Product of Conjugacy Classes in Some Finite Groups and Related Problems

Wei-Liang Sun
National Cheng Kung University

May 2012

Notation

Let G be a group and $c, g \in G$.

- $Z(G)$: the center of G
- $\mathbb{C}_{G}(c)$: the centralizer of c
- $c^{G}=\left\{c^{g}=g^{-1} c g \mid g \in G\right\}$, the conjugacy class of c
- $[c, g]=c^{-1} g^{-1} c g$: a commutator
- $K(G)$: the collection of all commutators of G
- G^{\prime} : the commutator subgroup which is generated by $K(G)$

Definition

A subset X of G is called normal (or G-invariant) if

$$
X^{g}=g^{-1} X g=X \text { for all } g \in G
$$

Proposition

Every group G can be express as

$$
G=c_{\alpha_{0}}{ }^{G} \cup c_{\alpha}{ }^{G} \cup c_{\beta}{ }^{G} \cup c_{\gamma}{ }^{G} \cup \cdots, c_{\alpha_{0}}=1,
$$

for some $c_{\alpha}, c_{\beta}, c_{\gamma} \in G, \alpha_{0}, \alpha, \beta, \gamma \in I$, an index set, such that $c_{s}{ }^{G} \cap c_{t}{ }^{G}=\varnothing$ for all $s, t \in I$. The decomposition is unique up to conjugation. In particular, I is finite when G is finite.

The number $|I|$ is called the class number of a finite group G. Thus any subset of a group must be contained in a union of some conjugacy classes.

Proposition

Every group G can be express as

$$
G=c_{\alpha_{0}}{ }^{G} \cup c_{\alpha}{ }^{G} \cup c_{\beta}{ }^{G} \cup c_{\gamma}{ }^{G} \cup \cdots, c_{\alpha_{0}}=1,
$$

for some $c_{\alpha}, c_{\beta}, c_{\gamma} \in G, \alpha_{0}, \alpha, \beta, \gamma \in I$, an index set, such that $c_{s}{ }^{G} \cap c_{t}{ }^{G}=\varnothing$ for all $s, t \in I$. The decomposition is unique up to conjugation. In particular, I is finite when G is finite.

The number $|I|$ is called the class number of a finite group G. Thus any subset of a group must be contained in a union of some conjugacy classes.

Let G be a finite group and $\left\{c_{i}^{G}\right\}_{i \in I}$ be the collection of conjugacy classes. For any subset $X \subseteq G$, set

$$
\eta(X)=\left|\left\{i \in I \mid X \cap c_{i}^{G} \neq \varnothing\right\}\right|<\infty .
$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta\left(c_{i}{ }^{G}\right)=1$ for
all $i \in I$

Coniecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^{G}, b^{G} be two non-trivial conjugacy class. Then $a^{G} b^{G} \neq(a b)^{G}$, i.e., $\eta\left(a^{G} b^{G}\right) \neq 1$

Some non-abelian groups which may not be simple behave similar

Let G be a finite group and $\left\{c_{i}^{G}\right\}_{i \in I}$ be the collection of conjugacy classes. For any subset $X \subseteq G$, set

$$
\eta(X)=\left|\left\{i \in I \mid X \cap c_{i}^{G} \neq \varnothing\right\}\right|<\infty .
$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta\left(c_{i}^{G}\right)=1$ for all $i \in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^{G}, b^{G} be two non-trivial conjugacy class. Then $a^{G} b^{G} \neq(a b)^{G}$, i.e.,

Some non-abelian groups which may not be simple behave similar

Let G be a finite group and $\left\{c_{i}^{G}\right\}_{i \in I}$ be the collection of conjugacy classes. For any subset $X \subseteq G$, set

$$
\eta(X)=\left|\left\{i \in I \mid X \cap c_{i}^{G} \neq \varnothing\right\}\right|<\infty .
$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta\left(c_{i}^{G}\right)=1$ for all $i \in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^{G}, b^{G} be two non-trivial conjugacy class. Then $a^{G} b^{G} \neq(a b)^{G}$, i.e., $\eta\left(a^{G} b^{G}\right) \neq 1$.

Let G be a finite group and $\left\{c_{i}^{G}\right\}_{i \in I}$ be the collection of conjugacy classes. For any subset $X \subseteq G$, set

$$
\eta(X)=\left|\left\{i \in I \mid X \cap c_{i}^{G} \neq \varnothing\right\}\right|<\infty .
$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta\left(c_{i}^{G}\right)=1$ for all $i \in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^{G}, b^{G} be two non-trivial conjugacy class. Then $a^{G} b^{G} \neq(a b)^{G}$, i.e., $\eta\left(a^{G} b^{G}\right) \neq 1$.

Some non-abelian groups which may not be simple behave similar.

Denote $\min (G)=\left\{\eta\left(a^{G} b^{G}\right) \mid a, b \in G \backslash Z(G)\right\}$.
Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For $n \geq 6$	For $n, q \geq 2$
$\min \left(S_{n}\right)=2$ or 3	$\min (\mathrm{GL}(n, q)) \geq q-1$
$\min \left(A_{n}\right)=2,4$ or 5	$\min (\mathrm{SL}(n, q)) \geq\left\lceil\frac{q}{2}\right\rceil$

But results for $\mathrm{GL}(n, q)$ and $\mathrm{SL}(n, q)$ are not optimal for general n and q. For example, they checked $\min \left(\operatorname{GL}\left(2,2^{m}\right)\right)=2^{m}-1$ for $m>1$. Using GAP, they checked that $\min (\mathrm{GL}(2, q))=q-1$ for $q \in\{3,5,7,9,11,13\}$, but $\min (\mathrm{GL}(3,3))=4>2$.

Denote $\min (G)=\left\{\eta\left(a^{G} b^{G}\right) \mid a, b \in G \backslash Z(G)\right\}$.
Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For $n \geq 6$	For $n, q \geq 2$
$\min \left(S_{n}\right)=2$ or 3	$\min (\operatorname{GL}(n, q)) \geq q-1$
$\min \left(A_{n}\right)=2,4$ or 5	$\min (\operatorname{SL}(n, q)) \geq\left\lceil\frac{q}{2}\right\rceil$

But results for $\mathrm{GL}(n, q)$ and $\mathrm{SL}(n, q)$ are not optimal for general n and q. For example, they checked $\min \left(\mathrm{GL}\left(2,2^{m}\right)\right)=2^{m}-1$ for $m>1$. Using GAP, they checked that $\min (\mathrm{GL}(2, q))=q-1$ for $q \in\{3,5,7,9,11,13\}$, but $\min (\mathrm{GL}(3,3))=4>2$.

Denote $\min (G)=\left\{\eta\left(a^{G} b^{G}\right) \mid a, b \in G \backslash Z(G)\right\}$.

Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

$$
\begin{array}{c|c}
\text { For } n \geq 6 & \text { For } n, q \geq 2 \\
\hline \min \left(S_{n}\right)=2 \text { or } 3 & \min (\operatorname{GL}(n, q)) \geq q-1 \\
\min \left(A_{n}\right)=2,4 \text { or } 5 & \min (\operatorname{SL}(n, q)) \geq\left\lceil\frac{q}{2}\right\rceil
\end{array}
$$

But results for $\mathrm{GL}(n, q)$ and $\mathrm{SL}(n, q)$ are not optimal for general n and q. For example, they checked $\min \left(\mathrm{GL}\left(2,2^{m}\right)\right)=2^{m}-1$ for $m>1$. Using GAP, they checked that $\min (\operatorname{GL}(2, q))=q-1$ for $q \in\{3,5,7,9,11,13\}$, but $\min (\mathrm{GL}(3,3))=4>2$.

We modified their GAP code and checked:

Conjecture

- $\min (\mathrm{GL}(2, q))=q-1$ for all q.
- $\min (\mathrm{GL}(3, q))=q+1$ for all q.
- For fixed n, there is a $a_{n} \in \mathbb{Z}$ such that
$\min (\operatorname{GL}(n, q))=q+a_{n}$ for all q.

We modified their GAP code and checked:
$\min (\mathrm{GL}(2, q))=q-1$ for $q \in\{17,19,23,25,27,29,31,37\}$,
$\min (\operatorname{GL}(3,2))=3>1, \min (\mathrm{GL}(3,4))=5>3$, $\min (\operatorname{SL}(3,3))=4>2$ and $\min (\mathrm{SL}(3,4))=8>2$. Furthermore, we find some matrices $A, B \in G \backslash Z(G), G=\mathrm{GL}(3, q)$, such that $\eta\left(A^{G} B^{G}\right)=q+1$ for $q \in\{5,7,8,9,11\}$.

We modified their GAP code and checked:
$\min (\mathrm{GL}(2, q))=q-1$ for $q \in\{17,19,23,25,27,29,31,37\}$,
$\min (\operatorname{GL}(3,2))=3>1, \min (\mathrm{GL}(3,4))=5>3$, $\min (\operatorname{SL}(3,3))=4>2$ and $\min (\operatorname{SL}(3,4))=8>2$. Furthermore, we find some matrices $A, B \in G \backslash Z(G), G=\mathrm{GL}(3, q)$, such that $\eta\left(A^{G} B^{G}\right)=q+1$ for $q \in\{5,7,8,9,11\}$. We conjecture that:

Conjecture

- $\min (\mathrm{GL}(2, q))=q-1$ for all q.
- $\min (\mathrm{GL}(3, q))=q+1$ for all q.
- For fixed n, there is a $a_{n} \in \mathbb{Z}$ such that $\min (\operatorname{GL}(n, q))=q+a_{n}$ for all q.

We call $c^{-1} c^{G}=\left\{c^{-1} c^{g} \mid g \in G\right\}=\{[c, g] \mid g \in G\}$ is a c-commutator set, denoted by $[c, G]$.

Lemma

$\eta\left(a^{G} b^{G}\right)=\eta\left(a b^{G}\right)=\eta\left(a^{G} b\right)$.

Lemma (E. Adan-Bante, 2006)
Let G be a group and $c \in G$. If $[c, G]$ is a subgroup of G, then it is
normal.

We call $c^{-1} c^{G}=\left\{c^{-1} c^{g} \mid g \in G\right\}=\{[c, g] \mid g \in G\}$ is a c-commutator set, denoted by $[c, G]$.

Lemma

$\eta\left(a^{G} b^{G}\right)=\eta\left(a b^{G}\right)=\eta\left(a^{G} b\right)$.

Lemma (E. Adan-Bante, 2006)

Let G be a group and $c \in G$. If $[c, G]$ is a subgroup of G, then it is normal.

Theorem (E. Adan-Bante, 2006)

Let G be a finite group, a^{G} and b^{G} be conjugacy classes of G. Assume that $\mathbb{C}_{G}(a)=\mathbb{C}_{G}(b)$. Then $a^{G} b^{G}=(a b)^{G}$ if and only if $[a b, G]=[a, G]=[b, G]$ and $[a b, G]$ is a normal subgroup of G. In particular, given any conjugacy class a^{G} of G, then $a^{G} a^{G}=\left(a^{2}\right)^{G}$ if and only if $[a, G]$ is a normal subgroup of G.

Corollary (E. Adan-Bante, 2006)

Let G be a finite non-abelian simple group, a^{G} and b^{G} be conjugacy classes of G. Assume that $\mathbb{C}_{G}(a)=\mathbb{C}_{G}(b)$. Then $a^{G} b^{G}=(a b)^{G}$ if and only if $a=b=1_{G}$. In particular, $a^{G} a^{G}=\left(a^{2}\right)^{G}$ if and only if $a=1_{G}$.

Theorem (Sun)

Let G be a finite group, a^{G} and b^{G} be conjugacy classes of G.
Then the following are equivalent:

- $\left|\mathbb{C}_{G}(a b)\right| \geq \max \left\{\left|\mathbb{C}_{G}(a)\right|,\left|\mathbb{C}_{G}(b)\right|\right\}$ and $a^{G} b^{G}=(a b)^{G}$,
- $[a b, G]=[a, G]=[b, G] \unlhd G$.

This is equivalent to

Theorem (Sun)

Let G be a finite group, a^{G} and b^{G} be conjugacy classes of G.
Then the following are equivalent:

- $\left|(a b)^{G}\right| \leq \min \left\{\left|a^{G}\right|,\left|b^{G}\right|\right\}$ and $a^{G} b^{G}=(a b)^{G}$,
- $[a b, G]=[a, G]=[b, G] \unlhd G$.

Corollary (Sun)

Let G be a finite non-abelian simple group, a^{G} and b^{G} be conjugacy classes of G. Then the following are equivalent:

- $\left|\mathbb{C}_{G}(a b)\right| \geq \max \left\{\left|\mathbb{C}_{G}(a)\right|,\left|\mathbb{C}_{G}(b)\right|\right\}$ and $a^{G} b^{G}=(a b)^{G}$,
- $\left|(a b)^{G}\right| \leq \min \left\{\left|a^{G}\right|,\left|b^{G}\right|\right\}$ and $a^{G} b^{G}=(a b)^{G}$,
- $a=b=1_{G}$.

Proposition (E. Adan-Bante, 2006)

Let G be a finite group, a^{G} and b^{G} be conjugacy classes with $\mathbb{C}_{G}(a)=\mathbb{C}_{G}(b)$ and $\left|a^{G}\right|=2$. Then $\eta\left(a^{G} b^{G}\right)=2$. In particular, $\eta\left(a^{G} a^{G}\right)=2$.

Proposition (Sun)

Let G be a finite group, a^{G} and b^{G} be conjugacy classes with $\left|a^{G}\right|=2$. Then $\eta\left(a^{G} b^{G}\right) \leq 2$.

- If $\eta\left(a^{G} b^{G}\right)=1$, then either $\mathbb{C}_{G}(a) \nsubseteq \mathbb{C}_{G}(b)$ or $\mathbb{C}_{G}(b) \nsubseteq \mathbb{C}_{G}(a)$.
- If $\eta\left(a^{G} b^{G}\right)=2$, then $\mathbb{C}_{G}(b) \subseteq \mathbb{C}_{G}(a)$ and so $2\left|\left|b^{G}\right|\right.$. In particular, $\eta\left(a^{G} a^{G}\right)=2$ and $\eta\left(a^{G}\left(a^{-1}\right)^{G}\right)=2$.

Theorem (Sun)

Let G be a (finite) group and $c \in G$. Then the following are equivalent:

- $[c, G]$ is a subgroup of G,
- $[c, G]=\left[c^{\prime}, G\right]$ for all $c^{\prime} \in c^{G}$,
- $[c, G]$ is normal,
- $[c, G]=c^{-1} c^{G}=\left(c^{-1}\right)^{G} c^{G}$.

The existence for which $[c, G]$ is a subgroup of G.

Proposition (Sun)

Let G be a non-trivial finite group. Then the following are equivalent:

- $G=H \cup C$ where H is a proper normal subgroup and C is a conjugacy class.
- $G=[c, G] \cup c^{G}$ for some $c \in G$.

Example

- Every finite non-abelian group of order $2 p, p$ is an odd prime, can be decomposed the such form

The existence for which $[c, G]$ is a subgroup of G.

Proposition (Sun)

Let G be a non-trivial finite group. Then the following are equivalent:

- $G=H \cup C$ where H is a proper normal subgroup and C is a conjugacy class.
- $G=[c, G] \cup c^{G}$ for some $c \in G$.

Example

- $S_{3}=A_{3} \cup(12)^{S_{3}}=\left[(12), S_{3}\right] \cup(12)^{S_{3}}$.
- Every finite non-abelian group of order $2 p, p$ is an odd prime, can be decomposed the such form.

Conjecture

Let p be an odd prime and let $n \in \mathbb{N}$. Then there is a positive integer $m_{n} \geq n$ such that there exist m_{n} non-isomorphic finite non-abelian groups G with order $2 p^{n}$ such that $G=[c, G] \cup c^{G}$ for some $c \in G$. In particular, p and m_{n} are independent, i.e. m_{n} is fixed when n is fixed, for any odd prime p.

We have checked some cases by GAP:

- For $n=1, m_{1}=1$ for all odd primes by Example.
- For $n=2, m_{2}=2$ for odd primes $p \leq 101$.
- For $n=3, m_{3}=3$ for odd primes $p \leq 7$.
- For $n=4, m_{4}=5$ for odd primes $p \leq 7$.
- For $n=5, m_{5}=7$ for odd primes $p \leq 5$.

Conjecture (J. Thompson, unknown)
Let G be a finite non-abelian simple group. Then there exists a non-trivial conjugacy class c^{G} of G such that $G=c^{G} c^{G}$. In particular, $c^{G}=\left(c^{-1}\right)^{G}$.

Conjecture (Ore, 1951, solved in 2010)

Every element in a finite non-abelian simple group is a
commutator
J. Thompson's conjecture can imply Ore's conjecture. However,

Ore's conjecture is solved by M. W. Liebeck, E. A. O'Brien, A
Shalev, and P. H. Tiep in 2010

Conjecture (J. Thompson, unknown)

Let G be a finite non-abelian simple group. Then there exists a non-trivial conjugacy class c^{G} of G such that $G=c^{G} c^{G}$. In particular, $c^{G}=\left(c^{-1}\right)^{G}$.

Conjecture (Ore, 1951, solved in 2010)

Every element in a finite non-abelian simple group is a commutator.
J. Thompson's conjecture can imply Ore's conjecture. However, Ore's conjecture is solved by M. W. Liebeck, E. A. O'Brien, A. Shalev, and P. H. Tiep in 2010.

Recall that $K(G)=\{[g, h] \mid g, h \in G\}$ consists all commutators of G and $G^{\prime}=\langle K(G)\rangle$ is the commutator subgroup of G. For small order of groups, $K(G)=G^{\prime}$, but not for larger order. For example, the smallest order of the group such that $K(G) \neq G^{\prime}$ is $96, \mathrm{~J}$. J. Rotman states that the group is found via the computer.

Definition
\square
Note that if X is normal, then $(g X)(h X)=(g h) X X$

Recall that $K(G)=\{[g, h] \mid g, h \in G\}$ consists all commutators of G and $G^{\prime}=\langle K(G)\rangle$ is the commutator subgroup of G. For small order of groups, $K(G)=G^{\prime}$, but not for larger order. For example, the smallest order of the group such that $K(G) \neq G^{\prime}$ is $96, \mathrm{~J}$. J. Rotman states that the group is found via the computer.

Definition

Let X be a subset of G. We say that X is real if $x^{-1} \in X$ for all $x \in X ; X$ is "commutative" if $(g X)(h X)=(h X)(g X)$ for all $g, h \in G$, i.e., the product is commutative.

Note that if X is normal, then $(g X)(h X)=(g h) X X$.

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G / N is abelian if and only if $G^{\prime} \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If

By Ore's "Theorem", we have
Lemma (Sun)
Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G / N is abelian if and only if $G^{\prime} \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If X is "commutative", then $K(G) \subseteq X X=X^{2}$.

By Ore's "Theorem", we have

Lemma (Sun)

Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if
\qquad

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G / N is abelian if and only if $G^{\prime} \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If X is "commutative", then $K(G) \subseteq X X=X^{2}$.

By Ore's "Theorem", we have

Lemma (Sun)

Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if $G=C^{2}$.

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?
Fix $\eta(G)=n, G=c_{1}{ }^{G} \cup c_{2}{ }^{G} \cup \cdots \cup c_{n}{ }^{G}, c_{1}=1$, thus

$$
|G|=\left|c_{1}{ }^{G}\right|+\left|c_{2}{ }^{G}\right|+\cdots+\left|c_{n}{ }^{G}\right|
$$

so

$$
\begin{equation*}
1=\frac{1}{m_{1}}+\frac{1}{m_{2}}+\cdots+\frac{1}{m_{n}} \tag{1}
\end{equation*}
$$

where $m_{i}=\frac{|G|}{\left|c_{i}^{G}\right|}=\left|\mathbb{C}_{G}\left(c_{i}\right)\right|$.
In 1903, E. Landau proved Equation (1) has only finitely many
solutions over the positive integers for each n.

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?
Fix $\eta(G)=n, G=c_{1}{ }^{G} \cup c_{2}{ }^{G} \cup \cdots \cup c_{n}{ }^{G}, c_{1}=1$, thus

$$
|G|=\left|c_{1}^{G}\right|+\left|c_{2}^{G}\right|+\cdots+\left|c_{n}^{G}\right|
$$

so

$$
\begin{equation*}
1=\frac{1}{m_{1}}+\frac{1}{m_{2}}+\cdots+\frac{1}{m_{n}} \tag{1}
\end{equation*}
$$

where $m_{i}=\frac{|G|}{\left|c_{i}{ }^{G}\right|}=\left|\mathbb{C}_{G}\left(c_{i}\right)\right|$.
In 1903, E. Landau proved Equation (1) has only finitely many solutions over the positive integers for each n.

$\eta(G)$	
≤ 5	Miller and Burnside, complete
6,7	Sigley, incomplete for $\eta(G)=6 ; Z(G) \neq 1$ for $\eta(G)=7$
6,7	Poland, complete
8	Kosvintsev, valid solutions proposed by a computer
9	Odincov and Starostin, complete
≤ 12	Aleksandrov and Komissarcik, all finite simple groups

How many groups satisfy that $|G|=\left|c_{1}{ }^{G}\right|+\left|c_{2}{ }^{G}\right|+\cdots+\left|c_{n}{ }^{G}\right|$ where $\left|c_{i}{ }^{G}\right| \neq\left|c_{j}{ }^{G}\right|$ for $i \neq j$?

Conjecture (F. M. Markel, 1973)

$G \cong S_{3}$.
That is called S_{3}-conjecture.

Thank you for your attention!

