
Product of Conjugacy Classes in Some Finite Groups and Related Problems

Product of Conjugacy Classes in Some Finite

Groups and Related Problems

Wei-Liang Sun

National Cheng Kung University

May 2012



Product of Conjugacy Classes in Some Finite Groups and Related Problems

Preliminary

Notation

Let G be a group and c, g ∈ G.

Z(G): the center of G

CG(c): the centralizer of c

cG = {cg = g−1cg | g ∈ G}, the conjugacy class of c

[c, g] = c−1g−1cg: a commutator

K(G): the collection of all commutators of G

G′: the commutator subgroup which is generated by K(G)

Definition

A subset X of G is called normal (or G-invariant) if

Xg = g−1Xg = X for all g ∈ G.
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Preliminary

Proposition

Every group G can be express as

G = cα0
G ∪ cαG ∪ cβG ∪ cγG ∪ · · · , cα0 = 1,

for some cα, cβ, cγ ∈ G, α0, α, β, γ ∈ I, an index set, such that

cs
G ∩ ctG = ∅ for all s, t ∈ I. The decomposition is unique up to

conjugation. In particular, I is finite when G is finite.

The number |I| is called the class number of a finite group G.

Thus any subset of a group must be contained in a union of some

conjugacy classes.
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Product of conjugacy classes

Let G be a finite group and {ciG}i∈I be the collection of

conjugacy classes. For any subset X ⊆ G, set

η(X) =
∣∣{i ∈ I | X ∩ ciG 6= ∅}

∣∣ <∞.
Evidently, η(G) = |I|, the class number of G, and η(ci

G) = 1 for

all i ∈ I.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and aG, bG be two

non-trivial conjugacy class. Then aGbG 6= (ab)G, i.e.,

η(aGbG) 6= 1.

Some non-abelian groups which may not be simple behave similar.
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Product of conjugacy classes

Denote min(G) = {η(aGbG) | a, b ∈ G \ Z(G)}.

Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For n ≥ 6 For n, q ≥ 2

min(Sn) = 2 or 3 min(GL(n, q)) ≥ q − 1

min(An) = 2, 4 or 5 min(SL(n, q)) ≥ d q2e

But results for GL(n, q) and SL(n, q) are not optimal for general n

and q. For example, they checked min(GL(2, 2m)) = 2m − 1 for

m > 1. Using GAP, they checked that min(GL(2, q)) = q − 1 for

q ∈ {3, 5, 7, 9, 11, 13}, but min(GL(3, 3)) = 4 > 2.
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Product of conjugacy classes

We modified their GAP code and checked:

min(GL(2, q)) = q − 1 for q ∈ {17, 19, 23, 25, 27, 29, 31, 37},
min(GL(3, 2)) = 3 > 1, min(GL(3, 4)) = 5 > 3,

min(SL(3, 3)) = 4 > 2 and min(SL(3, 4)) = 8 > 2. Furthermore,

we find some matrices A,B ∈ G \ Z(G), G = GL(3, q), such that

η(AGBG) = q + 1 for q ∈ {5, 7, 8, 9, 11}. We conjecture that:

Conjecture

min(GL(2, q)) = q − 1 for all q.

min(GL(3, q)) = q + 1 for all q.

For fixed n, there is a an ∈ Z such that

min(GL(n, q)) = q + an for all q.
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c-Commutator set

We call c−1cG = {c−1cg | g ∈ G} = {[c, g] | g ∈ G} is a

c-commutator set, denoted by [c,G].

Lemma

η(aGbG) = η(abG) = η(aGb).

Lemma (E. Adan-Bante, 2006)

Let G be a group and c ∈ G. If [c,G] is a subgroup of G, then it is

normal.
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c-Commutator set

Theorem (E. Adan-Bante, 2006)

Let G be a finite group, aG and bG be conjugacy classes of G.

Assume that CG(a) = CG(b). Then aGbG = (ab)G if and only if

[ab,G] = [a,G] = [b,G] and [ab,G] is a normal subgroup of G. In

particular, given any conjugacy class aG of G, then aGaG = (a2)G

if and only if [a,G] is a normal subgroup of G.

Corollary (E. Adan-Bante, 2006)

Let G be a finite non-abelian simple group, aG and bG be

conjugacy classes of G. Assume that CG(a) = CG(b). Then

aGbG = (ab)G if and only if a = b = 1G. In particular,

aGaG = (a2)G if and only if a = 1G.
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c-Commutator set

Theorem (Sun)

Let G be a finite group, aG and bG be conjugacy classes of G.

Then the following are equivalent:

|CG(ab)| ≥ max {|CG(a)|, |CG(b)|} and aGbG = (ab)G,

[ab,G] = [a,G] = [b,G] E G.

This is equivalent to

Theorem (Sun)

Let G be a finite group, aG and bG be conjugacy classes of G.

Then the following are equivalent:

|(ab)G| ≤ min
{
|aG|, |bG|

}
and aGbG = (ab)G,

[ab,G] = [a,G] = [b,G] E G.
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c-Commutator set
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c-Commutator set

Proposition (E. Adan-Bante, 2006)

Let G be a finite group, aG and bG be conjugacy classes with

CG(a) = CG(b) and |aG| = 2. Then η(aGbG) = 2. In particular,

η(aGaG) = 2.

Proposition (Sun)

Let G be a finite group, aG and bG be conjugacy classes with

|aG| = 2. Then η(aGbG) ≤ 2.

If η(aGbG) = 1, then either CG(a) * CG(b) or

CG(b) * CG(a).

If η(aGbG) = 2, then CG(b) ⊆ CG(a) and so 2 | |bG|.

In particular, η(aGaG) = 2 and η(aG(a−1)G) = 2.
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Some properties for c-commutator sets

Theorem (Sun)

Let G be a (finite) group and c ∈ G. Then the following are

equivalent:

[c,G] is a subgroup of G,

[c,G] = [c′, G] for all c′ ∈ cG,

[c,G] is normal,

[c,G] = c−1cG = (c−1)GcG.
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Some properties for c-commutator sets

The existence for which [c,G] is a subgroup of G.

Proposition (Sun)

Let G be a non-trivial finite group. Then the following are

equivalent:

G = H ∪ C where H is a proper normal subgroup and C is a

conjugacy class.

G = [c,G] ∪ cG for some c ∈ G.

Example

S3 = A3 ∪ (1 2)S3 = [(1 2), S3] ∪ (1 2)S3 .

Every finite non-abelian group of order 2p, p is an odd prime,

can be decomposed the such form.
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Some properties for c-commutator sets

Conjecture

Let p be an odd prime and let n ∈ N. Then there is a positive

integer mn ≥ n such that there exist mn non-isomorphic finite

non-abelian groups G with order 2pn such that G = [c,G] ∪ cG for

some c ∈ G. In particular, p and mn are independent, i.e. mn is

fixed when n is fixed, for any odd prime p.

We have checked some cases by GAP:

For n = 1, m1 = 1 for all odd primes by Example.

For n = 2, m2 = 2 for odd primes p ≤ 101.

For n = 3, m3 = 3 for odd primes p ≤ 7.

For n = 4, m4 = 5 for odd primes p ≤ 7.

For n = 5, m5 = 7 for odd primes p ≤ 5.
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Related problems

Conjecture (J. Thompson, unknown)

Let G be a finite non-abelian simple group. Then there exists a

non-trivial conjugacy class cG of G such that G = cGcG. In

particular, cG = (c−1)G.

Conjecture (Ore, 1951, solved in 2010)

Every element in a finite non-abelian simple group is a

commutator.

J. Thompson’s conjecture can imply Ore’s conjecture. However,

Ore’s conjecture is solved by M. W. Liebeck, E. A. O’Brien, A.

Shalev, and P. H. Tiep in 2010.
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Related problems

Recall that K(G) = {[g, h] | g, h ∈ G} consists all commutators of

G and G′ = 〈K(G)〉 is the commutator subgroup of G. For small

order of groups, K(G) = G′, but not for larger order. For example,

the smallest order of the group such that K(G) 6= G′ is 96, J. J.

Rotman states that the group is found via the computer.

Definition

Let X be a subset of G. We say that X is real if x−1 ∈ X for all

x ∈ X; X is “commutative” if (gX)(hX) = (hX)(gX) for all

g, h ∈ G, i.e., the product is commutative.

Note that if X is normal, then (gX)(hX) = (gh)XX.
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Related problems

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then

G/N is abelian if and only if G′ ≤ N .

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If

X is “commutative”, then K(G) ⊆ XX = X2.

By Ore’s “Theorem”, we have

Lemma (Sun)

Let G be a finite non-abelian simple group and C be a real

conjugacy class of G. Then C is “commutative” if and only if

G = C2.
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Related problems

Given a conjugacy class number η(G), how many non-isomorphic

finite groups satisfy that?

Fix η(G) = n, G = c1
G ∪ c2G ∪ · · · ∪ cnG, c1 = 1, thus

|G| = |c1G|+ |c2G|+ · · ·+ |cnG|,

so

1 =
1

m1
+

1

m2
+ · · ·+ 1

mn
(1)

where mi =
|G|
|ciG|

= |CG(ci)|.
In 1903, E. Landau proved Equation (1) has only finitely many

solutions over the positive integers for each n.
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Related problems

η(G)

≤ 5 Miller and Burnside, complete

6, 7 Sigley, incomplete for η(G) = 6; Z(G) 6= 1 for η(G) = 7

6, 7 Poland, complete

8 Kosvintsev, valid solutions proposed by a computer

9 Odincov and Starostin, complete

≤ 12 Aleksandrov and Komissarcik, all finite simple groups



Product of Conjugacy Classes in Some Finite Groups and Related Problems

Related problems

How many groups satisfy that |G| = |c1G|+ |c2G|+ · · ·+ |cnG|
where |ciG| 6= |cjG| for i 6= j?

Conjecture (F. M. Markel, 1973)

G ∼= S3.

That is called S3-conjecture.
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Thank you for your attention!
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