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Introduction

H: a Hilbert space,

T : H → H: linear, contraction, i.e.,

∥Tx∥ ≤ ∥x∥, ∀x ∈ H.

Then, for any x ∈ H,

Snx = 1
n

∑n−1
k=0 T kx

converges strongly to z ∈ F (T ),

where F (T ) is the set of fixed points of T .
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Introduction

H: a Hilbert space,

C: a nonempty closed convex subset of H,

T : C → C: nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.
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Introduction

Theorem [Baillon, 1975]

H: a Hilbert space,

C: a nonempty closed convex subset of H,

T : C → C, a nonexpansive mapping, F (T ) ̸= ∅.
Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to z ∈ F (T ).
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Introduction

For more general results,

see Takahashi [Proc. Amer. Math. Soc., 1981, 1986],

Lau and Takahashi [J. Func. Anal., 1996],

Shioji, Lau and Takahashi [J. Func. Anal., 1999]
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Introduction

On the other hand,

we know the following equilibrium problem

which includes, as special cases, optimization problems,

variational inequality problems, complementality problems,

fixed point problems, saddle point problems, and others.

H: a Hilbert space,

C: a closed convex subset of H,

f : C × C → R, a bifunction

Find z ∈ C such that

f(z, y) ≥ 0, ∀y ∈ C.
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Introduction

For solving the equilibrium problem, let us assume that

f : C × C → R satisfies (A1)–(A4):

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) f(x, ·) is lower semicontinuous and convex for all x ∈ C;

(A4) limt↓0 f(tz + (1 − t)x, y) ≤ f(x, y) for all x, y, z ∈ C.
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Introduction

Lemma[Blum and Oettli]

For r > 0, x ∈ H,

there exists a unique z ∈ C such that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.
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Introduction

Define Tr : H → C as follows:

Tr(x) =
{
z ∈ C : f(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then, Tr: firmly nonexpansive, i.e., for all x, y ∈ H,

∥Trx − Try∥2 ≤ ⟨Trx − Try, x − y⟩.
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Introduction

For x, y ∈ H,

2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x − y∥2.

∥Tx − Ty∥2 ≤ ⟨Tx − Ty, x − y⟩
⇐⇒ 2∥Tx − Ty∥2 ≤ 2⟨Tx − Ty, x − y⟩
⇐⇒ 2∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − Ty∥2 − ∥x − y − (Tx − Ty)∥2

⇐⇒ ∥Tx − Ty∥2 ≤ ∥x − y∥2 − ∥x − y − (Tx − Ty)∥2

=⇒ ∥Tx − Ty∥2 ≤ ∥x − y∥2

⇐⇒ ∥Tx − Ty∥ ≤ ∥x − y∥.

T : C → H: nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.
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Introduction

For x, y, z, w ∈ H,

2⟨x − y, z − w⟩ = ∥x − w∥2 + ∥y − z∥2 − ∥x − z∥2 − ∥y − w∥2.

∥Tx − Ty∥2 ≤ ⟨Tx − Ty, x − y⟩
⇐⇒ 2∥Tx − Ty∥2 ≤ ∥x − Ty∥2 + ∥y − Tx∥2 − ∥x − Tx∥2 − ∥y − Ty∥2

=⇒ 2∥Tx − Ty∥2 ≤ ∥x − Ty∥2 + ∥y − Tx∥2.

T : C → H: nonspreading if

2∥Tx − Ty∥2 ≤ ∥x − Ty∥2 + ∥y − Tx∥2, ∀x, y ∈ C.
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∥Tx − Ty∥2 ≤ ⟨Tx − Ty, x − y⟩
⇐⇒ 4∥Tx − Ty∥2 ≤ 4⟨Tx − Ty, x − y⟩
⇐⇒ 4∥Tx − Ty∥2 ≤ ∥Tx − Ty∥2 + ∥x − y∥2 − ∥x − y − (Tx − Ty)∥2

+ ∥x − Ty∥2 + ∥y − Tx∥2 − ∥x − Tx∥2 − ∥y − Ty∥2

=⇒ 3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥y − Tx∥2 + ∥x − Ty∥2.

T : C → H: hybrid if

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥y − Tx∥2 + ∥x − Ty∥2, ∀x, y ∈ C.
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Theorem [Takahashi and Yao, Taiwanese J. Math., 2010]

H: a Hilbert space,

C: a nonempty closed convex subset of H,

T : a mapping of C into itself such that F (T ) is nonempty.

Suppose that T satisfies one of the following:

(i) T is nonspreading;

(ii) T is hybrid;

(iii) 2∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2, ∀x, y ∈ C.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to z ∈ F (T ).
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Introduction

Can we unify Baillon’s nonlinear ergodic theorem

and Takahashi and Yao’s nonlinear ergodic theorem?
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Introduction

Definition [Kocourek, T. and Yao, Taiwanese J. Math., 2010]

H: a real Hilbert space,

C: a nonempty subset of H.

Then, a mapping T : C → H is called generalized hybrid if

there are α, β ∈ R such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C.

T is called an (α, β)-generalized hybrid mapping.
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Introduction

(1) T : C → H: (1,0)-generalized hybrid if and only if

T is nonexpansive, i.e.,

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.

(2) T : C → H is (2,1)-generalized hybrid if and only if

T is nonspreading, i.e.,

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

(3) T : C → H is (3
2, 1

2)-hybrid if and only if

T is hybrid, i.e.,

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.
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Theorem [Kocourek, T. and Yao, Taiwanese J. Math., 2010]

H: a Hilbert space

C be a nonempty closed convex subset of H.

T : C → C, a generalized hybrid mapping with F (T ) ̸= ∅
P : the mertic projection of H onto F (T ).

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ F (T ), where

p = limn→∞ PTnx.
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Introduction

(1) Can we prove nonlinear ergodic theorems

without convexity in Hilbert spaces?

(2) Can we extend such theorems

without convexity to Banach spaces?
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Introduction

Our talk is organized as follows:

1. Nonlinear Ergodic Theorems without Convexity in Hilbert Spaces;

2. Strong Convergence Theorems without Convexity in Hilbert Spaces;

3. Attractive Points in Banach Spaces;

4. Nonlinear Ergodic Theorems in Banach Spaces.
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Section 1

Nonlinear Ergodic Theorems

without Convexity in Hilbert Spaces
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Section 1

Let C be a nonempty subset of H.

For a mapping T of C into H, we denote

by F (T ) the set of all fixed points of T and

by A(T ) the set of all attractive points of T , i.e.,

1. F (T ) = {x ∈ C : x = Tx};

2. A(T ) = {x ∈ H : ∥Ty − x∥ ≤ ∥y − x∥, ∀y ∈ C}.
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Section 1

Lemma

C: a nonempty closed convex subset of H,

T : a mapping from C into itself.

If A(T ) ̸= ϕ, then F (T ) ̸= ϕ.
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Section 1

Lemma

C: a non-empty subset of H,

T : a mapping from C into H.

Then, A(T ) is a closed convex subset of H.
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Section 1

Theorem [Takahashi and Takeuchi, JNCA, 2011]

H: a real Hilbert space,

C: a nonempty subset of H.

T : a generalized hybrid mapping from C into itself.

Suppose that A(T ) is nonempty.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ A(T ),

where p = limn→∞ PA(T )T
nx.
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Section 1

Corollary

H: a real Hilbert space,

C: a nonempty subset of H.

T : a nonexpansive mapping from C into itself, i.e.,

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.

Suppose that A(T ) is nonempty.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ A(T ),

where p = limn→∞ PA(T )T
nx.
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Section 1

Corollary

H: a real Hilbert space,

C: a nonempty subset of H.

T : a nonspreading mapping from C into itself, i.e.,

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that A(T ) is nonempty.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ A(T ),

where p = limn→∞ PA(T )T
nx.
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Section 1

Corollary

H: a real Hilbert space,

C: a nonempty subset of H.

T : a hybrid mapping from C into itself, i.e.,

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that A(T ) is nonempty.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ A(T ),

where p = limn→∞ PA(T )T
nx.
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Section 1

Corollary [Kocourek, T. and Yao, Taiwanese J. Math., 2010]

C: a nonempty closed convex subset of H.

T : a generalized hybrid mapping from C into itself.

Suppose that F (T ) is nonempty.

Then, for any x ∈ C,

Snx = 1
n

∑n−1
k=0 T kx

converges weakly to p ∈ F (T ),

where p = limn→∞ PF (T )T
nx.
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Section 2

Strong Convergence Theorems

without Convexity in Hilbert Spaces
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Section 2

C: a nonempty subset of a Hilbert space H.

Then, C is called star-shaped

if there exists z ∈ C such that for any x ∈ C and any λ ∈ (0,1),

λz + (1 − λ)x ∈ C.

Such z ∈ C is called a center of star-shaped set C.
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Section 2

Theorem [Akashi and Takahashi, to appear]

H: a Hilbert space,

C: a star-shaped subset of H with center z ∈ C.

T : a nonexpansive mapping from C into itself with A(T ) ̸= ∅.
{xn}: a sequence in C defined by x1 ∈ C and

xn+1 = αnz + (1 − αn)Txn, ∀n ∈ N,

where {αn} satisfies

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞,
∞∑

n=1

|αn − αn+1| < ∞.

Then {xn} converges strongly to u0 ∈ A(T ), where u0 = PA(T )z.
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Section 2

Using Theorem, we obtain

the following new fixed point theorem.

Theorem

H: a Hilbert space,

C: a closed and star-shaped subset of H.

T : a nonexpansive mapping from C into itself.

Suppose that there exists an x ∈ C such that {Tnx} is bounded.

Then F (T ) ̸= ∅.
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Section 2

Compare this theorem with

Itoh and Takahashi’s fixed point theorem.

Theorem [Itoh and Takahashi, Pacific J. Math., 1978]

H: a Hilbert space,

C: a weakly compact and star-shaped subset of H.

T : a nonexpansive mapping from C into itself.

Then F (T ) ̸= ∅.
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Section 2

Theorem

H: a Hilbert space,
C: a closed and star-shaped subset of H with center z ∈ C.
T : a nonexpansive mapping from C into itself with F (T ) ̸= ∅.
{xn}: a sequence in C defined by x1 ∈ C and

xn+1 = αnz + (1 − αn)Txn, ∀n ∈ N,

where {αn} satisfies

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞,
∞∑

n=1

|αn − αn+1| < ∞.

Then {xn} converges strongly to u0 ∈ F (T ), where

∥u0 − z∥ = min{∥u − z∥ : u ∈ F (T )}.
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Section 2

Remark

(1) We do not know whether F (T ) is convex or not.

(2) There is no necessity for assuming that

C is star-shaped in Theorem.

Indeed, we can prove the following strong convergence theorem

without convexity for nonexpansive mappings

in a Hilbert space.
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Section 2

Theorem

H: a Hilbert space,

C: a nonempty subset of H.

T : a nonexpansive mapping from C into itself with A(T ) ̸= ∅.
{xn}: a sequence defined by z, x1 ∈ C and

xn+1 = αnz + (1 − αn)Txn, ∀n ∈ N,

where {αn} satisfies

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞,
∞∑

n=1

|αn − αn+1| < ∞.

If {xn} is in C, then {xn} converges strongly to u0 ∈ A(T ),

where u0 = PA(T )z.
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Section 2

For example, let R2 be the 2-dimensional Euclidean space

and Q be the set of all rational numbers.

Let C = Q × Q
and let a mapping T : C → C be as follows:

Tx = (−b, a), ∀x = (a, b) ∈ Q × Q.

That is, T is a nonexpansive mapping of C into itself.

Furthermore, let z, x1 ∈ C and αn = 1
n+1 for all n ∈ N.

Then Theorem is available for such a setting.
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Section 2

Problem:

Can we prove Akashi and Takahashi’s theorem

for generalized hybrid mappings in a Hilbert space?
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Section 3

Attractive Points in Banach Spaces
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Section 3

E: a smooth Banach space.
J: the duality mapping of E, i.e.,

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}, ∀x ∈ E.

ϕ : E × E → (−∞,∞) is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 ∀x, y ∈ E.

We have

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩ (1)

for all x, y, z ∈ E.
From (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E,
we can see that ϕ(x, y) ≥ 0.
Furthermore, we can obtain the following equality:

2⟨x − y, Jz − Jw⟩ = ϕ(x, w) + ϕ(y, z) − ϕ(x, z) − ϕ(y, w) (2)

for x, y, z, w ∈ E.
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Section 3

Definition

E: a smooth Banach space.

C: a nonempty subset of E,

T : a mapping of C into E.

A(T ): the set of attractive points of T , i.e.,

A(T ) = {z ∈ E : ϕ(z, Tx) ≤ ϕ(z, x), ∀x ∈ C}.
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Section 3

Lemma

E: a smooth Banach space,

C: a nonempty subset of E.

T : a mapping from C into E.

Then A(T ) is a closed and convex subset of E.
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Section 3

Let E be a smooth Banach space,

let C be a nonempty subset of E

let J be the duality mapping from E into E∗.
Then, a mapping T : C → E is called generalized nonspreading

if there exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1−α)ϕ(x, Ty) + γ{ϕ(Ty, Tx) − ϕ(Ty, x)} (3)

≤ βϕ(Tx, y) + (1 − β)ϕ(x, y) + δ{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C, where

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 for x, y ∈ E.

We call such a mapping

an (α, β, γ, δ)-generalized nonspreading mapping.
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Section 3

Let E be a smooth Banach space,

let C be a nonempty subset of E

let T : C → E be (α, β, γ, δ)-generalized nonspreading, i.e.,

there exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty)+(1 − α)ϕ(x, Ty) + γ{ϕ(Ty, Tx) − ϕ(Ty, x)}
≤ βϕ(Tx, y) + (1 − β)ϕ(x, y) + δ{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C.

If α = γ = β = 1 and δ = 0, then

ϕ(Tx, Ty) + ϕ(Ty, Tx) − ϕ(Ty, x) ≤ ϕ(Tx, y).

That is, T is a nonspreading mapping in the sense of

Kohsaka and T. [SIAM J. Optimization and Arc. Math. 2008].
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Section 3

Furthermore, if E is a Hilbert space,

then we have ϕ(x, y) = ∥x − y∥2 for x, y ∈ E.

So, we obtain the following:

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 + γ{∥Tx − Ty∥2 − ∥x − Ty∥2}
≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2 + δ{∥Tx − y∥2 − ∥x − y∥2} (4)

for all x, y ∈ C. This implies that

(α + γ)∥Tx − Ty∥2 + {1 − (α + γ)}∥x − Ty∥2

≤ (β + δ)∥Tx − y∥2 + {1 − (β + δ)}∥x − y∥2 (5)

for all x, y ∈ C. That is, T is a generalized hybrid mapping

in the sense of Kocourek, T. and Yao [Taiwanese J. Math., 2010]
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Section 3

We give the following defintition.

Let E be a smooth Banach space.

Let C be a nonempty subset of E

T be a mapping of C into E.

We denote by B(T ) the set of skew-attractive points of T , i.e.,

B(T ) = {z ∈ E : ϕ(Tx, z) ≤ ϕ(x, z), ∀x ∈ C}.
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Section 4

Nonlinear Ergodic Theorems in Banach Spaces
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Section 4

Theorem [Lin and Takahashi, J. Convex Anal., to appear]

E: a uniformly convex Banach space

with a Fréchet differentiable norm

C: a nonempty subset of E.

T : C → C: a generalized nonspreading mapping such that

A(T ) = B(T ) ̸= ∅.
R be the sunny generalized nonexpansive retraction of E onto B(T ).

Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element q of A(T ), where q = limn→∞ RTnx.
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Section 4

Theorem [Kocourek, T. and Yao, Adv. Math. Econ., 2011]

E: a uniformly convex Banach space

with a Fréchet differentiable norm.

T : E → E: (α, β, γ, δ)-generalized nonspreading

such that α > β, γ ≤ δ and F (T ) ̸= ∅
R: the sunny generalized nonexpansive retraction of E onto F (T ).

Then, for any x ∈ E,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element q of F (T ),

where q = limn→∞ RTnx.
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Section 5

Proof

We also know that α > β together with γ ≤ δ implies that

ϕ(Tx, u) ≤ ϕ(x, u)

for all x ∈ E and u ∈ F (T ).

We also note that A(T ) = F (T ) and B(T ) = F (T ).

So, we have the desired result from Theorem.
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Section 4

Theorem [Takahashi and Takeuchi, JNCA, 2011]

H: a Hilbert space,

C: a nonempty subset of H.

T : C → C: a generalized hybrid mapping with A(T ) ̸= ∅ ,

P : the mertic projection of H onto A(T ).

Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element p of A(T ), where

p = limn→∞ PTnx.
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Section 4

Proof

We first note that A(T ) = B(T ).

Since A(T ) = B(T ) is a nonempty closed convex subset of H,

there exists the metric projection of H onto A(T ).

In a Hilbert space,

the metric projection of H onto A(T ) is equivalent to

the sunny generalized nonexpansive retraction of E onto A(T ).

So, we have the desired result from Theorem.
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Thank You Very Much!!

非常感謝!!

どうもありがとうございました!!
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