Fixed Point and Mean Convergence Theorems

 without Convexity and Related TopicsWataru TAKAHASHI

Tokyo Institute of Technology, Japan and National Sun Yat-sen University, Taiwan

May 3rd, 2012, National Cheng Kung University
H : a Hilbert space,
$T: H \rightarrow H$: linear, contraction, i.e., $\|T x\| \leq\|x\|, \quad \forall x \in H$.

Then, for any $x \in H$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges strongly to $z \in F(T)$,
where $F(T)$ is the set of fixed points of T.

Introduction

H : a Hilbert space,
C : a nonempty closed convex subset of H,
$T: C \rightarrow C$: nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

Theorem [Baillon, 1975]
H : a Hilbert space,
C : a nonempty closed convex subset of H,
$T: C \rightarrow C$, a nonexpansive mapping, $F(T) \neq \emptyset$.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $z \in F(T)$.

Introduction

For more general results, see Takahashi [Proc. Amer. Math. Soc., 1981, 1986], Lau and Takahashi [J. Func. Anal., 1996], Shioji, Lau and Takahashi [J. Func. Anal., 1999]

Introduction

On the other hand, we know the following equilibrium problem which includes, as special cases, optimization problems, variational inequality problems, complementality problems, fixed point problems, saddle point problems, and others.
H : a Hilbert space,
C : a closed convex subset of H,
$f: C \times C \rightarrow \mathbb{R}$, a bifunction
Find $z \in C$ such that

$$
f(z, y) \geq 0, \quad \forall y \in C
$$

Introduction

For solving the equilibrium problem, let us assume that
$f: C \times C \rightarrow \mathbb{R}$ satisfies (A1)-(A4):
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) $f(x, \cdot)$ is lower semicontinuous and convex for all $x \in C$;
(A4) $\lim _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)$ for all $x, y, z \in C$.

Lemma[Blum and Oettli]
For $r>0, x \in H$, there exists a unique $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

Define $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C\right\}
$$

Then, T_{r} : firmly nonexpansive, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

Introduction

For $x, y \in H$,
$2\langle x, y\rangle=\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}$.
$\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle$
$\Longleftrightarrow 2\|T x-T y\|^{2} \leq 2\langle T x-T y, x-y\rangle$
$\Longleftrightarrow 2\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-T y\|^{2}-\|x-y-(T x-T y)\|^{2}$
$\Longleftrightarrow\|T x-T y\|^{2} \leq\|x-y\|^{2}-\|x-y-(T x-T y)\|^{2}$
$\Longrightarrow\|T x-T y\|^{2} \leq\|x-y\|^{2}$
$\Longleftrightarrow\|T x-T y\| \leq\|x-y\|$.
$T: C \rightarrow H$: nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

Introduction

For $x, y, z, w \in H$, $2\langle x-y, z-w\rangle=\|x-w\|^{2}+\|y-z\|^{2}-\|x-z\|^{2}-\|y-w\|^{2}$.
$\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle$
$\Longleftrightarrow 2\|T x-T y\|^{2} \leq\|x-T y\|^{2}+\|y-T x\|^{2}-\|x-T x\|^{2}-\|y-T y\|^{2}$
$\Longrightarrow 2\|T x-T y\|^{2} \leq\|x-T y\|^{2}+\|y-T x\|^{2}$.
$T: C \rightarrow H:$ nonspreading if

$$
2\|T x-T y\|^{2} \leq\|x-T y\|^{2}+\|y-T x\|^{2}, \quad \forall x, y \in C
$$

Introduction

$$
\begin{aligned}
&\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle \\
& \Longleftrightarrow 4\|T x-T y\|^{2} \leq 4\langle T x-T y, x-y\rangle \\
& \Longleftrightarrow 4\|T x-T y\|^{2} \leq\|T x-T y\|^{2}+\|x-y\|^{2}-\|x-y-(T x-T y)\|^{2} \\
& \quad+\|x-T y\|^{2}+\|y-T x\|^{2}-\|x-T x\|^{2}-\|y-T y\|^{2} \\
& \Longrightarrow 3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|y-T x\|^{2}+\|x-T y\|^{2} .
\end{aligned}
$$

$T: C \rightarrow H:$ hybrid if

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|y-T x\|^{2}+\|x-T y\|^{2}, \quad \forall x, y \in C
$$

Theorem [Takahashi and Yao, Taiwanese J. Math., 2010]
H : a Hilbert space,
C : a nonempty closed convex subset of H,
T : a mapping of C into itself such that $F(T)$ is nonempty.
Suppose that T satisfies one of the following:
(i) T is nonspreading;
(ii) T is hybrid;
(iii) $2\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}, \quad \forall x, y \in C$.

Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $z \in F(T)$.

Can we unify Baillon's nonlinear ergodic theorem and Takahashi and Yao's nonlinear ergodic theorem?

Definition [Kocourek, T. and Yao, Taiwanese J. Math., 2010]
H : a real Hilbert space,
C : a nonempty subset of H.
Then, a mapping $T: C \rightarrow H$ is called generalized hybrid if there are $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$.
T is called an (α, β)-generalized hybrid mapping.
(1) $T: C \rightarrow H:(1,0)$-generalized hybrid if and only if T is nonexpansive, i.e.,

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

(2) $T: C \rightarrow H$ is (2,1)-generalized hybrid if and only if T is nonspreading, i.e.,

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

(3) $T: C \rightarrow H$ is $\left(\frac{3}{2}, \frac{1}{2}\right)$-hybrid if and only if
T is hybrid, i.e.,

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

Theorem [Kocourek, T. and Yao, Taiwanese J. Math., 2010]
H : a Hilbert space
C be a nonempty closed convex subset of H.
$T: C \rightarrow C$, a generalized hybrid mapping with $F(T) \neq \emptyset$
P : the mertic projection of H onto $F(T)$.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in F(T)$, where
$p=\lim _{n \rightarrow \infty} P T^{n} x$.
(1) Can we prove nonlinear ergodic theorems without convexity in Hilbert spaces?
(2) Can we extend such theorems without convexity to Banach spaces?

Introduction

Our talk is organized as follows:

1. Nonlinear Ergodic Theorems without Convexity in Hilbert Spaces;
2. Strong Convergence Theorems without Convexity in Hilbert Spaces;
3. Attractive Points in Banach Spaces;
4. Nonlinear Ergodic Theorems in Banach Spaces.

Nonlinear Ergodic Theorems without Convexity in Hilbert Spaces

Let C be a nonempty subset of H.
For a mapping T of C into H, we denote
by $F(T)$ the set of all fixed points of T and
by $A(T)$ the set of all attractive points of T, i.e.,

1. $F(T)=\{x \in C: x=T x\}$;
2. $A(T)=\{x \in H:\|T y-x\| \leq\|y-x\|, \quad \forall y \in C\}$.

Lemma

C : a nonempty closed convex subset of H, T : a mapping from C into itself.

If $A(T) \neq \phi$, then $F(T) \neq \phi$.

Section 1

Lemma
C : a non-empty subset of H,
T : a mapping from C into H.
Then, $A(T)$ is a closed convex subset of H.

Theorem [Takahashi and Takeuchi, JNCA, 2011]
H : a real Hilbert space,
C : a nonempty subset of H.
T : a generalized hybrid mapping from C into itself.
Suppose that $A(T)$ is nonempty.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in A(T)$,
where $p=\lim _{n \rightarrow \infty} P_{A(T)} T^{n} x$.

Corollary
H : a real Hilbert space,
C : a nonempty subset of H.
T : a nonexpansive mapping from C into itself, i.e.,

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

Suppose that $A(T)$ is nonempty.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in A(T)$,
where $p=\lim _{n \rightarrow \infty} P_{A(T)} T^{n} x$.

Corollary
H : a real Hilbert space,
C : a nonempty subset of H.
T : a nonspreading mapping from C into itself, i.e.,

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

Suppose that $A(T)$ is nonempty.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in A(T)$,
where $p=\lim _{n \rightarrow \infty} P_{A(T)} T^{n} x$.

Corollary
H : a real Hilbert space,
C : a nonempty subset of H.
T : a hybrid mapping from C into itself, i.e.,

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

Suppose that $A(T)$ is nonempty.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in A(T)$,
where $p=\lim _{n \rightarrow \infty} P_{A(T)} T^{n} x$.

Corollary [Kocourek, T. and Yao, Taiwanese J. Math., 2010]
C : a nonempty closed convex subset of H.
T : a generalized hybrid mapping from C into itself.
Suppose that $F(T)$ is nonempty.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to $p \in F(T)$,
where $p=\lim _{n \rightarrow \infty} P_{F(T)} T^{n} x$.

Strong Convergence Theorems without Convexity in Hilbert Spaces
C : a nonempty subset of a Hilbert space H.
Then, C is called star-shaped if there exists $z \in C$ such that for any $x \in C$ and any $\lambda \in(0,1)$,

$$
\lambda z+(1-\lambda) x \in C
$$

Such $z \in C$ is called a center of star-shaped set C.

Theorem [Akashi and Takahashi, to appear]
H : a Hilbert space,
C : a star-shaped subset of H with center $z \in C$.
T : a nonexpansive mapping from C into itself with $A(T) \neq \emptyset$.
$\left\{x_{n}\right\}$: a sequence in C defined by $x_{1} \in C$ and

$$
x_{n+1}=\alpha_{n} z+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N}
$$

where $\left\{\alpha_{n}\right\}$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
$$

Then $\left\{x_{n}\right\}$ converges strongly to $u_{0} \in A(T)$, where $u_{0}=P_{A(T)} z$.

Using Theorem, we obtain
the following new fixed point theorem.

Theorem
H : a Hilbert space,
C : a closed and star-shaped subset of H.
T : a nonexpansive mapping from C into itself.
Suppose that there exists an $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded.
Then $F(T) \neq \emptyset$.

Compare this theorem with Itoh and Takahashi's fixed point theorem.

Theorem [Itoh and Takahashi, Pacific J. Math., 1978]
H : a Hilbert space,
C : a weakly compact and star-shaped subset of H.
T : a nonexpansive mapping from C into itself.
Then $F(T) \neq \emptyset$.

Theorem
H : a Hilbert space,
C : a closed and star-shaped subset of H with center $z \in C$.
T : a nonexpansive mapping from C into itself with $F(T) \neq \emptyset$.
$\left\{x_{n}\right\}$: a sequence in C defined by $x_{1} \in C$ and

$$
x_{n+1}=\alpha_{n} z+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N}
$$

where $\left\{\alpha_{n}\right\}$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
$$

Then $\left\{x_{n}\right\}$ converges strongly to $u_{0} \in F(T)$, where

$$
\left\|u_{0}-z\right\|=\min \{\|u-z\|: u \in F(T)\} .
$$

Remark

(1) We do not know whether $F(T)$ is convex or not.
(2) There is no necessity for assuming that C is star-shaped in Theorem.
Indeed, we can prove the following strong convergence theorem without convexity for nonexpansive mappings in a Hilbert space.

Theorem
H : a Hilbert space,
C : a nonempty subset of H.
T : a nonexpansive mapping from C into itself with $A(T) \neq \emptyset$.
$\left\{x_{n}\right\}$: a sequence defined by $z, x_{1} \in C$ and

$$
x_{n+1}=\alpha_{n} z+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N}
$$

where $\left\{\alpha_{n}\right\}$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
$$

If $\left\{x_{n}\right\}$ is in C, then $\left\{x_{n}\right\}$ converges strongly to $u_{0} \in A(T)$, where $u_{0}=P_{A(T)} z$.

For example, let \mathbb{R}^{2} be the 2-dimensional Euclidean space and \mathbb{Q} be the set of all rational numbers.
Let $C=\mathbb{Q} \times \mathbb{Q}$
and let a mapping $T: C \rightarrow C$ be as follows:

$$
T x=(-b, a), \quad \forall x=(a, b) \in \mathbb{Q} \times \mathbb{Q}
$$

That is, T is a nonexpansive mapping of C into itself. Furthermore, let $z, x_{1} \in C$ and $\alpha_{n}=\frac{1}{n+1}$ for all $n \in \mathbb{N}$. Then Theorem is available for such a setting.

Problem:
Can we prove Akashi and Takahashi's theorem for generalized hybrid mappings in a Hilbert space?

Section 3

Attractive Points in Banach Spaces

E : a smooth Banach space.
J : the duality mapping of E, i.e.,

$$
J x=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}, \quad \forall x \in E .
$$

$\phi: E \times E \rightarrow(-\infty, \infty)$ is defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \quad \forall x, y \in E .
$$

We have

$$
\begin{equation*}
\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle \tag{1}
\end{equation*}
$$

for all $x, y, z \in E$.
From $(\|x\|-\|y\|)^{2} \leq \phi(x, y)$ for all $x, y \in E$, we can see that $\phi(x, y) \geq 0$.
Furthermore, we can obtain the following equality:

$$
\begin{equation*}
2\langle x-y, J z-J w\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w) \tag{2}
\end{equation*}
$$

for $x, y, z, w \in E$.

Definition

E : a smooth Banach space.
C : a nonempty subset of E,
T : a mapping of C into E.
$A(T)$: the set of attractive points of T, i.e.,

$$
A(T)=\{z \in E: \phi(z, T x) \leq \phi(z, x), \quad \forall x \in C\}
$$

Section 3

Lemma
E : a smooth Banach space,
C : a nonempty subset of E.
T : a mapping from C into E.
Then $A(T)$ is a closed and convex subset of E.

Let E be a smooth Banach space,
let C be a nonempty subset of E let J be the duality mapping from E into E^{*}.
Then, a mapping $T: C \rightarrow E$ is called generalized nonspreading if there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$
\begin{array}{r}
\alpha \phi(T x, T y)+(1-\alpha) \phi(x, T y)+\gamma\{\phi(T y, T x)-\phi(T y, x)\} \tag{3}\\
\leq \beta \phi(T x, y)+(1-\beta) \phi(x, y)+\delta\{\phi(y, T x)-\phi(y, x)\}
\end{array}
$$

for all $x, y \in C$, where
$\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}$ for $x, y \in E$.
We call such a mapping
an ($\alpha, \beta, \gamma, \delta$)-generalized nonspreading mapping.

Let E be a smooth Banach space, let C be a nonempty subset of E let $T: C \rightarrow E$ be $(\alpha, \beta, \gamma, \delta)$-generalized nonspreading, i.e., there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$
\begin{aligned}
\alpha \phi(T x, T y)+ & (1-\alpha) \phi(x, T y)+\gamma\{\phi(T y, T x)-\phi(T y, x)\} \\
& \leq \beta \phi(T x, y)+(1-\beta) \phi(x, y)+\delta\{\phi(y, T x)-\phi(y, x)\}
\end{aligned}
$$

for all $x, y \in C$.
If $\alpha=\gamma=\beta=1$ and $\delta=0$, then

$$
\phi(T x, T y)+\phi(T y, T x)-\phi(T y, x) \leq \phi(T x, y)
$$

That is, T is a nonspreading mapping in the sense of Kohsaka and T. [SIAM J. Optimization and Arc. Math. 2008].

Furthermore, if E is a Hilbert space, then we have $\phi(x, y)=\|x-y\|^{2}$ for $x, y \in E$.
So, we obtain the following:

$$
\begin{align*}
\alpha \| T x- & T y\left\|^{2}+(1-\alpha)\right\| x-T y \|^{2}+\gamma\left\{\|T x-T y\|^{2}-\|x-T y\|^{2}\right\} \\
& \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}+\delta\left\{\|T x-y\|^{2}-\|x-y\|^{2}\right\} \tag{4}
\end{align*}
$$

for all $x, y \in C$. This implies that

$$
\begin{align*}
(\alpha+\gamma)\|T x-T y\|^{2}+ & \{1-(\alpha+\gamma)\}\|x-T y\|^{2} \\
& \leq(\beta+\delta)\|T x-y\|^{2}+\{1-(\beta+\delta)\}\|x-y\|^{2} \tag{5}
\end{align*}
$$

for all $x, y \in C$. That is, T is a generalized hybrid mapping in the sense of Kocourek, T. and Yao [Taiwanese J. Math., 2010]

We give the following defintition.
Let E be a smooth Banach space.
Let C be a nonempty subset of E
T be a mapping of C into E.
We denote by $B(T)$ the set of skew-attractive points of T, i.e.,

$$
B(T)=\{z \in E: \phi(T x, z) \leq \phi(x, z), \quad \forall x \in C\}
$$

Section 4

Nonlinear Ergodic Theorems in Banach Spaces

Theorem [Lin and Takahashi, J. Convex Anal., to appear]
E : a uniformly convex Banach space with a Fréchet differentiable norm
C : a nonempty subset of E.
$T: C \rightarrow C$: a generalized nonspreading mapping such that

$$
A(T)=B(T) \neq \emptyset
$$

R be the sunny generalized nonexpansive retraction of E onto $B(T)$. Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to an element q of $A(T)$, where $q=\lim _{n \rightarrow \infty} R T^{n} x$.

Theorem [Kocourek, T. and Yao, Adv. Math. Econ., 2011]
E : a uniformly convex Banach space with a Fréchet differentiable norm.
$T: E \rightarrow E:(\alpha, \beta, \gamma, \delta)$-generalized nonspreading such that $\alpha>\beta, \gamma \leq \delta$ and $F(T) \neq \emptyset$
R : the sunny generalized nonexpansive retraction of E onto $F(T)$. Then, for any $x \in E$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to an element q of $F(T)$, where $q=\lim _{n \rightarrow \infty} R T^{n} x$.

Proof

We also know that $\alpha>\beta$ together with $\gamma \leq \delta$ implies that

$$
\phi(T x, u) \leq \phi(x, u)
$$

for all $x \in E$ and $u \in F(T)$.
We also note that $A(T)=F(T)$ and $B(T)=F(T)$.
So, we have the desired result from Theorem.

Theorem [Takahashi and Takeuchi, JNCA, 2011]
H : a Hilbert space,
C : a nonempty subset of H.
$T: C \rightarrow C$: a generalized hybrid mapping with $A(T) \neq \emptyset$,
P : the mertic projection of H onto $A(T)$.
Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to an element p of $A(T)$, where
$p=\lim _{n \rightarrow \infty} P T^{n} x$.

[^0]
MathSciNet

Wataru Takahashi
MR Author ID: 170240
Earliest Indexed Publication: 1969
Total Publications: 361
Total Author/Related Publications: 372
Total Citations: 3086
Also published as: Takahashi, W.

Thank You Very Much！！非常感謝！！
どうもありがとうございました！！

Wataru Takahashi
Tokyo Institute of Technology, Tokyo, Japanand and National Sun Yat-sen University, Taiwan

Contents

1	Introduction
2	Introduction
3	Introduction
4	Introduction
5	Introduction
6	Introduction
7	Introduction
8	Introduction
9	Introduction
10	Introduction
11	Introduction
12	Introduction
13	Introduction
14	Introduction
15	Introduction
16	Introduction
17	Introduction
18	Introduction
19	Section 1
20	Section 1
21	Section 1
22	Section 1
23	Section 1

2 Introduction
3 Introduction
4 Introduction
5 Introduction
6 Introduction
7 Introduction
Introduction
Inoduction
10 Introduction
11 Introduction
12 Introduction
13 Introduction
14 Introduction
15 Introduction
16 Introduction
17 Introduction
18 Introduction
19 Section 1
Section 1
Section 1

Section 1

24 Section 1
25 Section 1
26 Section 1
27 Section 1
28 Section 2
29 Section 2
30 Section 2
31 Section 2
32 Section 2
33 Section 2
34 Section 2
35 Section 2
36 Section 2
37 Section 2
38 Section 3
39 Section 3
40 Section 3
41 Section 3
42 Section 3
43 Section 3
44 Section 3
45 Section 3
46 Section 4

47 Section 4
48 Section 4
49 Section 5
50 Section 4
51 Section 4
52 MathSciNet

[^0]: Proof
 We first note that $A(T)=B(T)$.
 Since $A(T)=B(T)$ is a nonempty closed convex subset of H, there exists the metric projection of H onto $A(T)$.
 In a Hilbert space,
 the metric projection of H onto $A(T)$ is equivalent to the sunny generalized nonexpansive retraction of E onto $A(T)$. So, we have the desired result from Theorem.

