x}^{1} S, w \neq v_{x, j}, j=1,2$, then $\gamma_{w}(t)$ exits \mathcal{D}_{i} in negative time. So one of the following must occur:

- There exists $a<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, 0]$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$;
- There exist $a<c<d<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, c) \cup(d, 0], \gamma_{w}(t) \in \operatorname{int} \mathcal{C}_{i}$ for $t \in(c, d)$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$

Construction of Cones and Line Fields

Case $1 x \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ If $w \in T_{x}^{1} S, w \neq v_{x, j}, j=1,2$, then $\gamma_{w}(t)$ exits \mathcal{D}_{i} in negative time. So one of the following must occur:

- There exists $a<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, 0]$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$;
- There exist $a<c<d<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, c) \cup(d, 0], \gamma_{w}(t) \in \operatorname{int} \mathcal{C}_{i}$ for $t \in(c, d)$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$
Case $2 x \in \mathcal{C}_{i}$

Construction of Cones and Line Fields

Case $1 x \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$
If $w \in T_{x}^{1} S, w \neq v_{x, j}, j=1,2$, then $\gamma_{w}(t)$ exits \mathcal{D}_{i} in negative time. So one of the following must occur:

- There exists $a<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, 0]$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$;
- There exist $a<c<d<0$ such that $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, c) \cup(d, 0], \gamma_{w}(t) \in \operatorname{int} \mathcal{C}_{i}$ for $t \in(c, d)$ and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$
Case $2 x \in \mathcal{C}_{i}$
If $w \in T_{x}^{1} S \backslash T^{1}\left(\partial \mathcal{C}_{i}\right)$, then $\gamma_{w}(t)$ exits \mathcal{D}_{i} in negative time. So we have:
- There exist $a<c \leq 0$ such that $\gamma_{w}(t) \in \operatorname{int} \mathcal{C}_{i}$ for $c<t<0$, $\gamma_{w}(t) \in \operatorname{int}\left(\mathcal{D}_{i} \backslash \mathcal{C}_{i}\right)$ for $t \in(a, c)$, and $\gamma_{w}(a) \in \partial \mathcal{D}_{i}$.

Construction of Cones and Line Fields

Definition

For $w \in T_{x}^{1} S$, we define cones $\mathcal{K}_{w}^{+}, \mathcal{K}_{w}^{-} \subset P(w)$ by

$$
\mathcal{K}_{w}^{+}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \geq 0\right\}
$$

and

$$
\mathcal{K}_{w}^{-}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \leq 0\right\}
$$

Construction of Cones and Line Fields

Definition

For $w \in T_{x}^{1} S$, we define cones $\mathcal{K}_{w}^{+}, \mathcal{K}_{w}^{-} \subset P(w)$ by

$$
\mathcal{K}_{w}^{+}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \geq 0\right\}
$$

and

$$
\mathcal{K}_{w}^{-}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \leq 0\right\} .
$$

The \mathcal{K}_{w}^{+}cones correspond to perpendicular Jacobi fields with $j j^{\prime} \geq 0$.

Construction of Cones and Line Fields

Definition

For $w \in T_{x}^{1} S$, we define cones $\mathcal{K}_{w}^{+}, \mathcal{K}_{w}^{-} \subset P(w)$ by

$$
\mathcal{K}_{w}^{+}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \geq 0\right\}
$$

and

$$
\mathcal{K}_{w}^{-}=\left\{\xi \in P(w):\left\langle\xi_{H}, \xi_{V}\right\rangle \leq 0\right\} .
$$

The \mathcal{K}_{w}^{+}cones correspond to perpendicular Jacobi fields with $j j^{\prime} \geq 0$.
Definition
a. If $x \in \operatorname{int} \mathcal{D}$, for $\mathcal{D}=\mathcal{D}_{i}, i \in\{1,2,3\}$ and $w \in T_{x}^{1} S$ is such that there exists $a<0$ with $\gamma_{w}(t) \in \operatorname{int} \mathcal{D}$ for $t \in(a, 0]$ and $\gamma_{w}(a) \in \partial \mathcal{D}$, we define the unstable cone \mathcal{K}_{w}^{u} by,

$$
\mathcal{K}_{w}^{u}=d \varphi^{-a} \mathcal{K}_{\gamma_{w}^{\prime}(a)}^{+}
$$

Construction of Cones and Line Fields

b. For all other $w \in T^{1} S$, we define

$$
\mathcal{K}_{w}^{u}=\mathcal{K}_{w}^{+}
$$

Construction of Cones and Line Fields

b. For all other $w \in T^{1} S$, we define

$$
\mathcal{K}_{w}^{u}=\mathcal{K}_{w}^{+} .
$$

Similarly we define the stable cone \mathcal{K}^{s} as follows.

Definition

a. If $x \in \operatorname{int} \mathcal{D}$, for $\mathcal{D}=\mathcal{D}_{i}, i \in\{1,2,3\}$ and $w \in T_{x}^{1} S$ is such that there exists $b>0$ with $\gamma_{w}(t) \in \operatorname{int} \mathcal{D}$ for $t \in[0, b)$ and $\gamma_{w}(b) \in \partial \mathcal{D}$, we define the stable cone \mathcal{K}_{w}^{s} by,

$$
\mathcal{K}_{w}^{s}=d \varphi^{-b} \mathcal{K}_{\gamma_{w}^{\prime}(b)}^{-}
$$

b. For all other $w \in T^{1} S$, we define

$$
\mathcal{K}_{w}^{s}=\mathcal{K}_{w}^{-}
$$

Construction of Cones and Line Fields

The unstable(stable) cones are invariant for $d \varphi^{t}, t \geq 0(t \leq 0)$. That is,

$$
\begin{aligned}
& d \varphi^{t} \mathcal{K}_{w}^{u} \subset \mathcal{K}_{\varphi^{t} w}^{u}, \text { for } t \geq 0 \\
& d \varphi^{t} \mathcal{K}_{w}^{s} \subset \mathcal{K}_{\varphi^{t} w}^{s}, \text { for } t \leq 0
\end{aligned}
$$

Moreover, if the basepoint of $\varphi^{\bar{\tau}} w$, for some $\bar{t} \in(0, t)$, lies outside \mathcal{D}, then

$$
\begin{aligned}
& d \varphi^{t} \mathcal{K}_{w}^{u} \subset \operatorname{int} \mathcal{K}_{\varphi^{t} w}^{u}, \text { for } t>0, \\
& d \varphi^{t} \mathcal{K}_{w}^{s} \subset \operatorname{int} \mathcal{K}_{\varphi^{t} w}^{s}, \text { for } t<0 .
\end{aligned}
$$

Construction of Cones and Line Fields

Let

$$
\mathcal{N}_{0}=S \backslash \cup_{i=1}^{3} \mathcal{D}_{i}
$$

$$
\left(j j^{\prime}\right)^{\prime}=\left(j^{\prime}\right)^{2}+j j^{\prime \prime}=\left(j^{\prime}\right)^{2}-K j^{2}>0 \text { if } K<0 .
$$

Construction of Cones and Line Fields

Let $w \in T^{1} S$. Note that $\left\{d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)\right\}_{t>0}$ is a nested sequence of cones. We define

$$
E_{w}^{u}=\bigcap_{t>0} d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)
$$

Construction of Cones and Line Fields

Let $w \in T^{1} S$. Note that $\left\{d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)\right\}_{t>0}$ is a nested sequence of cones. We define

$$
E_{w}^{u}=\bigcap_{t>0} d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)
$$

a. E_{w}^{u} is a line on $P(w)$.

Construction of Cones and Line Fields

Let $w \in T^{1} S$. Note that $\left\{d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{U}\right)\right\}_{t>0}$ is a nested sequence of cones. We define

$$
E_{w}^{u}=\bigcap_{t>0} d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)
$$

a. E_{w}^{u} is a line on $P(w)$.
b. The line field $\left\{E_{w}^{u}, w \in T^{1} S\right\}$ obtained from the unstable cone family is continuous at $w \in T^{1} S \backslash T^{1}\left(\cup_{i=1}^{3} \partial \mathcal{C}_{i}\right)$.

Construction of Cones and Line Fields

Let $w \in T^{1} S$. Note that $\left\{d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{U}\right)\right\}_{t>0}$ is a nested sequence of cones. We define

$$
E_{w}^{u}=\bigcap_{t>0} d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)
$$

a. E_{w}^{u} is a line on $P(w)$.
b. The line field $\left\{E_{w}^{u}, w \in T^{1} S\right\}$ obtained from the unstable cone family is continuous at $w \in T^{1} S \backslash T^{1}\left(\cup_{i=1}^{3} \partial \mathcal{C}_{i}\right)$.
c. We can integrate the line field to produce curves which we call the unstable curves.

Construction of Cones and Line Fields

Let $w \in T^{1} S$. Note that $\left\{d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)\right\}_{t>0}$ is a nested sequence of cones. We define

$$
E_{w}^{u}=\bigcap_{t>0} d \varphi^{t}\left(\mathcal{K}_{\varphi^{-t}(w)}^{u}\right)
$$

a. E_{w}^{u} is a line on $P(w)$.
b. The line field $\left\{E_{w}^{u}, w \in T^{1} S\right\}$ obtained from the unstable cone family is continuous at $w \in T^{1} S \backslash T^{1}\left(\cup_{i=1}^{3} \partial \mathcal{C}_{i}\right)$.
c. We can integrate the line field to produce curves which we call the unstable curves.
Similarly we can define the stable cone

$$
\mathcal{K}_{w}^{s}=\overline{P(w) \backslash \mathcal{K}_{w}^{u}}
$$

and the stable line field

$$
E_{w}^{s}=\bigcap_{t>0} d \varphi^{-t}\left(\mathcal{K}_{\varphi^{t}(w)}^{s}\right)
$$

Construction of Cones and Line Fields

Lyapunov Function

Construction of Cones and Line Fields

Lyapunov Function

For $w \in T^{1} S$, let

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\}
$$

Construction of Cones and Line Fields

Lyapunov Function

For $w \in T^{1} S$, let

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\} .
$$

Let $\xi \in P(w)$. Consider the coordinates (u, v) in the $\left(j, j^{\prime}\right)$ coordinate system.

Construction of Cones and Line Fields

Lyapunov Function

For $w \in T^{1} S$, let

$$
P(w)=\left\{\xi \in T_{w} T^{1} S:<\xi_{H}, w>=0=<\xi_{V}, w>\right\}
$$

Let $\xi \in P(w)$. Consider the coordinates (u, v) in the $\left(j, j^{\prime}\right)$ coordinate system.
Define the Lyapunov function by

$$
Q(\xi)=\operatorname{sgn}(u v) \sqrt{|u v|}
$$

Then

$$
Q(\xi) \leq\|\xi\|=\sqrt{u^{2}+v^{2}}
$$

Construction of Cones and Line Fields

Lyapunov Length

Construction of Cones and Line Fields

Lyapunov Length

Suppose $\sigma(s), \tau_{1} \leq s \leq \tau_{2}$, is a curve in $T^{1} S$ such that $\sigma^{\prime}(s) \in P(w)$. We define the Lyapunov length of σ by

Construction of Cones and Line Fields

Lyapunov Length

Suppose $\sigma(s), \tau_{1} \leq s \leq \tau_{2}$, is a curve in $T^{1} S$ such that $\sigma^{\prime}(s) \in P(w)$. We define the Lyapunov length of σ by

$$
\mathcal{L}_{Q}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left|Q\left(\sigma^{\prime}(s)\right)\right| d s
$$

Construction of Cones and Line Fields

Lyapunov Length

Suppose $\sigma(s), \tau_{1} \leq s \leq \tau_{2}$, is a curve in $T^{1} S$ such that $\sigma^{\prime}(s) \in P(w)$. We define the Lyapunov length of σ by

$$
\mathcal{L}_{Q}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left|Q\left(\sigma^{\prime}(s)\right)\right| d s
$$

The usual length of σ is defined by

$$
\mathcal{L}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left\|\sigma^{\prime}(s)\right\| d s
$$

Construction of Cones and Line Fields

Lyapunov Length

Suppose $\sigma(s), \tau_{1} \leq s \leq \tau_{2}$, is a curve in $T^{1} S$ such that $\sigma^{\prime}(s) \in P(w)$. We define the Lyapunov length of σ by

$$
\mathcal{L}_{Q}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left|Q\left(\sigma^{\prime}(s)\right)\right| d s
$$

The usual length of σ is defined by

$$
\mathcal{L}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left\|\sigma^{\prime}(s)\right\| d s
$$

- If σ is a approximately unstable curve $\left(\sigma^{\prime}(s) \in \mathcal{K}_{\sigma(s)}^{u}\right)$, then $\mathcal{L}_{Q}\left(\varphi^{-t}(\sigma)\right)$ is a decreasing function of t.

Construction of Cones and Line Fields

Lyapunov Length

Suppose $\sigma(s), \tau_{1} \leq s \leq \tau_{2}$, is a curve in $T^{1} S$ such that $\sigma^{\prime}(s) \in P(w)$. We define the Lyapunov length of σ by

$$
\mathcal{L}_{Q}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left|Q\left(\sigma^{\prime}(s)\right)\right| d s
$$

The usual length of σ is defined by

$$
\mathcal{L}(\sigma)=\int_{\tau_{1}}^{\tau_{2}}\left\|\sigma^{\prime}(s)\right\| d s
$$

- If σ is a approximately unstable curve $\left(\sigma^{\prime}(s) \in \mathcal{K}_{\sigma(s)}^{u}\right)$, then $\mathcal{L}_{Q}\left(\varphi^{-t}(\sigma)\right)$ is a decreasing function of t.
- If σ is a approximately stable curve $\left(\sigma^{\prime}(s) \in \mathcal{K}_{\sigma(s)}^{s}\right)$, then $\mathcal{L}_{Q}\left(\varphi^{t}(\sigma)\right)$ is a decreasing function of t.

Outline of Proofs of Parts of Lemma 1 and Lemma 2

Outline of Proofs of Lemma 1

1. Take a tubular neighborhood \mathcal{N}_{0} of γ. Let V be the vector field on \mathcal{N}_{0} such that every geodesic σ with $\sigma^{\prime}(0)=V(\sigma(0))$, is asymptotic to γ.

Outline of Proofs of Lemma 1

1. Take a tubular neighborhood \mathcal{N}_{0} of γ. Let V be the vector field on \mathcal{N}_{0} such that every geodesic σ with $\sigma^{\prime}(0)=V(\sigma(0))$, is asymptotic to γ.

unstable curve

Outline of Proofs of Lemma 1

1. Take a tubular neighborhood \mathcal{N}_{0} of γ. Let V be the vector field on \mathcal{N}_{0} such that every geodesic σ with $\sigma^{\prime}(0)=V(\sigma(0))$, is asymptotic to γ.

unstable curve
2. Take a wedge around $\left(x, v_{0}\right), \mathcal{W}(s)=(x, v(s)),\|v(s)\| \equiv 1$, $-\varepsilon \leq s \leq \varepsilon$. Consider the flow $\varphi^{t}(\mathcal{W}(s))$.

Outline of Proofs of Lemma 1

3. If $x \in \mathcal{D}$ then v_{0} is chosen to be an approximately radial vector so that $\mathcal{W}^{\prime}(s)$ is in the unstable cone $\mathcal{K}_{\mathcal{W}(s)}^{u}$.

Outline of Proofs of Lemma 1

3. If $x \in \mathcal{D}$ then v_{0} is chosen to be an approximately radial vector so that $\mathcal{W}^{\prime}(s)$ is in the unstable cone $\mathcal{K}_{\mathcal{W}(s)}^{u}$.
4. Let $0<t_{0}<\tilde{t}_{0}<\tilde{t}_{1}<t_{1}$. Consider

$$
\mathcal{A}=\left\{\varphi^{t}(\mathcal{W}(s)):-\varepsilon \leq s \leq \varepsilon, t_{0} \leq t \leq t_{1}\right\}
$$

and
$\tilde{\mathcal{A}}=\delta$-neighborhood of $\left\{\varphi^{t}(\mathcal{W}(s)):-\frac{\varepsilon}{2} \leq s \leq \frac{\varepsilon}{2}, \tilde{t}_{0} \leq t \leq \tilde{t}_{1}\right\}$.

Outline of Proofs of Lemma 1

3. If $x \in \mathcal{D}$ then v_{0} is chosen to be an approximately radial vector so that $\mathcal{W}^{\prime}(s)$ is in the unstable cone $\mathcal{K}_{\mathcal{W}(s)}^{u}$.
4. Let $0<t_{0}<\tilde{t}_{0}<\tilde{t}_{1}<t_{1}$. Consider

$$
\mathcal{A}=\left\{\varphi^{t}(\mathcal{W}(s)):-\varepsilon \leq s \leq \varepsilon, t_{0} \leq t \leq t_{1}\right\}
$$

and
$\tilde{\mathcal{A}}=\delta$-neighborhood of $\left\{\varphi^{t}(\mathcal{W}(s)):-\frac{\varepsilon}{2} \leq s \leq \frac{\varepsilon}{2}, \tilde{t}_{0} \leq t \leq \tilde{t}_{1}\right\}$.
5. For δ sufficiently small, every vector $w \in \tilde{\mathcal{A}}$ can be joined to a vector in \mathcal{A} by a stable curve.

Outline of Proofs of Lemma 1

6. Let $0<\varepsilon_{0}$. Let

$$
\begin{gathered}
\mathcal{U}_{0}=\left\{v \in T_{p}^{1} S, p \in \mathcal{N}_{0}: \varangle(v, V(p))<\varepsilon_{0},\left\langle v, \frac{\partial}{\partial \tau_{1}}\right\rangle<\varepsilon_{0}\right. \\
\left.\quad \text { and }\left\langle v, \frac{\partial}{\partial \tau_{2}}\right\rangle>\left\langle V(p), \frac{\partial}{\partial \tau_{2}}\right\rangle\right\}
\end{gathered}
$$

where $\left(\tau_{1}, \tau_{2}\right)$ is a Fermi coordinate on \mathcal{N}_{0}. Let \mathcal{U}_{1} be an open set such that $\overline{\mathcal{U}_{1}} \subset \mathcal{U}_{0}$.

Outline of Proofs of Lemma 1

6. Let $0<\varepsilon_{0}$. Let

$$
\begin{gathered}
\mathcal{U}_{0}=\left\{v \in T_{p}^{1} S, p \in \mathcal{N}_{0}: \varangle(v, V(p))<\varepsilon_{0},\left\langle v, \frac{\partial}{\partial \tau_{1}}\right\rangle<\varepsilon_{0}\right. \\
\text { and } \left.\left\langle v, \frac{\partial}{\partial \tau_{2}}\right\rangle>\left\langle V(p), \frac{\partial}{\partial \tau_{2}}\right\rangle\right\}
\end{gathered}
$$

where $\left(\tau_{1}, \tau_{2}\right)$ is a Fermi coordinate on \mathcal{N}_{0}. Let \mathcal{U}_{1} be an open set such that $\overline{\mathcal{U}_{1}} \subset \mathcal{U}_{0}$.
7. Note that $\tilde{\mathcal{A}}$ and \mathcal{U}_{1} have positive Liouville measures. By the ergodic theorem there exists $w_{0} \in \tilde{\mathcal{A}}$ such that $\varphi^{t}\left(w_{0}\right) \in \mathcal{U}_{1}$ for arbitrarily large t.

Outline of Proofs of Lemma 1

6. Let $0<\varepsilon_{0}$. Let

$$
\begin{gathered}
\mathcal{U}_{0}=\left\{v \in T_{p}^{1} S, p \in \mathcal{N}_{0}: \varangle(v, V(p))<\varepsilon_{0},\left\langle v, \frac{\partial}{\partial \tau_{1}}\right\rangle<\varepsilon_{0}\right. \\
\text { and } \left.\left\langle v, \frac{\partial}{\partial \tau_{2}}\right\rangle>\left\langle V(p), \frac{\partial}{\partial \tau_{2}}\right\rangle\right\}
\end{gathered}
$$

where $\left(\tau_{1}, \tau_{2}\right)$ is a Fermi coordinate on \mathcal{N}_{0}. Let \mathcal{U}_{1} be an open set such that $\overline{\mathcal{U}_{1}} \subset \mathcal{U}_{0}$.
7. Note that $\tilde{\mathcal{A}}$ and \mathcal{U}_{1} have positive Liouville measures. By the ergodic theorem there exists $w_{0} \in \tilde{\mathcal{A}}$ such that $\varphi^{t}\left(w_{0}\right) \in \mathcal{U}_{1}$ for arbitrarily large t.
8. Let $\sigma(s)$ be a stable curve from w_{0} to $v_{1} \in \mathcal{A}$.

Outline of Proofs of Lemma 1

6. Let $0<\varepsilon_{0}$. Let

$$
\begin{gathered}
\mathcal{U}_{0}=\left\{v \in T_{p}^{1} S, p \in \mathcal{N}_{0}: \varangle(v, V(p))<\varepsilon_{0},\left\langle v, \frac{\partial}{\partial \tau_{1}}\right\rangle<\varepsilon_{0}\right. \\
\left.\quad \text { and }\left\langle v, \frac{\partial}{\partial \tau_{2}}\right\rangle>\left\langle V(p), \frac{\partial}{\partial \tau_{2}}\right\rangle\right\}
\end{gathered}
$$

where $\left(\tau_{1}, \tau_{2}\right)$ is a Fermi coordinate on \mathcal{N}_{0}. Let \mathcal{U}_{1} be an open set such that $\overline{\mathcal{U}_{1}} \subset \mathcal{U}_{0}$.
7. Note that $\tilde{\mathcal{A}}$ and \mathcal{U}_{1} have positive Liouville measures. By the ergodic theorem there exists $w_{0} \in \tilde{\mathcal{A}}$ such that $\varphi^{t}\left(w_{0}\right) \in \mathcal{U}_{1}$ for arbitrarily large t.
8. Let $\sigma(s)$ be a stable curve from w_{0} to $v_{1} \in \mathcal{A}$.
9. We can show that there exists arbitrarily large t such that $\varphi^{t}\left(v_{1}\right) \in \mathcal{U}_{0}$.

Outline of Proofs of Lemma 1

10. Let

$$
\mathcal{H}_{t}=\text { the horocycle through } \varphi^{t}\left(v_{1}\right)
$$

and

$$
\varphi^{t}(\mathcal{W}(s))=(\sigma(t, s), v(t, s)), \quad-\varepsilon \leq s \leq \varepsilon
$$

Outline of Proofs of Lemma 1

10. Let

$$
\mathcal{H}_{t}=\text { the horocycle through } \varphi^{t}\left(v_{1}\right)
$$

and

$$
\varphi^{t}(\mathcal{W}(s))=(\sigma(t, s), v(t, s)), \quad-\varepsilon \leq s \leq \varepsilon
$$

If ε_{0} is sufficiently small, then there exists $\tilde{t}>0$ such that there exists second intersection point of the curves $\mathcal{H}_{\tilde{t}}(s)$ and $\sigma(\tilde{t}, s)$ within \mathcal{N}_{0} and on the same side of γ.

Outline of Proofs of Lemma 1

11. Applying the intermediate value theorem to the angle between $V\left(\mathcal{H}_{t}(s)\right)$ and $v(t, s)$ along $\mathcal{H}_{t}(s)$ there exists $\tilde{s} \in\left(s_{0}, s_{1}\right) \subset(-\varepsilon, \varepsilon)$ such that $v(\tilde{t}, \tilde{s})=V(\sigma(\tilde{t}, \tilde{s}))$.

Outline of Proofs of Lemma 2

1. Let $x, y \in S$ and $\varepsilon>0$. By Lemma 1 , there exist v_{x} at x and v_{y} at y such that the geodesics $\gamma_{v_{x}}$ and $\gamma_{v_{y}}$ are asymptotic to the closed geodesic γ and $-\gamma$ respectively on (S, \tilde{g}).

Outline of Proofs of Lemma 2

1. Let $x, y \in S$ and $\varepsilon>0$. By Lemma 1 , there exist v_{x} at x and v_{y} at y such that the geodesics $\gamma_{v_{x}}$ and $\gamma_{v_{y}}$ are asymptotic to the closed geodesic γ and $-\gamma$ respectively on (S, \tilde{g}).
2. Take wedges $\mathcal{W}_{x}=\left(x, v_{x}(s)\right),-\varepsilon_{x} \leq s \leq \varepsilon_{x}$ and $\mathcal{W}_{y}=\left(y, v_{y}(s)\right),-\varepsilon_{y} \leq s \leq \varepsilon_{y}$ around $\left(x, v_{x}\right)$ and $\left(y, v_{y}\right)$ respectively.

Outline of Proofs of Lemma 2

1. Let $x, y \in S$ and $\varepsilon>0$. By Lemma 1 , there exist v_{x} at x and v_{y} at y such that the geodesics $\gamma_{v_{x}}$ and $\gamma_{v_{y}}$ are asymptotic to the closed geodesic γ and $-\gamma$ respectively on (S, \tilde{g}).
2. Take wedges $\mathcal{W}_{x}=\left(x, v_{x}(s)\right),-\varepsilon_{x} \leq s \leq \varepsilon_{x}$ and $\mathcal{W}_{y}=\left(y, v_{y}(s)\right),-\varepsilon_{y} \leq s \leq \varepsilon_{y}$ around $\left(x, v_{x}\right)$ and $\left(y, v_{y}\right)$ respectively.

Outline of Proofs of Lemma 2

3. Let

$$
\mathcal{N}_{\varepsilon}=\{p \in S: \operatorname{dist}(p, \gamma)<\varepsilon\}
$$

Outline of Proofs of Lemma 2

3. Let

$$
\mathcal{N}_{\varepsilon}=\{p \in S: \operatorname{dist}(p, \gamma)<\varepsilon\}
$$

4. Let $T>0$ be such that

$$
\begin{aligned}
& \operatorname{dist}\left(\gamma_{v_{x}}(T, \infty), \gamma\right)<\frac{\varepsilon}{2} \\
& \operatorname{dist}\left(\gamma_{v_{y}}(T, \infty), \gamma\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

Outline of Proofs of Lemma 2

5. $\gamma_{v_{x}}$ and $\gamma_{v_{y}}$ intersect infinitely many times in $\mathcal{N}_{\frac{\varepsilon}{4}}$. Let $\gamma_{v_{x}}\left(t_{n}\right)=\gamma_{v_{y}}\left(s_{n}\right)$ be the $n^{\text {th }}$ intersection point in $\mathcal{N}_{\frac{\varepsilon}{4}}$.

Outline of Proofs of Lemma 2

5. $\gamma_{v_{x}}$ and $\gamma_{v_{y}}$ intersect infinitely many times in $\mathcal{N}_{\frac{\varepsilon}{4}}$. Let $\gamma_{v_{x}}\left(t_{n}\right)=\gamma_{v_{y}}\left(s_{n}\right)$ be the $n^{t h}$ intersection point in $\mathcal{N}_{\frac{\varepsilon}{4}}$.

Outline of Proofs of Lemma 2

6. Let

$$
\varphi^{t}\left(\mathcal{W}_{x}(s)\right)=\left(\sigma_{x}(t, s), v_{x}(t, s)\right)
$$

and

$$
\varphi^{t}\left(\mathcal{W}_{y}(s)\right)=\left(\sigma_{y}(t, s), v_{y}(t, s)\right)
$$

Outline of Proofs of Lemma 2

6. Let

$$
\varphi^{t}\left(\mathcal{W}_{x}(s)\right)=\left(\sigma_{x}(t, s), v_{x}(t, s)\right)
$$

and

$$
\varphi^{t}\left(\mathcal{W}_{y}(s)\right)=\left(\sigma_{y}(t, s), v_{y}(t, s)\right)
$$

There exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that

$$
\varangle\left(\left.\frac{d}{d s}\right|_{s=0} \sigma_{x}\left(t_{n_{k}}, s\right),\left.\frac{d}{d s}\right|_{s=0} \sigma_{y}\left(s_{n_{k}}, s\right)\right), k=1,2 \ldots
$$

are small enough that the second intersection points, say

$$
\sigma_{x}\left(t_{n_{k}}, \varepsilon_{k}(x)\right)=\sigma_{y}\left(s_{n_{k}}, \varepsilon_{k}(y)\right)
$$

$k=1,2 \ldots$, of the curves are within $\mathcal{N}_{\frac{\varepsilon}{2}}$.

Outline of Proofs of Lemma 2

- Note that the intersection points are on the same side of the geodesic γ by restricting \mathcal{W}_{x} to $\left[0, \varepsilon_{k}(x)\right]$ or $\left[-\tilde{\varepsilon}_{k}(x), 0\right]$ and same thing is true for wedge \mathcal{W}_{y}.

Outline of Proofs of Lemma 2

- Note that the intersection points are on the same side of the geodesic γ by restricting \mathcal{W}_{x} to $\left[0, \varepsilon_{k}(x)\right]$ or $\left[-\tilde{\varepsilon}_{k}(x), 0\right]$ and same thing is true for wedge \mathcal{W}_{y}.

7. We know that the Lyapunov length of φ^{t} (approximately unstable curves) is a nondecreasing function of t. So we obtain $\sigma_{x}(t, s) \sim \gamma_{v_{x}}(t)$ on $\left[0, t_{n_{k}}\right]$ for each $s \in\left[0, \varepsilon_{k}(x)\right]$. The same is true for the case of y.

Outline of Proofs of Lemma 2

- Note that the intersection points are on the same side of the geodesic γ by restricting \mathcal{W}_{x} to $\left[0, \varepsilon_{k}(x)\right]$ or $\left[-\tilde{\varepsilon}_{k}(x), 0\right]$ and same thing is true for wedge \mathcal{W}_{y}.

7. We know that the Lyapunov length of φ^{t} (approximately unstable curves) is a nondecreasing function of t. So we obtain $\sigma_{x}(t, s) \sim \gamma_{v_{x}}(t)$ on $\left[0, t_{n_{k}}\right]$ for each $s \in\left[0, \varepsilon_{k}(x)\right]$. The same is true for the case of y.
8. Similar argument as 11 in proof of Lemma 1 leads to an infinite family of geodesics $\gamma_{n_{k}}, k=1,2, \ldots$ from x to y such that $\operatorname{dist}\left(\left.\gamma_{n_{k}}\right|_{\left[T, L_{n_{k}}-T\right]}, \gamma\right)<\varepsilon, k=1,2, \ldots$

Open Problems

Open Problems

1. Find a totally insecure metric on S^{n} for $n>2$. Known result(Unpublished work of K. Burns and T. Gedeon): There exist C^{∞} metrics(not known for C^{ω}) on S^{n} such that the geodesic flow is ergodic.

Open Problems

1. Find a totally insecure metric on S^{n} for $n>2$. Known result(Unpublished work of K. Burns and T. Gedeon): There exist C^{∞} metrics(not known for C^{ω}) on S^{n} such that the geodesic flow is ergodic.
2. If we use the C^{∞} metric g on S^{2} (before perturbing), is $\left(S^{2}, g\right)$ totally insecure?

Open Problems

1. Find a totally insecure metric on S^{n} for $n>2$. Known result(Unpublished work of K. Burns and T. Gedeon): There exist C^{∞} metrics(not known for C^{ω}) on S^{n} such that the geodesic flow is ergodic.
2. If we use the C^{∞} metric g on S^{2} (before perturbing), is $\left(S^{2}, g\right)$ totally insecure?
3. Can we find a metric g on S^{2} with positive curvature everywhere such that $\left(S^{2}, g\right)$ is totally insecure?

Open Problems

1. Find a totally insecure metric on S^{n} for $n>2$.

Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C^{∞} metrics(not known for C^{ω}) on S^{n} such that the geodesic flow is ergodic.
2. If we use the C^{∞} metric g on S^{2} (before perturbing), is $\left(S^{2}, g\right)$ totally insecure?
3. Can we find a metric g on S^{2} with positive curvature everywhere such that $\left(S^{2}, g\right)$ is totally insecure?
4. Well-known conjecture: (M, g) is secure $\Longrightarrow(M, g)$ is flat? Special case: Show there does not exist a secure metric on S^{2}.

