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Outline of the talk 

1. PDE, conservation law, and discontinuity 
2. Improving the front tracking method 
3. Comparison and benchmarks 
4. Comparison of Rayleigh-Taylor instability 
5. Transport control with tracking 
6. Conclusion 
7. Application to other scientific and  
      engineering problems 

 



PDE 

• Hyperbolic equation (wave equation) 
• Parabolic equation (diffusion equation) 
• Elliptic equation (steady state equation) 



Parabolic equations 

In 1-D:  2
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where is the Laplace operator 

Parabolic equation flattens all variation (variation 
 deminishing. 
Physically, it is the diffusion equation originated  
 from the heat transfer equation. 



Solution in infinite space 

Initial condition:  

1. Singularity: 
 

2. Discontinuity: 
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Singular initial condition 
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Discontinuous initial condition 
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Hyperbolic equation 

1-D wave equation: 
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Traveling wave solution: 
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Characteristics, along the curve 



Linear and nonlinear equations 

Linear equation: ),( txaa =

Typical equation: constaauu xt ==+ 0
Nonlinear equation:  ),,( utxaa =

Typical equation (Burgers equation) 

uauuu xt ==+ ,0
Conservation law: 
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Shock Wave 

1. Shock is a result of  the intersection of characteristics. 
2. Shock is a discontinuity across which physics change 
      sharply. 
3. Shock speed is derived from conservation—Rankine- 
      Hugoniot condition 
 
 
 
      s is the shock speed. 
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Examples of conservation law 

1. Traffic Flow in a highway 
2. Flood wave 
3. Glaciers motion 
4. Chemical exchange process 
5. Oil reservoir  
6. Gas dynamics 



Traffic flow 

0)( =+ xt Q ρρ
Greenberg (1959) studied the traffic of Lincoln 
Tunnel and found: 
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Flood wave 
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A: The cross sectional area of the river bed 
Q: Water flux in volume 

Kleitz (1858) and Seddon (1900) used balance  
Between gravitational force and friction force derived: 

2/3
3 sin A
PC
gAvAQ

f

∝==
α



Equation for gas dynamics 
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Mass, momemtum and energy conservation: 

Equation of state (EOS): 



Riemann problem 
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1. Initial Condition: 

2. Invariance of solution: 

RRLL UUUU ,,, **3. Four states: 

4. Three waves: left wave, contact, right wave. 



Glimm Scheme 

n
jUGiven states at the nth time step: 

Glimm’s scheme advances the state via: 
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The convergence of Glimm scheme is through large 
Number theorem and is the first significant convergence 
Proof for the gas dynamics equations. 



Godunov scheme 
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The Discrete Representation of The Front Tracking 

Volume filling 
rectangular mesh 
(Eulerian Coord.) 

 (N-1) dimensional 
Lagrangian mesh 
(interface) 

A 3D Interface A 2D Representation 

Y 

X 

(i,j) 
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The 3D interface 

“Three Dimensional Front Tracking”,J. Glimm, J. Grove, X. L. Li, 
K. Shyue, Y. Zeng and Q. Zhang, SIAM J. Sci. Comp., 19, 1998. 



Front Tracking Method 

 Front tracking method is implemented in code FronTier. 

Major components: 
1. A moving mesh to represent interface 
2. Navier-Stokes equations 
3. Dynamic subgrid scale models 

Procedure to solve: 
1. Propagate points on interface 
2. Redistribute surface mesh 
3. Reconstruct the tangled part in surface 

mesh 
4. Solve equations for liquid and gas 

separately with ghost fluid method 
Interface 

Fluid 2 

Fluid 1 

Numerical methods related to front tracking: 
1. Coupling fluid solver with interface propagation 
2. Handling topological changes 



Ghost Fluid Method 

 The ghost states on the other side of the interface is constructed by a 
ghost fluid method (B.Khoo et.al. 2005). 

 Stencil across the interface 
 Solving a Riemann problem 
 Using the middle states from the 

Riemann problem to construct the 
ghost states 

 2D and 3D  
 Project interface normal vectors onto cell centers. 
 Construct ghost states along normal directions.  

 Surface tension force is modeled in 
the Riemann problem by 



Interface Point Propagation 

Fluid 1 

Fluid 2 

Ghost fluid 2 

Fluid 2 

Fluid 1 

Ghost fluid 1 

Real fluid states Reconstruct the left 
interface state 

Reconstruct the right 
interface state 

 Interface states are reconstructed from the interpolation of real and ghost states 

Propagate interface point: 

       Advantage: No need to solve Navier-Stokes equations on the interface. 
More robust and efficient than our previous front tracking method. 

A Riemann problem with sl, sr as its 
data is solved to determine the 
interface point speed vn 
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• The challenge to Lagrangian method 
• Eulerian level set method 
• The Marching cube method 
• Reverse engineering: grid-based tracking 
• Combining the best of Lagrange and Euler 
• The locally grid-based tracking method 

Geometry and Topology 



Level Set Methods 
• A popular and powerful scheme for interface tracking is to compute the 

interface position by propagating a function whose level set 
corresponds to the interface position 

– The interface location at time t is given by                    : where 
 
 
 
 

– Commonly used for material interfaces 
– See the books of Sethian: “Level Set Methods and Fast Marching Methods” 

or Osher and Fedkiw: “Level set methods and dynamic implicit surfaces” 
• Designed to handle interface topology changes automatically 

– However interface are limited to shapes that can be represented by level sets 
• Couples to a numerical scheme for updating flows states on a volume 

mesh via a ghost fluid (extrapolation across interfaces) method 
• When fully developed has similar features to explicit interface methods 

in many aspects 

Slide 26 

0t Fφ φ+ ∇ =

( ), 0tφ =x



The idea of grid-based 
untangling 



Grid-based Front Tracking 

1. The common agreement: interface is greatly 
simplified in Eulerian grid. 

2. Marching Cubes, Lorenson and Cline, 1987, 

      (Static, Computer Graphics). 

3. Level set method, Osher and Sethian, 1988, 
(Implicit). 

4. Grid-based front tracking, SJSC, 21, 6 2000, 

      (Explicit and Dynamic). 



The 14 isomorphically distinct cases 



Grid-based topological correction 



Grid-based Tracking 



Interface bifurcation under grid-based  
             front tracking method 

“Robust Computational Algorithm for Dynamic Interface 
Tracking in Three dimensions”, J. Glimm, J. Grove, X. L. Li  
and D. C. Tan, SIAM J. Sci. Comp., 21, 2000. 



Basic FronTier Test Simulations 



Interface Topological Changes 

 Grid based tracking is robust but too diffusive. 
 Challenge: Robustness of the algorithm is crucial for large scale computing. 

Grid based tracking Grid free tracking 



Interface Topological Changes 

 Algorithms to handle topological changes 
 Grid free tracking (GF) 
 Grid based tracking (GB) 
 Locally grid based tracking (LGB) 

Tangled 
interface 

GF 

LGB GB 



Robust Locally Grid Based (LGB) Untangle 

 Advantage 
 Local, it is suitable for large scale computing. 
 Robust, It generates topologically valid surface mesh. 

 A robust algorithm to reconnect a grid based surface mesh with a grid free 
surface mesh 

“A Simple Package for Front Tracking”, J. Du, B. Fix, J. Glimm. X. L. Li, 
Y. Li, L. Wu, JCP, 213, 2006. 



37 

Benchmark Plus 
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3D rotation of slotted sphere 
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Fifth order level set (WENO) vs. fourth order front 
tracking (Runge-Kutta) 
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Front tracking reversal test of interface in 
the deformation velocity field 
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Resolution Test 
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Front tracking reversal test of interface in 3D 
deformation velocity field 

646464 ××

128128128 ××

0.0=t 0.3=t5.1=t
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Topological bifurcation: it’s done! 
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模拟维模拟模拟晶体结晶过程 Topological merging of 3D surface mesh 



Examples 

 Interface bifurcation and merging are commonly observed in multiphase flow 

mesh bifurcation in a curvature 
dependent surface propagation 

mesh merging in a droplet 
collision simulation 
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Conservative Front 
Tracking 
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The extended stencil method 



For ghost-cell scheme: 
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Previous works 

1. Chern and Colella, LLNL Report,1987 
 
2. D. K. Mao, JCP, 1991, 1993 
 
3. Pember, JCP, 1995 
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Conservative Interface-Interior Coupling 

0)( =+ xt ufu
The conservation law: 

The Rankine-Hugoniot condition: 
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1D Conservative Front Tracking Geometry 

Two cases   

• Fronts do not cross the cell center in one time step. 
• Fronts do cross the cell center in one time step. 
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n (mesh) 
   shock 
 position 
    error 

   order 
    error 
      L1     order 

     50 4.8e-2    0.481530     

   100 1.3e-4    8.5 0.034279    3.8 

   200 4.3e-5    1.6 0.013060    1.4 

   400 1.6e-6    1.4 0.004242    1.6 

Convergence test of conservative tracking 



In multi-dimensional case, we consider the  
time space equation: 
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Cell-merge is needed if the volume of the 
time-space cell is less than half of the  
regular cell, in 2-D the time space cell is 
constructed the same way as the 3-D grid  
based interface. 



The time-space interface between  
          n and n+1 time steps 



Before cell merger 



After cell merger 



Conservative 

Tracking 
Nonconsertive 

Tracking 
Mass 
Error 

 
0.0 

 
0.21% 

X-Mom 
Error 

 
0.0 

 
0.21% 

Energy 
Error 

 
0.0 

 
0.21% 
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Rayleigh-Taylor Instability 



Inertial Confinement Fusion (ICF) 
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FronTier application: chaotic mixing 
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FronTier application: chaotic mixing 

Chaotic mixing is not only important to ICF, but also a test of large scale FronTier 
application to petascale computing. We have implemented a load balanced parallel algorithm 
and ran up to 1024 processors on New York Blue. Collaboration with B. Cheng, John Grove, 
and D. Sharp at LANL. 



66 

3D Turbulent Mixing 
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Acceleration Driven Mixing 

• Rayleigh-Taylor (RT), steady 
acceleration: 

2 2 1

2 1

;h Agt A ρ ρα
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+



The     Paradox α
2Agthb α=

David Youngs and K.Read 
(1984) 



Read’s Experiment (1984) 

3D alcohol/air

3D NaI soln./Pentane

3D NaI soln./Hexane

Exp # 29
          39
          58
Exp # 33
          35
Exp # 62
          60

Alpha = 0.073
              0.076
              0.077
Alpha = 0.066
              0.071
Alpha = 0.063
              0.073



Summary of Experiments 



The Alpha of Bubbles 

FronTier: 
Alpha =  0.08 

TVD: 
Alpha = 0.025-0.045 
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FronTier TVD 

Agt = 25.3    h = 4.16  Density plot 2 
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Goal of mixing study 
• Predict large scale features. Size of mixing 

zone 
• Predict statistics (means, variances) of fluid 

quantities 
• For use in combustion 

– Predict full probability distribution (PDF) of species 
concentration and temperatures 

• Accurate models down to atomic level of mix 
are needed 

• These must be sensitive to transport, 
Reynolds number, Schmidt number 
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Real vs. Ideal Mixing Physical vs. 
Numerical Scale Breaking 

• Numerical nonideal effects 
– Numerical surface tension 
– Numerical mass diffusion 

• Physically nonideal effects 
– Surface tension 

• Surfactants, variable surface tension, Marangoli force 
– Mass diffusion 

• Initial or for all times 
– Viscosity 
– Compressibility 
– Long wave length initial perturbations 



76 

Main New Results 

• Systematic agreement of simulation with 
experiment and theory 

• Alpha, bubble width, bubble height fluctuations 
– Most relevant experiments included in 

agreement 
• Reed-Youngs, Smeeton-Youngs, Andrews 

experiments 
• Omitted: 

– Immiscible with surfactant (Dimonte and Smeeton-
Youngs) 

– Initial diffusion layer (in progress) 
– Subgrid models 
– Nonideal initial conditions 
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Scale Breaking: Experiments and Simulations 

Scale breaking 
physics 

Alpha-
experimental 

Alpha-
simulation 

Experiment
s 

Fluids 

Surface tension 0.050-0.077 0.067 RY, SY Liquid/liquid; 
liquid/gas 

Surface tension 
with surfactant 

0.050-0.061 ???? SY,DS Liquid/liquid 

Mass diffusion 0.070 0.069 BA Gas/gas 

Initial mass 
diffusion 

0.062 ???? SY Liquid/liquid 

Viscosity 0.070 ???? SA Liquid/liquid 

Compressibility Up to 0.2 Lasers plasmas 
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Comparison of Mixing Rates: 
Comparison, Simulation and Theory 

Theory Experiment Simulation 

height 0.06 0.067 0.062 

radius 0.01 0.01 0.01 

fluctuations 
in height 

0.028 0.034 
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Turbulent Mixing 
• Acceleration driven mixing 

– Steady acceleration – Rayleigh-Taylor mixing 
– Impulsive acceleration – Richtmyer-Meshkov mixing 

• Most RT computations underpredict mixing rates 
relative to experiments 
– Simulation analysis using time dependent densities (Atwood 

number) makes this point 
• Cause appears to be numerical mass diffusion, which 

reduces the local density contrast and thus the large 
scale mixing rates 
– Numerical surface tension also significant 

• Questions raised about the role of initial noise in the 
experiments 
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Numerical Non-Ideal Effects 

• Numerical mass diffusion 
– Removed by tracking  
– Errors modify density contrast by a factor of 2 for 

typical grids 
• Numerical surface tension 

– Reduced by local grid based (LGB) tracking 
– Errors proportional to curvature x Delta x 
– Arises from approximation of interface by a line 

segment within each mesh block 
– Arises from grid level description of interface and 

thus occurs for all untracked methods 
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Time Dependent Atwood Number 
• Atwood number  
• For each z 

– Compute the maximum and minimum density 
– Form a space (height) and time dependent A(z,t) from min/max 

• Average A(z,t) over bubble region to get A(t) 
• Untracked A(t) is about ½ nominal value due to mass 

diffusion; (incompressible) tracked A(t) is virtually constant 
• If A(t) is used in definition of alpha, all low compressible 

simulations agree (with each other, with experiment, with 
theory) 

• If A(t) is used in compressible simulations, all simulations 
are self similar, but self similar growth rate depends on 
compressibility 

2 1

2 1

A ρ ρ
ρ ρ

−
=

+
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Physical Non-Ideal Effects 

• Viscosity, mass diffusion, surface 
tension 

• Compressibility 
– Solution depends on initial temperature 

stratification; assume isothermal. Initial 
density depends on height z, so that 
Atwood number is z dependent.  

– Data interpretation using a time dependent 
Atwood number restores self similarity, but 
the mixing rate alpha increases with 
compressibility.  
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Turbulent Mixing: Predictions of Gross 
Features (Mixing Rate alpha, etc.) 

• Systematic agreement of theory, simulation 
and experiment for RT turbulent mixing 
– Scale breaking physics important to this 

agreement 
• Tracking is the best of practical interface 

methods 
– Control over numerical mass diffusion and 

numerical surface tension needed for RT 
agreement 

• Validation studies still in progress (viscosity) 
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Other Applications of 
Front Tracking 
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模拟三维内燃机喷嘴 Ask not what the earth can do for us,  
ask what we can do for the earth 

American consumes about 200 billion gallons per year, 
a 10% saving will be 20 billion gallon amounts to more 
than 40 billion dollars, not to mention the benefit to the 
environment. 
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3D Simulation of a Real Fuel Injection 

 All parameters are from an experiment performed by Parker* 

nozzle radius (R)  0.1mm 
grid    20/R 
fuel density  0.66 g/cm3 

gas density  0.0165 g/cm3 

fluid viscosity  0.013 Poise 
surface tension  24 mN/m2 

Reynolds number  20,300 
Weber number  2.2×106 

Ohnesorge number 0.073 
Density ratio  40 

* P. Parker, Atomization and Sprays, 8, (1998)  
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Verification: Rayleigh Instability 

Number of cells 
on radius 

FT/GF
M (2D) 

FT/GFM 
(3D) 

5 
10 
20 

0.1396 
0.0607 
0.0321 

0.2853 
0.1702 
0.0672 

The relative errors of the growth rate 

Comparison with the dispersion relation dispersion relation 



Incompressible fluid equation 
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This is a mixed hyperbolic and elliptic equation 
 
U is the velocity of fluid and p is the pressure. 
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Incompressible Rayleigh-Taylor instability on 
Reynold number 

(from left: 14,140,1400) 
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Incompressible code in 3D 
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模拟维模拟模拟晶体结晶过程 Two Dimensional Solute Precipitation 



92 

模拟维模拟模拟晶体结晶过程 Three Dimensional Solute Precipitation 
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Dissolution is the opposite process of 
deposition 
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The Spring Model for  
two dimensional surface 

: 



The X Parachute 
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风力发电机的数值模拟 
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Fluid-Rigid body interaction 
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Simulation of Cell Migration 
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American and other exotic options 
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The Black-Schole 
Equation:  

The interface  
Condition at all time:  

Initial Condition: 

American and many other exotic options 
are PDE free boundary problems. Front 
tracking provides an accurate tool to solve the basket 
hedging problems. We have already established 
1-D and 2-D computational platform for such problems. 
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One Dimensional American options 

Front tracking on 1-D 
American call option 

Front tracking on 1-D 
American put option 
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World’s fastest computers (top 500) 

From mega scale, peta scale, to exa sacle 
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模拟维模拟模拟晶体结晶过程 Parallelization of Front Tracking 
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Parallel load balancing 

Like AMR, FronTier has encountered great obstacle in load balancing and parallel 
scaling. One important development is adaptive partition load balancing.Up to 8196 
processors have been tested. No better for number larger than that. 



Parallel Performance of FT 

Grid Partition nCores Time to 
solution(s) Ideal(s) 

256×256×128 16×16×8 2048 157.1 157.1 

256×256×256 16×16×16 4096 157.5 157.1 

256×256×512 16×16×32 8192 158.2 157.1 

256×256×1024 16×16×64 16384 159.8 157.1 

Performance of LGB 
 Jet simulation 
 300-3million Triangles 
 Bluegene/L 4096 cores 

Weak scaling 
 Rayleigh Instability 
 Bluegene/L 
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A quotation from Albert Einstein 

1. Stony Brook, AMS 
Department, galaxy 
cluster (over 500 
processors) 

 
2. Stony Brook, CEAS, 

Seawulf cluster 
 
3. New York Blue: 

103.22 teraflops 
 

Major Computing 
Resources: 
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Thank you for your attention 
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