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Security

Definition

Let M be a Riemannian manifold. The pair (x,y) € M x M is
called secure if there exists a finite set P C M \ {x, y} such that
every geodesic from x to y passes through a point of P. Such P is
called a finite blocking set.
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Insecurity

Definition
(x,y) is insecure if no finite blocking set exists.
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Insecurity

Definition
(x,y) is insecure if no finite blocking set exists.
Example
X
phere
y
Definition

(M, g) is totally insecure if each (x,y) € M x M is insecure.
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Remark

Remark
(1) The totally insecurity problem on compact surfaces of genus
> 1 is already known due to Bangert-Gutkin(2010).
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Remark

Remark
(1) The totally insecurity problem on compact surfaces of genus
> 1 is already known due to Bangert-Gutkin(2010).
e for genus > 1, all metrics are totally insecure.
e For genus = 1, there exists a C2-open and C>®-dense set, G,
of metrics, such that for any g € G, (M, g) is totally insecure.
e The methods they used show that compact manifolds with
negative curvature are totally insecure.

(2) Flat metrics are secure due to Gutkin and Schroeder(2006).
(3) Compact manifolds without conjugate points whose geodesic
flows have positive topological entropy are totally insecure due to

Burns and Gutkin(2008), independently, Lafont and
Schmidt(2007).
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Main Result

What happens to the case of compact surfaces with genus zero?
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Main Result

What happens to the case of compact surfaces with genus zero?

Question: Is there any smooth totally insecure metric on
compact surfaces of genus zero?

Theorem (M. Gerber and L. Liu, 2011)

There exists a totally insecure real analytic
metric on S°.
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Construction of Real Analytic
Metrics g
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Construction of Real Analytic Metrics g

Take two copies of regular hexagons with all right angles on
hyperbolic disks.
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Construction of Real Analytic Metrics g

a. Gluing these two copies together to obtain a pair of pants.

8 /61



Construction of Real Analytic Metrics g

a. Gluing these two copies together to obtain a pair of pants.

8 /61



Construction of Real Analytic Metrics g

b. Smoothly adding monotone curvature caps onto it.
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Construction of Real Analytic Metrics g

Definition

e A cap is defined to be a closed two-dimensional disk with
nonnegative curvature such that the boundary is the trace of
a real analytic geodesic.
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Construction of Real Analytic Metrics g

Definition

e A cap is defined to be a closed two-dimensional disk with
nonnegative curvature such that the boundary is the trace of
a real analytic geodesic.

e We say that a cap has monotone curvature if it is radially
symmetric and its curvature is a nondecreasing function of
distance from the boundary.
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Construction of Real Analytic Metrics g

We obtain a surface S with C° Riemannian metric g.
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Construction of Real Analytic Metrics g

We obtain a surface S with C*° Riemannian metric g.

il

(s, g)

The geodesic flow for (S, g) is ergodic by Burns and Gerber(1989).
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Construction of Real Analytic Metrics g
The compact surface (S, g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C =C;j, for i € {1,2,3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of

oc.

12 / 61



Construction of Real Analytic Metrics g
The compact surface (S, g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C =C;j, for i € {1,2,3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of

oc.

The above condition implies that g is real analytic in a
neighborhood of JC.

12 / 61



Construction of Real Analytic Metrics g

The compact surface (S, g) we constructed satifies the following
condition: If s is the signed distance from the boundary of a cap
C =C;j, for i € {1,2,3}, with s > 0 in the interior of C, then the
curvature with respect to g is s for points in a neighborhood of
acC.

The above condition implies that g is real analytic in a
neighborhood of JC.

Theorem (Cartan,1957)

Let S be a compact surface with a real analytic differentiable
structure, and let g be a C* Riemannian metric on S. Suppose
that I is a union of disjoint closed real analytic curves on S and U
is a neighborhood of T on which g is real analytic. Then for any

k € N there exists a real analytic metric & on S such that g and g
agree up to order k on I'. Moreover, g can be taken arbitrarily to
g in the C topology.
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Construction of Real Analytic Metrics g
c. Applying Cartan’s theorem to the surface (S, g), we obtain a

real analytic metric & on S such that g and g agree up to second
order on JC and g is close to g in the C* topology.

13 / 61



Construction of Real Analytic Metrics g

c. Applying Cartan’s theorem to the surface (S, g), we obtain a
real analytic metric & on S such that g and g agree up to second
order on JC and g is close to g in the C* topology.

Theorem (Burns and Gerber,1989)

Let (S, g) be the compact surface we constructed previously. If h
is a C3 Riemannian metric on S satisfying

e h and g agree to second order on 0C;, i = 1,2,3, and
e h is sufficiently C3 close to g everywhere,

then the geodesic flow for h is ergodic with respect to Liouville
measure (which is positive on open sets). Moreover the family of
metrics {h} include real analytic metrics.

13 / 61



Construction of Real Analytic Metrics g

c. Applying Cartan’s theorem to the surface (S, g), we obtain a
real analytic metric & on S such that g and g agree up to second
order on JC and g is close to g in the C* topology.

Theorem (Burns and Gerber,1989)

Let (S, g) be the compact surface we constructed previously. If h
is a C3 Riemannian metric on S satisfying

e h and g agree to second order on 0C;, i = 1,2,3, and
e h is sufficiently C3 close to g everywhere,

then the geodesic flow for h is ergodic with respect to Liouville
measure (which is positive on open sets). Moreover the family of
metrics {h} include real analytic metrics.

d. Therefore the geodesic flow for (S, g) is ergodic.
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Construction of a closed
geodesic v on (S, g)
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Construction of a closed geodesic for g

Construction of a closed geodesic v in the region A/ where
the curvature in \V is between —1 — ¢ and —1 + €.
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Construction of a closed geodesic for g

a. First, we construct a closed geodesic in the region kK = —1 on

(S, 8)
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Construction of a closed geodesic for g

b. The closed g-geodesic, say 4, we constructed lies in the region
k =—1on (S, g). Thus the orbit of the geodesic flow for g along
g is transversally hyperbolic.
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Construction of a closed geodesic for g

b. The closed g-geodesic, say 4, we constructed lies in the region
k =—1on (S, g). Thus the orbit of the geodesic flow for g along
g is transversally hyperbolic.

c. By b. there exists a closed g-geodesic « with self-intersection

points in the region N where dist(NV,dC;) > §, i = 1,2,3 for some
0> 0.
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Existence of asymptotic
geodesics to vy on (S, g)
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Existence of asymptotic geodesics to v

For each cap C;, i = 1,2, 3, we choose closed disks D; and &; in S
that are radially symmetric about the center of C; for the metric g
such that C; C intD; and D; C intf;. We require the disks &;
satisfy & N & =0 for i # j and the trace of v C S\ (U3, &).
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For each cap C;, i = 1,2, 3, we choose closed disks D; and &; in S
that are radially symmetric about the center of C; for the metric g
such that C; C intD; and D; C intf;. We require the disks &;
satisfy & N & =0 for i # j and the trace of v C S\ (U3, &).

Definition
Let x e D =7D; C int€ = int&;, for i =1,2,3. Let o be the
g-geodesic from x to a point on O€ with length dist,(x, 9E).

e If x is not the center of D in the radially symmetric g-metric,
then the unit vector vy in the g-metric that is a positive
multiple of ¢/(0) is called a radial vector at x.

e If x is the center of D, then any vy € T)}’ES is called a radial
vector at x.
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Existence of asymptotic geodesics to v

Lemma

1. For all x € S, there exist vi and v_ € T1S such that v,, (t)
and ,_(t) are asymptotic to v and —~, respectively, as t — oc.
Moreover, if x € D, then vy and v_ can be chosen to be
approximately radial vectors.
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Existence of asymptotic geodesics to v

Lemma

1. For all x € S, there exist vi and v_ € T1S such that v,, (t)
and ,_(t) are asymptotic to v and —~, respectively, as t — oc.
Moreover, if x € D, then vy and v_ can be chosen to be
approximately radial vectors.

x

\/—}/‘ Y

Geodesics asymptotic to Y
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Lemma
2. Given x,y € S, € > 0, there exist T = T(e) and an infinite
family of distinct unit speed geodesics

n o [0, Ly] — S, with L, — o0
from x to y such that

0 < dist(Val[7,L,-17:7) < ¢
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2. Given x,y € S, € > 0, there exist T = T(e) and an infinite
family of distinct unit speed geodesics

n o [0, Ly] — S, with L, — o0
from x to y such that

0< diSt(’Yn’[T,L,,fT]fY) <e
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Lemma

3. If T>0,(x,2) € (5,8) x(S,8&), and

Yo [0, T] = (5,8),n=1,2,--- is an infinite sequence of distinct
unit speed geodesics with v,(0) = x, then there are at most
finitely many positive integers n such that z € v,((0, T]).

22 / 61



Proof of Lemma 3



Proof of Lemma 3

Example
S2 with round metric and the ellipsoid of revolution
2 2
;—5 + ;—5 + % = 1 in R3 are real analytic surfaces that fail to satisfy
the conclusion of Lemma 3.
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Proof of Lemma 3

Example
52 with round metric and the ellipsoid of revolution
2 2 2
;—5 + Z—% + % =1 in R3 are real analytic surfaces that fail to satisfy
the conclusion of Lemma 3.
Theorem (Lojasiewicz,1964)

Let M be a connected real analytic surface, K is a compact subset
of M, and f : M — R is a real analytic function that does not
vanish identically on M, then there exist finitely many points

p1, P2, ---, Pn and finitely many real analytic curves a1, aa, ..., am
such that

{zeK:f(z) =0} =Kn{{p1,p2, ., pn} Uas Uaa U...Uam}.
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Proof of Lemma 3

Proof: Suppose this lemma were false.
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Proof of Lemma 3

5. Since f(v) = 0 for infinitely many v's in IC, by theorem there
exists a curve a(s), —0 < s < in T,S such that
f(a(s)) =0, —=d <s <.
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. Since f(v) = 0 for infinitely many Vs in C, by theorem there
exists a curve a(s), —0 < s < in T,S such that
f(a(s)) =0, —=d <s <.

6. For each s, exp,(ta(s)),0 < t <1 is a geodesic from x to z.

7. By the first variation formula for arc length, %Ha(s)” =0.
That implies there exists L > 0 such that ||a(s)|| = L.

. f vanishes on an arc of the circle {v € TS : ||v|| = L}. It
follows that f vanishes on the circle {v € T,S : ||v| = L}.
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Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.
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Proof of Lemma 3

9. Every geodesic starting at x goes a distance L to z.
X

z

10. Same argument shows 9 with x and z switched.

11. It follows that every geodesic starting at x hits z infinitely
many times.

12. By Lemma 1, there exists a geodesic starting at x that
becomes asymptotic to v, which contradicts 11.
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Proof of Theorem

Fact: A pair of points (x,y) is insecure if there exists an infinite
family of geodesics {75}, from x to y such that no three of
{vn}52 are concurrent at any point except x and y.
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Proof of Theorem

Proof: Let (x,y) € S x S. We want to show that there exist an
infinite family of geodesics from x to y such that no three are
concurrent at any point except at x and y.
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Proof of Theorem
Proof: Let (x,y) € S x S. We want to show that there exist an

infinite family of geodesics from x to y such that no three are
concurrent at any point except at x and y.

1. By induction, suppose we have 71,72, ...., 7k such that no
three are concurrent except at x and y.

2. We want to produce another geodesic y,41 joining x to y

such that no three of {71,792, ....., 7k, Yk+1} are concurrent
except at x and y.

3. Let z1, 2, ....2m be the set of points in S\ {x,y} that are
intersection points of the v;,v;, 1 </ < j < k.
4. Let
Y ={p: p is a self intersection point of 7}

a1 = min{dist(z;,v) : zi ¢ 7,1 < i < m}
ar = min{dist(z;,X) : zi €, z ¢ £,1 <i<m}
a = min{ag, a2} > 0.
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Proof of Theorem

5. We apply Lemma 2 with € < « to obtain an infinite family of
distinct unit speed geodesics

on:[0,Ly] — S
from x to y such that

0< diSt(Un|[T,L,,7T]77) <eE.
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Proof of Theorem

5. We apply Lemma 2 with € < « to obtain an infinite family of
distinct unit speed geodesics

on:[0,Ly] — S
from x to y such that
0< diSt(Un|[T,L,,7T]77) <eE.

It follows that

onliT, -1 N1z zi ¢ v} = 0.
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Proof of Theorem

5. We apply Lemma 2 with € < « to obtain an infinite family of
distinct unit speed geodesics

on:[0,Ly] — S
from x to y such that
0 < dist(onlT,L,—77,7) <€
It follows that

OnlT -1 N {21z 7} = 0.

o Let
Q=1{q:q¢€on|T,,—7] Ntheimage of v,n=1,2,...}.

We have
0 <dist(Q,X) < Ce

where C > 0 is independent of n.
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Proof of Theorem

It follows that

ool - {2 zi €7} =0

if we choose € small enough that Ce < a.
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® 0p |[T,L,—7] doesn’t meet any of {z1, 2, ..., Zm}.

e If infinitely many of {o, [o,77: " = 1,2, ...} meet one of
{z1, 22, ..., Zm}, then infinitely many of them would go through
the same point, which is a contraction to Lemma 3.
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e The argument holds for the family {o, [[1,— 71,1 n=1,2,...}.
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if we choose € small enough that Ce < a.

on |[T,L,— 7] doesn’t meet any of {z1, 22, ...., Zm }.

If infinitely many of {o, [0, 7]: " = 1,2,...} meet one of
{z1, 22, ..., Zm}, then infinitely many of them would go through
the same point, which is a contraction to Lemma 3.

The argument holds for the family {0y |f1,—7.,: n=1,2,...}.

We can pick 441 from the collection {0} such that no
three of {71,72,...,7k+1} are concurrent except at x and y.
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if we choose € small enough that Ce < a.

on |[T,L,— 7] doesn’t meet any of {z1, 22, ...., Zm }.

If infinitely many of {o, [0, 7]: " = 1,2,...} meet one of
{z1, 22, ..., Zm}, then infinitely many of them would go through
the same point, which is a contraction to Lemma 3.

The argument holds for the family {0y |f1,—7.,: n=1,2,...}.

We can pick 441 from the collection {0} such that no
three of {71,72,...,7k+1} are concurrent except at x and y.

Thus by induction we obtain an infinite family of geodesics
from x to y such that no three are concurrent except at x and

y.
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Construction of Cones and Line
Fields
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Construction of Cones and Line Fields

Recall that a Riemannian metric <, > on S induces a Riemannian
metric on TS:

< fﬂ? >=< §H777H >+ <§V777V >

where H and V denote the horizontal and vertical components
respectively.
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Construction of Cones and Line Fields

Recall that a Riemannian metric <, > on S induces a Riemannian
metric on TS:

< 5777 >=< §H777H >+ <£V777V >

where H and V denote the horizontal and vertical components
respectively.

Let £ € T, TS and o(t) = (p(t), W(t)) be a curve in TS that is
tangent to £ at w.
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Construction of Cones and Line Fields

S~ — W(t) € TpS
- € (G év)
w=W(0) & =p'(0)
v = DlimoW(t)

p(0)
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Construction of Cones and Line Fields

S~ — W(t) € TpS
- € (G év)
w=W(0) & =p'(0)
v = DlimoW(t)

p(0)

We identify £ with (&4, &y).
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Construction of Cones and Line Fields

Example

X QZHZO

Point curve at x
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Construction of Cones and Line Fields

Let w € T1S and set

P(w)={€€ T,T!S < &y,w>=0=<Ey,w >}.

37 / 61



Construction of Cones and Line Fields

Let w € T1S and set

P(w)={£e€ T, TS < &y,w >=0=< &y, w >}.

e Note that < &y, w >= 0 is always true for ¢ € T,, T1S. So
P(w) is a 2-dimensional subspace of T, T1S.
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Construction of Cones and Line Fields
Let w € T!S and set
P(w)={£€ TWT'S :<&uw >=0=<¢&y,w >},

e Note that < &y, w >= 0 is always true for ¢ € T,, T1S. So
P(w) is a 2-dimensional subspace of T, T1S.

e P(w) is the orthogonal complement of the tangent vector to
the geodesic flow in T, T'S.
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Construction of Cones and Line Fields

Let w € T1S and set

P(w)={£e€ T, TS < &y,w >=0=< &y, w >}.

e Note that < &y, w >= 0 is always true for ¢ € T,, T1S. So
P(w) is a 2-dimensional subspace of T, T1S.

e P(w) is the orthogonal complement of the tangent vector to
the geodesic flow in T, T'S.

o Let £ € T, T!S. If J(t) is a Jacobi field along the geodesic
Yw(t) with &g = J(0) and &y = J'(0), then J(t)L~,,(t) for
all t.
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Construction of Cones and Line Fields

Let w € T1S and set

P(w)={£e€ T, TS < &y,w >=0=< &y, w >}.

e Note that < &y, w >= 0 is always true for ¢ € T,, T1S. So
P(w) is a 2-dimensional subspace of T, T1S.

e P(w) is the orthogonal complement of the tangent vector to
the geodesic flow in T, T'S.

o Let £ € T, T!S. If J(t) is a Jacobi field along the geodesic
Yw(t) with &g = J(0) and &y = J'(0), then J(t)L~,,(t) for
all t.

o If ©f is the geodesic flow on T1S, then the distribution P is
invariant under dy*.
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Construction of Cones and Line Fields

P(w) P(p(w))

do* (P(w))=P(ept(w))

The distribution P is invariant under d!
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Construction of Cones and Line Fields

Let £ € T, T'S and J(t) be a perpendicular Jacobi field along the
geodesic 7y (t) with J(0) = &4 and J'(0) = &y.
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Construction of Cones and Line Fields

Let £ € T, T'S and J(t) be a perpendicular Jacobi field along the
geodesic 7, (t) with J(0) = &y and J'(0) = &y.

Then J(t) = j(t)N(t) where N(t) is a normal field along 7,,(t)
and j(t) satisfies the scalar Jacobi equation:

J'(t) + K(w(t))i(t) =0

where K is the Gaussian curvature of the surface S.
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Construction of Cones and Line Fields

From the usual procedure for constructing horocycles (limit curves
of geodesic circles) in regions of nonpositive curvature, we know
that for each x € D; \ C; there exist exactly two vectors
Vxj € T)}S, J = 1,2 (corresponding to two possible orientations on
dC;) such that

* Y, (t) €int(D;i\ ;) for all t <0,

* Yy, is asymptotic to IC; as t — —o0.
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Construction of Cones and Line Fields

From the usual procedure for constructing horocycles (limit curves
of geodesic circles) in regions of nonpositive curvature, we know
that for each x € D; \ C; there exist exactly two vectors
Vxj € T)}S, J = 1,2 (corresponding to two possible orientations on
dC;) such that

* Y, (t) €int(D;i\ ;) for all t <0,

* Yy, is asymptotic to IC; as t — —o0.

Consider x € int(D; \ C;) and x € C;.
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Construction of Cones and Line Fields

Case 1 x € int(D; \ C))
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Construction of Cones and Line Fields

Case 1 x € int(D; \ C))
If we TLS, w# vy, j=1,2, then v, (t) exits D; in negative
time. So one of the following must occur:
e There exists a < 0 such that v,,(t) € int(D; \ C;) for t € (a,0]
and vy (a) € 9D;;
e There exist a < ¢ < d < 0 such that 7, (t) € int(D; \ C;) for
t € (a,c)U(d,0], yw(t) € intC; for t € (c,d) and
'yW(a) € 0D;
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Construction of Cones and Line Fields

Case 1 x € int(D; \ C))
If we TLS, w# vy, j=1,2, then v, (t) exits D; in negative
time. So one of the following must occur:
e There exists a < 0 such that v,,(t) € int(D; \ C;) for t € (a,0]
and vy (a) € 9D;;
e There exist a < ¢ < d < 0 such that 7, (t) € int(D; \ C;) for
t € (a,c)U(d,0], yw(t) € intC; for t € (c,d) and
ny(a) € 0D;

Case 2 x € C;
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Construction of Cones and Line Fields

Case 1 x € int(D; \ C))
If we TLS, w# vy, j=1,2, then v, (t) exits D; in negative
time. So one of the following must occur:
e There exists a < 0 such that v,,(t) € int(D; \ C;) for t € (a,0]
and vy (a) € 9D;;
e There exist a < ¢ < d < 0 such that 7, (t) € int(D; \ C;) for
t € (a,c)U(d,0], yw(t) € intC; for t € (c,d) and
’yw(a) € 0D;
Case 2 x € C;
If we TS\ TY(AC;), then ~,,(t) exits D; in negative time. So we
have:
e There exist a < ¢ < 0 such that 7, (t) € intC; for c < t <0,
Yw(t) € int(D; \ C;) for t € (a,¢), and vy (a) € ID;.
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Construction of Cones and Line Fields

Definition
For w € T}S, we define cones K, KC,, C P(w) by

Ky ={¢ € P(w): (u,&v) > 0}

and

IC; = {f S P(W) : (fH,fv> < 0}
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Construction of Cones and Line Fields

Definition
For w € T}S, we define cones K, KC,, C P(w) by

Ky ={¢ € P(w): (u,&v) > 0}

and
]C; = {f S P(W) : (fH,gv> < 0}

The K, cones correspond to perpendicular Jacobi fields with
L
4 =0.
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Construction of Cones and Line Fields

Definition
For w € T}S, we define cones K, KC,, C P(w) by

Ky ={¢ € P(w): (u,&v) > 0}

and
Ko ={¢ € P(w) : ({n,&v) < 0}
The K, cones correspond to perpendicular Jacobi fields with
i"=0.
Definition
a. If x€intD, for D="D;, i € {1,2,3} and w € TS is such

that there exists a < 0 with ~,(t) € intD for t € (a,0] and
Yw(a) € 9D, we define the unstable cone KU, by,

u __ —ar+
Ko =de K )
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Construction of Cones and Line Fields

b. For all other w € TS, we define

Kl =K.
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Construction of Cones and Line Fields
b. For all other w € T1S, we define
KY =K.
Similarly we define the stable cone K* as follows.
Definition

a. Ifxe€intD, for D="D;, i € {1,2,3} and w € T1S is such
that there exists b > 0 with 7,,(t) € intD for t € [0, b) and
Yw(b) € D, we define the stable cone K¢, by,

s _ —b—
K = do Koy ey
b. For all other w € T1S, we define

K, =K,.
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Construction of Cones and Line Fields

The unstable(stable) cones are invariant for do?, t > 0(t < 0).
That is,
do'Kl c K for t >0,

ptw?

dptks, C K., for t <O0.

ptws

Moreover, if the basepoint of wtw, for some T € (0, t), lies outside
D, then
dptKl CintkCY,, , for t >0,

ptwo

dp'K;, C intK3y.,,, for t <O.

ptws
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Construction of Cones and Line Fields

Let

P(w) dQ)t(K‘;},)ClntKu

»'(w)

G =) +i" = ()2 - Ki*>>0if K <O0.
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Construction of Cones and Line Fields

Let w € T!S. Note that {dgpt(lC;_t(W))}Do is a nested sequence
of cones. We define
= () 9" (K1)

t>0
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Construction of Cones and Line Fields

Let w € T!S. Note that {dgpt(lC;_t(W))}Do is a nested sequence
of cones. We define
= () 9" (K1)

t>0

a. EY is a line on P(w).
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Construction of Cones and Line Fields

Let w € T!S. Note that {dgpt(lC;_t(W))}Do is a nested sequence
of cones. We define
= () 9" (K1)

t>0

a. EY is a line on P(w).
b. The line field {E%, w € T'S} obtained from the unstable
cone family is continuous at w € TS\ T1(U3_,0C)).
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Construction of Cones and Line Fields

Let w € T!S. Note that {dgpt(lC;_t(W))}Do is a nested sequence
of cones. We define
= () 9" (K1)

t>0

a. EY is a line on P(w).

b. The line field {E%, w € T'S} obtained from the unstable
cone family is continuous at w € TS\ T1(U3_,0C)).

c. We can integrate the line field to produce curves which we
call the unstable curves.
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Construction of Cones and Line Fields

Let w € T!S. Note that {dgpt(le;_t(W))}Do is a nested sequence
of cones. We define
= () 9" (K1)

t>0

a. EY is a line on P(w).
b. The line field {E%, w € T'S} obtained from the unstable
cone family is continuous at w € TS\ T1(U3_,0C)).
c. We can integrate the line field to produce curves which we
call the unstable curves.
Similarly we can define the stable cone

Ky = P(w) \ K,
and the stable line field
= () do™ (Kw))-

t>0
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Construction of Cones and Line Fields

Lyapunov Function
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Construction of Cones and Line Fields
Lyapunov Function
For w e T1S, let

P(w)={€€ T,T'S < &y,w>=0=<Ey,w >}.
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Construction of Cones and Line Fields
Lyapunov Function
For w e T1S, let
P(w)={¢{ € TuT'S i< &pw>=0=<¢&y,w >}

Let &€ € P(w). Consider the coordinates (u, v) in the (j,/)
coordinate system.
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Construction of Cones and Line Fields

Lyapunov Function
For w € TS, let

P(w)={€€ T,T'S < &y,w>=0=<Ey,w >}.

Let &€ € P(w). Consider the coordinates (u, v) in the (j,/)
coordinate system.
Define the Lyapunov function by

Q&) = sgn(uv)V/uv].

Then

Q) < Il = Vw2 + v2.
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Construction of Cones and Line Fields
Lyapunov Length
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Construction of Cones and Line Fields

Lyapunov Length
Suppose o(s), 71 < s < 72, is a curve in T1S such that
d'(s) € P(w). We define the Lyapunov length of o by
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Construction of Cones and Line Fields

Lyapunov Length
Suppose o(s), 71 < s < 72, is a curve in T1S such that
d'(s) € P(w). We define the Lyapunov length of o by

Lq(o) = /TQ |Q(o(s))|ds.

1
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Construction of Cones and Line Fields

Lyapunov Length
Suppose o(s), 71 < s < 72, is a curve in T1S such that
d'(s) € P(w). We define the Lyapunov length of o by

Lq(o) = /TQ |Q(o(s))|ds.

1

The usual length of ¢ is defined by

£o) = [ 1o/G)lds.

1
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Construction of Cones and Line Fields

Lyapunov Length
Suppose o(s), 71 < s < 72, is a curve in T1S such that
d'(s) € P(w). We define the Lyapunov length of o by

Lq(o) = /TQ |Q(o(s))|ds.

1

The usual length of ¢ is defined by

£o) = [ 1o/G)lds.

1

e If o is a approximately unstable curve(c’(s) € Ko (s)): then
Lo(p~ (o)) is a decreasing function of t.
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Construction of Cones and Line Fields

Lyapunov Length
Suppose o(s), 71 < s < 72, is a curve in T1S such that
d'(s) € P(w). We define the Lyapunov length of o by

Lq(o) = /TQ |Q(o(s))|ds.

1

The usual length of ¢ is defined by

£o) = [ 1o/G)lds.

1

e If o is a approximately unstable curve(c’(s) € Ko (s)): then
Lo(p~ (o)) is a decreasing function of t.

e If o is a approximately stable curve(o'(s) € ICZ(S)), then
Lo(p'(0)) is a decreasing function of t.

48 / 61



Outline of Proofs of Parts of
Lemma 1 and Lemma 2



Outline of Proofs of Lemma 1

1. Take a tubular neighborhood Ay of . Let V be the vector
field on Np such that every geodesic o with ¢/(0) = V/(o(0)),
is asymptotic to ~.
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Outline of Proofs of Lemma 1

1. Take a tubular neighborhood Ay of . Let V be the vector
field on Np such that every geodesic o with ¢/(0) = V/(o(0)),
is asymptotic to ~.

iV
Approximately \ Stable horocycle
unstable curve
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Outline of Proofs of Lemma 1

1. Take a tubular neighborhood Ay of . Let V be the vector
field on Np such that every geodesic o with ¢/(0) = V/(o(0)),
is asymptotic to ~.

Ve
Approximately \ Stable horocycle
unstable curve

2. Take a wedge around (x, vp), W(s) = (x,v(s)), |lv(s)|| =1,
—e < s < e. Consider the flow *(W(s)).
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Outline of Proofs of Lemma 1

3. If x € D then vy is chosen to be an approximately radial
vector so that W/(s) is in the unstable cone Kv(s)-
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Outline of Proofs of Lemma 1

3. If x € D then vy is chosen to be an approximately radial
vector so that W/(s) is in the unstable cone Kv(s)-

4. Let 0 < tg < g < t; < t;. Consider
A={p'W(s)): —e<s<e o<t <t}
and

<s<

St
IN

A = §—neighborhood of {f(W(s)) : —

N[ ™
N[ ™

IN
~+2
i
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Outline of Proofs of Lemma 1

3. If x € D then vy is chosen to be an approximately radial
vector so that W/(s) is in the unstable cone Kv(s)-

4. Let 0 < tg < g < t; < t;. Consider
A={p"W(s)): —e <s<¢e,tg <t < t1}

and

St
IN
~
IN
~+2
i

A = d—neighborhood of {*(W(s)): —= < s <

N ™
N ™

5. For § sufficiently small, every vector w € A can be joined to a
vector in A by a stable curve.
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Outline of Proofs of Lemma 1

6. Let 0 < gp. Let

0
Uo = {V € T/:J157p S NO : <I(V> V(p)) < €o, <V7 a_

67’1> <o

and (v, 8872) > (V(p), 81)}

where (71, 72) is a Fermi coordinate on Np. Let U; be an open
set such that U1 C Up.

52 / 61



Outline of Proofs of Lemma 1

6. Let 0 < gp. Let

Uy ={veT,S peNy:<(v,V(p)) <eo, (v, 2—) < €

on

0 0
d{v,—) > (V(p), —
and (v, ) > (V(p), 5 -}
where (71, 72) is a Fermi coordinate on Np. Let U; be an open
set such that Uy C Up.
7. Note that A and U have positive Liouville measures. By the
ergodic theorem there exists wy € A such that ¢*(wp) € Uy
for arbitrarily large t.
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Outline of Proofs of Lemma 1

6. Let 0 < gp. Let

Up = {v e TS, p e No: (v, V(p)) < eo, (v,

87’1> <o

and (v, 8872) > (V(p), 81)}

where (71, 72) is a Fermi coordinate on Np. Let U; be an open

set such that Uy C Up.

7. Note that A and U have positive Liouville measures. By the
ergodic theorem there exists wy € A such that ¢*(wp) € Uy
for arbitrarily large t.

8. Let o(s) be a stable curve from wy to vy € A.
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Outline of Proofs of Lemma 1

6. Let 0 < gp. Let

Up = {v e TS, p e No: (v, V(p)) < eo, (v,

87’1> <o

and (v, 8872) > (V(p), 81)}

where (71, 72) is a Fermi coordinate on Np. Let U; be an open

set such that Uy C Up.

7. Note that A and U have positive Liouville measures. By the
ergodic theorem there exists wy € A such that ¢*(wp) € Uy
for arbitrarily large t.

8. Let o(s) be a stable curve from wy to vy € A.
9. We can show that there exists arbitrarily large t such that
ot (v1) € Up.
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Outline of Proofs of Lemma 1

10. Let
H¢ = the horocycle through ' (v1)

and
o' (W(s)) = (o(t,s),v(t,s)), —e<s<e.

Stable horocycle

\‘“‘_‘7
............... >
V(H(s))
Approximately
unstable curve  \g&............. > Ot(v,)
1
o(t,s) H(s)
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Outline of Proofs of Lemma 1

10. Let
H¢ = the horocycle through ' (v1)

and
o' (W(s)) = (o(t,s),v(t,s)), —e<s<e.

Stable horocycle

\““7
............... >
V(H(s))
Approximately
unstable curve  \g&............. > OY(v,)
1
o(t,s) Ht(s)

If g is sufficiently small, then there exists f > 0 such that
there exists second intersection point of the curves H;(s) and
o(%,s) within Ay and on the same side of +.
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Outline of Proofs of Lemma 1

11. Applying the intermediate value theorem to the angle between
V(H:(s)) and v(t,s) along H.(s) there exists
5 € (s0,51) C (—¢,¢) such that v(£,3) = V(o(t,3)).
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Outline of Proofs of Lemma 2

1. Let x,y € S and ¢ > 0. By Lemma 1, there exist v, at x and
vy at y such that the geodesics v,, and v,, are asymptotic to
the closed geodesic v and —~ respectively on (S, ).
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Outline of Proofs of Lemma 2

1. Let x,y € S and ¢ > 0. By Lemma 1, there exist v, at x and
vy at y such that the geodesics v,, and v,, are asymptotic to
the closed geodesic v and —~ respectively on (S, ).

2. Take wedges W, = (x, vx(s)) , —ex < s < ey and
W, = (y,vy(s)), —e, < s < ey, around (x, vx) and (y, vy)
respectively.
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Outline of Proofs of Lemma 2

1. Let x,y € S and ¢ > 0. By Lemma 1, there exist v, at x and
vy at y such that the geodesics v,, and v,, are asymptotic to
the closed geodesic v and —~ respectively on (S, ).

2. Take wedges W, = (x, vx(s)) , —ex < s < ey and
W, = (y,vy(s)), —e, < s < ey, around (x, vx) and (y, vy)
respectively.
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Outline of Proofs of Lemma 2

3. Let
N ={pe S dist(p,7) < ¢}
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Outline of Proofs of Lemma 2
3. Let
N ={pe S dist(p,7) < ¢}

4. Let T > 0 be such that

dist(7y, (T, 00),7) <

NI N O™

dist(7y,(T,00),7) <
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Outline of Proofs of Lemma 2

5. Vv, and 7y, intersect infinitely many times in NV. Let
Y (tn) = v, (sn) be the nth intersection point in J\/%.
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Outline of Proofs of Lemma 2

5. Vv, and 7y, intersect infinitely many times in NV. Let
Vv (tn) = Vv, (sn) be the n™ intersection point in Ne.
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Outline of Proofs of Lemma 2

6. Let
0" (Wx(s)) = (ox(t,s), vx(t, s))

and
P' Wy (5)) = (oy(t.5), vy (t,s))-
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Outline of Proofs of Lemma 2

6. Let
0" (Wx(s)) = (ox(t,s), vx(t, s))

and
@t(Wy(S)) = (Uy(t> 5)7 Vy(tv S))
There exists a subsequence {n,}%2; such that
d d
<Z(£|5:00-X(tnk7$)7 £|5200’y(5nk, 5))7 k = 1, 2...
are small enough that the second intersection points, say
Ox(tne: €k(X)) = oy (Sms €k (¥))

k =1,2...., of the curves are within ./\/'%.

)
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Outline of Proofs of Lemma 2

e Note that the intersection points are on the same side of the
geodesic v by restricting Wy to [0, ex(x)] or [—&k(x),0] and
same thing is true for wedge W, .
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Outline of Proofs of Lemma 2

e Note that the intersection points are on the same side of the
geodesic v by restricting Wy to [0, ex(x)] or [—&k(x),0] and
same thing is true for wedge W, .

7. We know that the Lyapunov length of
" (approximately unstable curves) is a nondecreasing function
of t. So we obtain o(t,s) ~ v, (t) on [0, t,, ] for each
s € [0,ex(x)]. The same is true for the case of y.
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Outline of Proofs of Lemma 2

e Note that the intersection points are on the same side of the
geodesic v by restricting Wy to [0, ex(x)] or [—&k(x),0] and
same thing is true for wedge W, .

7. We know that the Lyapunov length of
" (approximately unstable curves) is a nondecreasing function
of t. So we obtain o(t,s) ~ v, (t) on [0, t,, ] for each
s € [0,ex(x)]. The same is true for the case of y.

8. Similar argument as 11 in proof of Lemma 1 leads to an
infinite family of geodesics 7,,, k = 1,2, ... from x to y such
that dist(’ynk\[Tank,T],*y) <e k=12 ..
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Open Problems
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Open Problems

1. Find a totally insecure metric on S” for n > 2.
Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C*° metrics(not known for C*) on S” such that
the geodesic flow is ergodic.
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Open Problems

1. Find a totally insecure metric on S” for n > 2.
Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C*° metrics(not known for C*) on S” such that
the geodesic flow is ergodic.

2. If we use the C> metric g on S?(before perturbing), is
(52, g) totally insecure?
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1. Find a totally insecure metric on S” for n > 2.
Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C*° metrics(not known for C*) on S” such that
the geodesic flow is ergodic.

2. If we use the C> metric g on S?(before perturbing), is
(52, g) totally insecure?

3. Can we find a metric g on S? with positive curvature
everywhere such that (52, g) is totally insecure?
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Open Problems

. Find a totally insecure metric on §" for n > 2.

Known result(Unpublished work of K. Burns and T. Gedeon):
There exist C*° metrics(not known for C*) on S” such that
the geodesic flow is ergodic.

. If we use the C* metric g on S?(before perturbing), is
(52, g) totally insecure?

. Can we find a metric g on S? with positive curvature
everywhere such that (52, g) is totally insecure?

. Well-known conjecture: (M, g) is secure = (M, g) is flat?
Special case: Show there does not exist a secure metric on S2.
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