Product of Conjugacy Classes in Some Finite Groups and Related Problems

Wei-Liang Sun
National Cheng Kung University

May 2012

Notation

Let G be a group and $c, g \in G$.

- Z(G): the center of G
- $\mathbb{C}_G(c)$: the centralizer of c
- $c^G = \{c^g = g^{-1}cg \mid g \in G\}$, the conjugacy class of c
- $[c,g]=c^{-1}g^{-1}cg$: a commutator
- K(G): the collection of all commutators of G
- ullet G': the commutator subgroup which is generated by K(G)

Definition

A subset X of G is called normal (or G-invariant) if

$$X^g = g^{-1}Xg = X$$
 for all $g \in G$.

Proposition

Every group G can be express as

$$G = c_{\alpha_0}{}^G \cup c_{\alpha}{}^G \cup c_{\beta}{}^G \cup c_{\gamma}{}^G \cup \cdots, c_{\alpha_0} = 1,$$

for some $c_{\alpha}, c_{\beta}, c_{\gamma} \in G$, $\alpha_0, \alpha, \beta, \gamma \in I$, an index set, such that $c_s{}^G \cap c_t{}^G = \emptyset$ for all $s, t \in I$. The decomposition is unique up to conjugation. In particular, I is finite when G is finite.

The number |I| is called the class number of a finite group G.

Thus any subset of a group must be contained in a union of some conjugacy classes.

Proposition

Every group G can be express as

$$G = c_{\alpha_0}{}^G \cup c_{\alpha}{}^G \cup c_{\beta}{}^G \cup c_{\gamma}{}^G \cup \cdots, c_{\alpha_0} = 1,$$

for some $c_{\alpha}, c_{\beta}, c_{\gamma} \in G$, $\alpha_0, \alpha, \beta, \gamma \in I$, an index set, such that $c_s{}^G \cap c_t{}^G = \emptyset$ for all $s, t \in I$. The decomposition is unique up to conjugation. In particular, I is finite when G is finite.

The number $\vert I \vert$ is called the class number of a finite group G. Thus any subset of a group must be contained in a union of some conjugacy classes.

$$\eta(X) = \left| \{ i \in I \mid X \cap c_i{}^G \neq \varnothing \} \right| < \infty.$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta(c_i{}^G)=1$ for all $i\in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^G, b^G be two non-trivial conjugacy class. Then $a^Gb^G \neq (ab)^G$, i.e., $\eta(a^Gb^G) \neq 1$.

$$\eta(X) = \left| \{ i \in I \mid X \cap c_i^G \neq \emptyset \} \right| < \infty.$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta({c_i}^G)=1$ for all $i\in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^G, b^G be two non-trivial conjugacy class. Then $a^Gb^G \neq (ab)^G$, i.e., $\eta(a^Gb^G) \neq 1$.

$$\eta(X) = \left| \{ i \in I \mid X \cap c_i{}^G \neq \varnothing \} \right| < \infty.$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta(c_i{}^G)=1$ for all $i\in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^G, b^G be two non-trivial conjugacy class. Then $a^Gb^G \neq (ab)^G$, i.e., $\eta(a^Gb^G) \neq 1$.

$$\eta(X) = \left| \{ i \in I \mid X \cap c_i{}^G \neq \varnothing \} \right| < \infty.$$

Evidently, $\eta(G)=|I|$, the class number of G, and $\eta(c_i{}^G)=1$ for all $i\in I$.

Conjecture (Z. Arad and M. Herzog, 1985)

Let G be a finite non-abelian simple group and a^G, b^G be two non-trivial conjugacy class. Then $a^Gb^G \neq (ab)^G$, i.e., $\eta(a^Gb^G) \neq 1$.

Denote
$$\min(G) = \{ \eta(a^G b^G) \mid a, b \in G \setminus Z(G) \}.$$

Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For $n \geq 6$		For $n, q \geq 2$
$\min(S_n) = 2$	or 3	$\min(\operatorname{GL}(n,q)) \ge q - 1$
$\min(A_n)=2,$	4 or 5	$\min(\mathrm{SL}(n,q)) \ge \lceil \frac{q}{2} \rceil$

But results for $\mathrm{GL}(n,q)$ and $\mathrm{SL}(n,q)$ are not optimal for general r and q. For example, they checked $\min(\mathrm{GL}(2,2^m))=2^m-1$ for m>1. Using GAP, they checked that $\min(\mathrm{GL}(2,q))=q-1$ for $q\in\{3,5,7,9,11,13\}$, but $\min(\mathrm{GL}(3,3))=4>2$.

Denote
$$\min(G) = \{ \eta(a^G b^G) \mid a, b \in G \setminus Z(G) \}.$$

Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For $n \geq 6$	For $n, q \geq 2$
$\min(S_n) = 2$ or 3	$\min(\operatorname{GL}(n,q)) \ge q - 1$
$\min(A_n)=2$, 4 or 5	$\min(\mathrm{SL}(n,q)) \ge \lceil \frac{q}{2} \rceil$

But results for GL(n,q) and SL(n,q) are not optimal for general m and q. For example, they checked $\min(GL(2,2^m))=2^m-1$ for m>1. Using GAP, they checked that $\min(GL(2,q))=q-1$ for $q\in\{3,5,7,9,11,13\}$, but $\min(GL(3,3))=4>2$.

Denote $\min(G) = \{ \eta(a^G b^G) \mid a, b \in G \setminus Z(G) \}.$

Theorem (E. Adan-Bante, J. M. Harris and H. Verrill, 2008-2009)

For $n \geq 6$	For $n, q \geq 2$
$\min(S_n) = 2 \text{ or } 3$	$\min(\operatorname{GL}(n,q)) \ge q - 1$
$\min(A_n)=2$, 4 or 5	$\min(\mathrm{SL}(n,q)) \ge \lceil \frac{q}{2} \rceil$

But results for $\mathrm{GL}(n,q)$ and $\mathrm{SL}(n,q)$ are not optimal for general n and q. For example, they checked $\min(\mathrm{GL}(2,2^m))=2^m-1$ for m>1. Using GAP, they checked that $\min(\mathrm{GL}(2,q))=q-1$ for $q\in\{3,5,7,9,11,13\}$, but $\min(\mathrm{GL}(3,3))=4>2$.

We modified their GAP code and checked:

$$\min(\operatorname{GL}(2,q)) = q - 1 \text{ for } q \in \{17,19,23,25,27,29,31,37\},$$

$$\min(\operatorname{GL}(3,2)) = 3 > 1, \ \min(\operatorname{GL}(3,4)) = 5 > 3,$$

$$\min(\operatorname{SL}(3,3)) = 4 > 2 \text{ and } \min(\operatorname{SL}(3,4)) = 8 > 2. \text{ Furthermore,}$$
 we find some matrices $A, B \in G \setminus Z(G), G = \operatorname{GL}(3,q),$ such that $\eta(A^GB^G) = q + 1 \text{ for } q \in \{5,7,8,9,11\}.$ We conjecture that:

Conjecture

- $\min(\operatorname{GL}(2,q)) = q 1$ for all q.
- $\min(\operatorname{GL}(3,q)) = q+1$ for all q.
- For fixed n, there is a $a_n \in \mathbb{Z}$ such that $\min(\operatorname{GL}(n,q)) = q + a_n$ for all q.

We modified their GAP code and checked:

$$\begin{split} & \min(\mathrm{GL}(2,q)) = q-1 \text{ for } q \in \{17,19,23,25,27,29,31,37\}, \\ & \min(\mathrm{GL}(3,2)) = 3 > 1, \, \min(\mathrm{GL}(3,4)) = 5 > 3, \\ & \min(\mathrm{SL}(3,3)) = 4 > 2 \text{ and } \min(\mathrm{SL}(3,4)) = 8 > 2. \text{ Furthermore,} \\ & \text{we find some matrices } A, B \in G \setminus Z(G), \, G = \mathrm{GL}(3,q), \, \text{such that } \\ & \eta(A^GB^G) = q+1 \text{ for } q \in \{5,7,8,9,11\}. \ \ \text{We conjecture that:} \end{split}$$

Conjecture

- $\min(\operatorname{GL}(2,q)) = q 1$ for all q.
- $\min(\operatorname{GL}(3,q)) = q+1$ for all q.
- For fixed n, there is a $a_n \in \mathbb{Z}$ such that $\min(\operatorname{GL}(n,q)) = q + a_n$ for all q.

We modified their GAP code and checked:

$$\begin{split} & \min(\mathrm{GL}(2,q)) = q-1 \text{ for } q \in \{17,19,23,25,27,29,31,37\}, \\ & \min(\mathrm{GL}(3,2)) = 3 > 1, \, \min(\mathrm{GL}(3,4)) = 5 > 3, \\ & \min(\mathrm{SL}(3,3)) = 4 > 2 \text{ and } \min(\mathrm{SL}(3,4)) = 8 > 2. \text{ Furthermore,} \\ & \text{we find some matrices } A, B \in G \setminus Z(G), \, G = \mathrm{GL}(3,q), \, \text{such that } \\ & \eta(A^GB^G) = q+1 \text{ for } q \in \{5,7,8,9,11\}. \ \ \text{We conjecture that:} \end{split}$$

Conjecture

- $\min(\operatorname{GL}(2,q)) = q 1$ for all q.
- $\min(\operatorname{GL}(3,q)) = q+1$ for all q.
- For fixed n, there is a $a_n \in \mathbb{Z}$ such that $\min(\operatorname{GL}(n,q)) = q + a_n$ for all q.

We call $c^{-1}c^G = \{c^{-1}c^g \mid g \in G\} = \{[c,g] \mid g \in G\}$ is a c-commutator set, denoted by [c,G].

Lemma

$$\eta(a^Gb^G)=\eta(ab^G)=\eta(a^Gb).$$

Lemma (E. Adan-Bante, 2006)

Let G be a group and $c \in G$. If [c, G] is a subgroup of G, then it is normal.

We call $c^{-1}c^G = \{c^{-1}c^g \mid g \in G\} = \{[c,g] \mid g \in G\}$ is a c-commutator set, denoted by [c,G].

Lemma

$$\eta(a^Gb^G)=\eta(ab^G)=\eta(a^Gb).$$

Lemma (E. Adan-Bante, 2006)

Let G be a group and $c \in G$. If [c,G] is a subgroup of G, then it is normal.

Theorem (E. Adan-Bante, 2006)

Let G be a finite group, a^G and b^G be conjugacy classes of G. Assume that $\mathbb{C}_G(a) = \mathbb{C}_G(b)$. Then $a^Gb^G = (ab)^G$ if and only if [ab,G] = [a,G] = [b,G] and [ab,G] is a normal subgroup of G. In particular, given any conjugacy class a^G of G, then $a^Ga^G = (a^2)^G$ if and only if [a,G] is a normal subgroup of G.

Corollary (E. Adan-Bante, 2006)

Let G be a finite non-abelian simple group, a^G and b^G be conjugacy classes of G. Assume that $\mathbb{C}_G(a) = \mathbb{C}_G(b)$. Then $a^Gb^G = (ab)^G$ if and only if $a = b = 1_G$. In particular, $a^Ga^G = (a^2)^G$ if and only if $a = 1_G$.

Theorem (Sun)

Let G be a finite group, a^G and b^G be conjugacy classes of G.

Then the following are equivalent:

- $|\mathbb{C}_G(ab)| \ge \max\{|\mathbb{C}_G(a)|, |\mathbb{C}_G(b)|\}$ and $a^Gb^G = (ab)^G$,
- $\bullet \ [ab,G]=[a,G]=[b,G]\unlhd G.$

This is equivalent to

Theorem (Sun)

Let G be a finite group, a^G and b^G be conjugacy classes of G.

Then the following are equivalent:

- $\bullet |(ab)^G| \le \min\{|a^G|,|b^G|\} \text{ and } a^Gb^G = (ab)^G,$
- $[ab, G] = [a, G] = [b, G] \le G$.

Corollary (Sun)

Let G be a finite non-abelian simple group, a^G and b^G be conjugacy classes of G. Then the following are equivalent:

- $|\mathbb{C}_G(ab)| \ge \max\{|\mathbb{C}_G(a)|, |\mathbb{C}_G(b)|\}$ and $a^Gb^G = (ab)^G$,
- $\bullet \ |(ab)^G| \leq \min \left\{ |a^G|, |b^G| \right\} \ \text{and} \ a^Gb^G = (ab)^G \text{,}$
- $a = b = 1_G$.

Proposition (E. Adan-Bante, 2006)

Let G be a finite group, a^G and b^G be conjugacy classes with $\mathbb{C}_G(a)=\mathbb{C}_G(b)$ and $|a^G|=2$. Then $\eta(a^Gb^G)=2$. In particular, $\eta(a^Ga^G)=2$.

Proposition (Sun)

Let G be a finite group, a^G and b^G be conjugacy classes with $|a^G|=2$. Then $\eta(a^Gb^G)\leq 2$.

- If $\eta(a^Gb^G) = 1$, then either $\mathbb{C}_G(a) \nsubseteq \mathbb{C}_G(b)$ or $\mathbb{C}_G(b) \nsubseteq \mathbb{C}_G(a)$.
- If $\eta(a^Gb^G)=2$, then $\mathbb{C}_G(b)\subseteq\mathbb{C}_G(a)$ and so $2\mid |b^G|$.

In particular, $\eta(a^Ga^G)=2$ and $\eta(a^G(a^{-1})^G)=2$.

Theorem (Sun)

Let G be a (finite) group and $c \in G$. Then the following are equivalent:

- [c,G] is a subgroup of G,
- [c,G] = [c',G] for all $c' \in c^G$,
- [c,G] is normal,
- $[c, G] = c^{-1}c^G = (c^{-1})^G c^G$.

The existence for which [c, G] is a subgroup of G.

Proposition (Sun)

Let G be a non-trivial finite group. Then the following are equivalent:

- $G = H \cup C$ where H is a proper normal subgroup and C is a conjugacy class.
- $G = [c, G] \cup c^G$ for some $c \in G$.

Example

- $S_3 = A_3 \cup (12)^{S_3} = [(12), S_3] \cup (12)^{S_3}$.
- Every finite non-abelian group of order 2p, p is an odd prime, can be decomposed the such form.

The existence for which [c, G] is a subgroup of G.

Proposition (Sun)

Let G be a non-trivial finite group. Then the following are equivalent:

- $G = H \cup C$ where H is a proper normal subgroup and C is a conjugacy class.
- $G = [c, G] \cup c^G$ for some $c \in G$.

Example

- $S_3 = A_3 \cup (12)^{S_3} = [(12), S_3] \cup (12)^{S_3}$.
- Every finite non-abelian group of order 2p, p is an odd prime, can be decomposed the such form.

Conjecture

Let p be an odd prime and let $n \in \mathbb{N}$. Then there is a positive integer $m_n \geq n$ such that there exist m_n non-isomorphic finite non-abelian groups G with order $2p^n$ such that $G = [c,G] \cup c^G$ for some $c \in G$. In particular, p and m_n are independent, i.e. m_n is fixed when n is fixed, for any odd prime p.

We have checked some cases by GAP:

- For n = 1, $m_1 = 1$ for all odd primes by Example.
- For n=2, $m_2=2$ for odd primes $p\leq 101$.
- For n=3, $m_3=3$ for odd primes $p\leq 7$.
- For n=4, $m_4=5$ for odd primes $p\leq 7$.
- For n=5, $m_5=7$ for odd primes $p\leq 5$.

Conjecture (J. Thompson, unknown)

Let G be a finite non-abelian simple group. Then there exists a non-trivial conjugacy class c^G of G such that $G=c^Gc^G$. In particular, $c^G=(c^{-1})^G$.

Conjecture (Ore, 1951, solved in 2010)

Every element in a finite non-abelian simple group is a commutator.

J. Thompson's conjecture can imply Ore's conjecture. However, Ore's conjecture is solved by M. W. Liebeck, E. A. O'Brien, A. Shalev, and P. H. Tiep in 2010.

Conjecture (J. Thompson, unknown)

Let G be a finite non-abelian simple group. Then there exists a non-trivial conjugacy class c^G of G such that $G=c^Gc^G$. In particular, $c^G=(c^{-1})^G$.

Conjecture (Ore, 1951, solved in 2010)

Every element in a finite non-abelian simple group is a commutator.

J. Thompson's conjecture can imply Ore's conjecture. However, Ore's conjecture is solved by M. W. Liebeck, E. A. O'Brien, A. Shalev, and P. H. Tiep in 2010.

Recall that $K(G)=\{[g,h]\mid g,h\in G\}$ consists all commutators of G and $G'=\langle K(G)\rangle$ is the commutator subgroup of G. For small order of groups, K(G)=G', but not for larger order. For example, the smallest order of the group such that $K(G)\neq G'$ is 96, J. J. Rotman states that the group is found via the computer.

Definition

Let X be a subset of G. We say that X is real if $x^{-1} \in X$ for all $x \in X$; X is "commutative" if (gX)(hX) = (hX)(gX) for all $g, h \in G$, i.e., the product is commutative.

Note that if X is normal, then (gX)(hX) = (gh)XX.

Recall that $K(G)=\{[g,h]\mid g,h\in G\}$ consists all commutators of G and $G'=\langle K(G)\rangle$ is the commutator subgroup of G. For small order of groups, K(G)=G', but not for larger order. For example, the smallest order of the group such that $K(G)\neq G'$ is 96, J. J. Rotman states that the group is found via the computer.

Definition

Let X be a subset of G. We say that X is real if $x^{-1} \in X$ for all $x \in X$; X is "commutative" if (gX)(hX) = (hX)(gX) for all $g,h \in G$, i.e., the product is commutative.

Note that if X is normal, then (gX)(hX) = (gh)XX.

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G/N is abelian if and only if $G' \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If X is "commutative", then $K(G) \subseteq XX = X^2$.

By Ore's "Theorem", we have

Lemma (Sun

Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if $G = C^2$.

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G/N is abelian if and only if $G' \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If X is "commutative", then $K(G) \subseteq XX = X^2$.

By Ore's "Theorem", we have

Lemma (Sun

Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if $G = C^2$.

Theorem (well-known)

Let G be a group and let N be a normal subgroup of G. Then G/N is abelian if and only if $G' \leq N$.

Lemma (Sun)

Let G be a group and let X be a normal and real subset of G. If X is "commutative", then $K(G) \subseteq XX = X^2$.

By Ore's "Theorem", we have

Lemma (Sun)

Let G be a finite non-abelian simple group and C be a real conjugacy class of G. Then C is "commutative" if and only if $G = C^2$.

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?

Fix
$$\eta(G) = n$$
, $G = c_1{}^G \cup c_2{}^G \cup \cdots \cup c_n{}^G$, $c_1 = 1$, thus

$$|G| = |c_1^G| + |c_2^G| + \dots + |c_n^G|,$$

SO

$$1 = \frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_n} \tag{1}$$

where $m_i = \frac{|G|}{|c_i|^G} = |\mathbb{C}_G(c_i)|$.

In 1903, E. Landau proved Equation (1) has only finitely many solutions over the positive integers for each n.

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?

Fix
$$\eta(G) = n$$
, $G = c_1{}^G \cup c_2{}^G \cup \cdots \cup c_n{}^G$, $c_1 = 1$, thus

$$|G| = |c_1^G| + |c_2^G| + \dots + |c_n^G|,$$

SO

$$1 = \frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_n} \tag{1}$$

where $m_i = \frac{|G|}{|c_i|^G} = |\mathbb{C}_G(c_i)|$.

In 1903, E. Landau proved Equation (1) has only finitely many solutions over the positive integers for each n.

Given a conjugacy class number $\eta(G)$, how many non-isomorphic finite groups satisfy that?

Fix
$$\eta(G) = n$$
, $G = c_1{}^G \cup c_2{}^G \cup \cdots \cup c_n{}^G$, $c_1 = 1$, thus

$$|G| = |c_1^G| + |c_2^G| + \dots + |c_n^G|,$$

SO

$$1 = \frac{1}{m_1} + \frac{1}{m_2} + \dots + \frac{1}{m_n} \tag{1}$$

where $m_i = \frac{|G|}{|c_i|^G} = |\mathbb{C}_G(c_i)|$.

In 1903, E. Landau proved Equation (1) has only finitely many solutions over the positive integers for each n.

$\eta(G)$	
≤ 5	Miller and Burnside, complete
6, 7	Sigley, incomplete for $\eta(G)=6;\ Z(G)\neq 1$ for $\eta(G)=7$
6, 7	Poland, complete
8	Kosvintsev, valid solutions proposed by a computer
9	Odincov and Starostin, complete
≤ 12	Aleksandrov and Komissarcik, all finite simple groups

How many groups satisfy that $|G|=|c_1^G|+|c_2^G|+\cdots+|c_n^G|$ where $|c_i^G|\neq |c_j^G|$ for $i\neq j$?

Conjecture (F. M. Markel, 1973)

$$G \cong S_3$$
.

That is called S_3 -conjecture.

Thank you for your attention!