Optimal Control of Stochastic Inventory System with Multiple Types of Reverse Flows

Xiuli Chao

University of Michigan

Ann Arbor, MI 48109

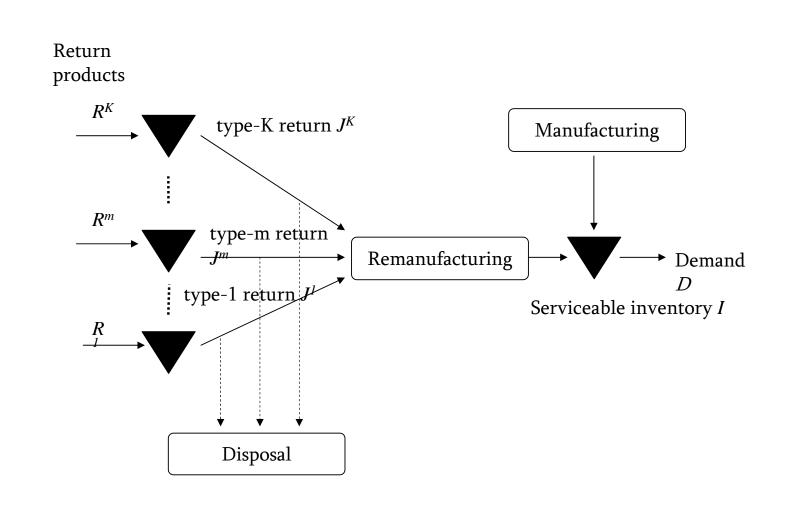
NCKU Seminar August 14, 2009

Joint work with S. Zhou and Z. Tao

The Problem

- Single period problem Newsvendor problem
- Multiple-period problem
- Optimal strategy Base-stock policy
- Multiple types of returns Motivating examples

The Problem



Some related literature

- Simpson (1978)
- Inderfurth (1997)
- Decroix (2006)
- Decroix and Zipkin (2005)
- All these papers consider a single type of returned products.

Other related and review articles

- Heyman (1977)
- van der Laan, et al. (1999)
- van der Laan and Teunter (2005)
- Fleischmann et al. (1997)
- Guide and Srivastava (1997)

Model Details

- Periodic review system, periods 1 to N.
- K types of returned products.
- Disposal may or may not be allowed.
- Manufacturing and remanufacturing times are equal, and are assumed, without loss of generality, to be 0.
- The demand for serviceable product over the periods are D_1, D_2, \ldots, D_N .

Cost Structure

- Production cost (or ordering cost) for serviceable product, p.
- Repair cost for type j return is r_j , where $p \ge r_j$, $j = 1, \dots, K$.
- Stocking (holding) cost for type i return is s_i , $i = 1, \ldots, K$.

WLOG, assume

$$(1-\alpha)r_1 - s_1 \leq \cdots \leq (1-\alpha)r_K - s_K.$$

Cost Structure (Cont'd)

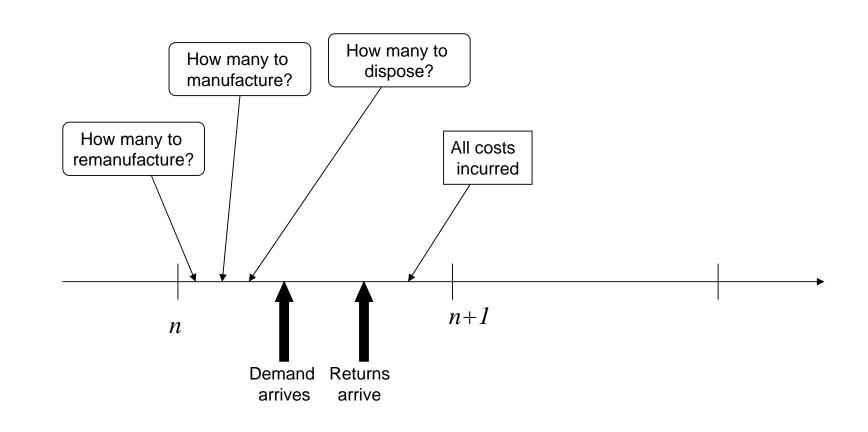
- There is holding cost for serviceable product.
- Consider backlog model (lost-sales model can be similarly studied)— shortage cost for backlog
- Holding cost for serviceable product and shortage cost for backlog is a general convex function: Expected one-period cost G(x), i.e.,

 $G(x) = hE[\max\{x - D, 0\}] + bE[\max\{D - x\}].$

Our Goal

Find/characterize the optimal manufacturing (ordering), remanufacturing, and disposal strategy so that the total expected (discounted) cost is minimized.

Events Timeline



Formulation

- Type *i* returns over the periods are $R_1^i, R_2^i, \ldots, R_N^i$, $i = 1, \ldots, K$.
- Let $\mathbf{R}_n = (R_n^1, R_n^2, \dots, R_n^K)$.
- (D_n, \mathbf{R}_n) can have arbitrary joint distribution, but $(D_1, \mathbf{R}_1), (D_2, \mathbf{R}_2), \dots, (D_N, \mathbf{R}_N)$ are assumed to be independent.
- There is a discount factor α .

Formulation (Cont'd)

- In a service of service able product at the beginning of period n;
- Jⁱ_n= inventory level of type *i* return product at the beginning of period *n*;

$$\mathbf{J}_n = (J_n^1, \dots, J_n^K);$$

i_n = the inventory level of serviceable product after manufacturing and remanufacturing decisions but before demand is realized in period n;

Formulation (Cont'd)

j^k_n = the inventory level of type k returned product after remanufacturing and disposal decisions but before return occurs in period n;

$$\mathbf{j}_n = (j_n^1, \dots, j_n^K);$$

• w_k = the remanufacturing quantity of type k return, k = 1, ..., K;

•
$$\mathbf{w} = (w_1, \ldots, w_K).$$

Formulation (Cont'd)

Given (I_n, \mathbf{J}_n) , let $V_n(I_n, \mathbf{J}_n)$ be the minimum total discounted cost from period n to the end of the planning horizon.

$$V_n(I_n, \mathbf{J}_n)$$

$$= \min_{\boldsymbol{w}, \boldsymbol{j}_n, i_n} \left\{ \sum_{k=1}^K r_k w_k + p \left(i_n - I_n - \sum_{k=1}^K w_k \right) \right\}$$

$$+ \sum_{k=1}^K s_k (j_n^k + \mathsf{E}R_n^k) + G(i_n) + \alpha \mathsf{E}V_{n+1}(i_n - D, \boldsymbol{j}_n + \boldsymbol{R})$$

Constraints

This optimization is subject to constraints

$$j_n^k \ge 0, k = 1, ..., K$$
 $0 \le w_k \le J_n^k - j_n^k, k = 1, ..., K$,
∑_{k=1}^K w_k ≤ i_n − I_n.

As Simpson (1978), let $V_{N+1}(i, j) = 0$ for any i, j.

Single type of returns

Simpson (1978).

- Simpson's result: Strategy for period n is determined by two numbers: $\xi^0 \ge \xi^1$, such that
 - if initial serviceable inventory level is at least ξ⁰,
 do not manufacture/remanufacture;
 - if initial serviceable inventory level is less than ξ^0 , then try to repair to level ξ^0 ;
 - if after repairing the serviceable product inventory level is less than ξ^1 , then manufacture up to ξ^1 .

What Happens if Multiple Types of Returns?

- One might want to expect that Simpson's result extends to multiple-type of returns.
- This is not true.
- Under some conditions the control parameters of the optimal strategy is state-independent, but in general, they are not.

System without Disposal

•
$$w_k = J^k - j^k$$
.

Change of variable and let $\mathbf{x} = (x_0, \dots, x_K)$:

$$x^{0} = I,$$

$$x^{k} = I + \sum_{\ell=1}^{k} J^{\ell}, \quad k = 1, \dots, K,$$

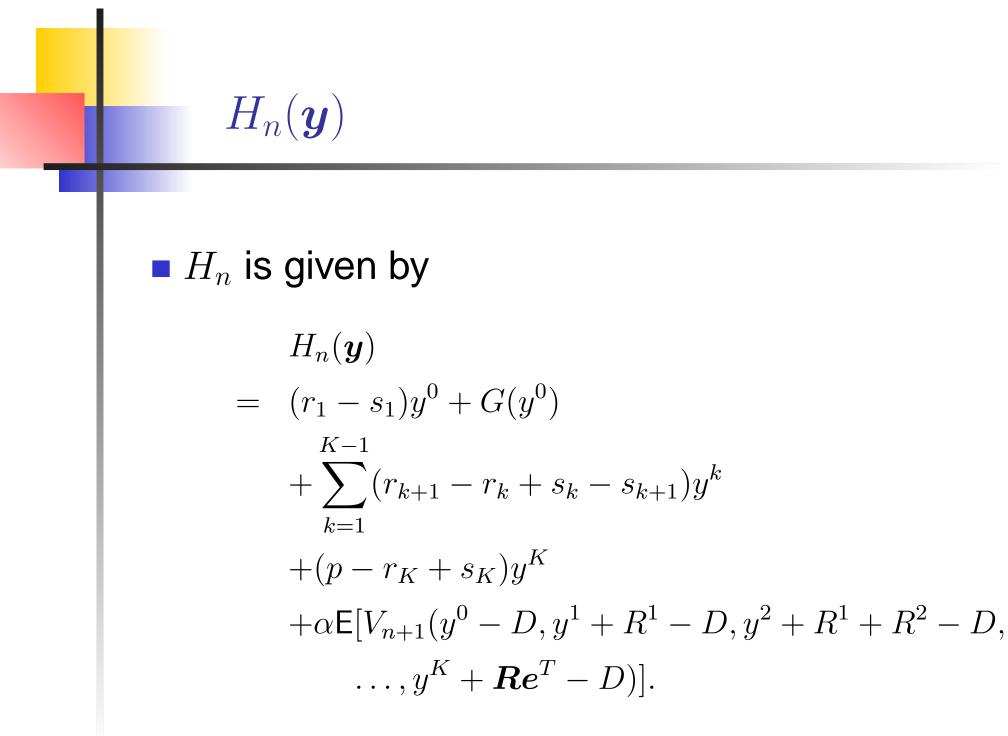
$$y^{0} = i,$$

$$y^{k} = i + \sum_{\ell=1}^{k} j^{\ell}, \quad k = 1, \dots, K$$

Modified Formulation

Given x, let $V_n(\mathbf{x})$ be the value function. $V_n(\mathbf{x}) = \min_{\mathbf{y}} \{H_n(\mathbf{y})\} - r_1 x^0 + \sum_{k=1}^{K-1} (r_k - r_{k+1}) x^k + (r_K - p) x^K$

s.t.
$$x^0 \le y^0 \le y^1 \le \dots \le y^K$$
,
 $x^K \le y^K$,
 $y^{k+1} - y^k \le x^{k+1} - x^k$, $k = 0, \dots, K - 1$.



20/44

A Technical Result

Lemma: If system parameters satisfy

$$r_1 - s_1 \le r_2 - s_2 \le \dots \le r_K - s_K,$$
 (1)

then $V_n(\mathbf{x})$ can be decomposed as

$$V_n(\mathbf{x}) = \sum_{k=0}^K Q_n^k(x^k),$$

in which $Q_n^k(\cdot)$ is a univariate convex function for each k.

Theorem

Under condition (1), the optimal manufacturing/remanufacturing strategy is determined by K + 1 parameters
 ξ⁰ > ξ¹ > · · · > ξ^K, such that,

• when $\xi^{\ell} \leq x^0 < \xi^{\ell-1}$, then do not use returned product of type $\ell + 1, \ldots, K + 1$

• $\xi^{K+1} = -\infty, \xi^{-1} = \infty$ and K+1 is new product (manufacturing or ordering).

- Repair type 1 to bring inventory level to ξ^0 , otherwise, repair type 2 to ξ^1 , ..., and the process continues, until, repair (or manufacture) type $\ell + 1$ to ξ^{ℓ} .
- Illustrate the case $\ell = 0, K + 1$.

• Example K = 2.

Illustration I

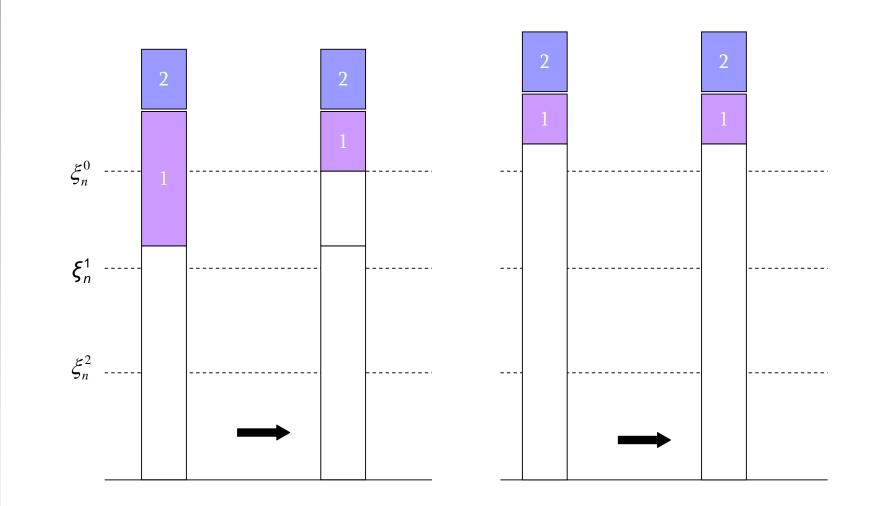


Illustration Il

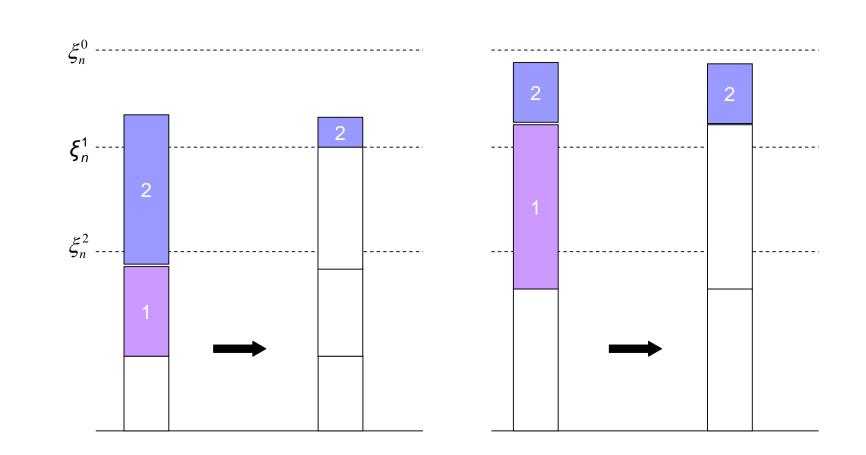
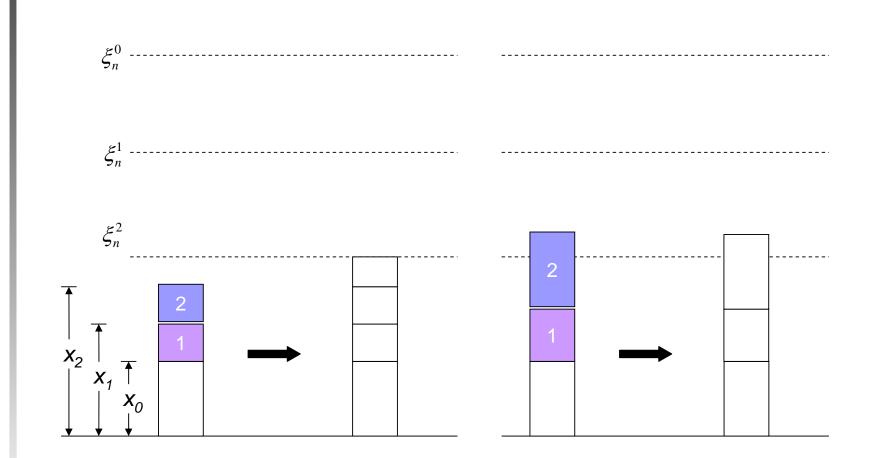


Illustration Ill



What happens if ...

- What happens if $r_1 s_1 \le r_2 s_2$ is not satisfied?
- The optimal policy will no longer be determined by simple thresholds.
- Example

Example

•
$$K = 2$$
, $r_1 = 4$, $r_2 = 2$, $s_1 = 2$, $s_2 = 1$, $p = 5$, $\alpha = 1$,
 $h = 3, b = 5$, $N = 2$. Poisson demand rates 3, and 4.

$$\begin{array}{c|c} (x^0, x^1, x^2) & (y^{0*}, y^{1*}, y^{2*}) \\ \hline (4,14,17) & (12,14,17) \\ \hline (4,15,16) & (13,15,16) \\ \hline (4,15,17) & (13,15,17) \\ \hline (4,15,18) & (12,15,18) \\ \hline (4,15,19) & (12,15,19) \\ \hline \end{array}$$

What is optimal, then?

Suppose $r_1 - s_1 > r_2 - s_2$.

- $H_n(\mathbf{x})$ is no longer decomposable.
- We can characterize the optimal policy, which is complicated with state-dependent control parameters.
- We also develop simple heuristic policies.

Systems with Disposals

- Suppose there exists an M, for $k \ge M$, type k returns can be disposed.
- Under stronger condition $s_1 \leq \cdots \leq s_K$, the optimal policy is determined by a set of control parameters.
- Otherwise the optimal policy can be characterized, and it is complicated with state-dependent control parameters.

Theorem

• Under condition (2), the optimal remanufacturing/manufacturing and disposal policy for period n, is determined by two sets of parameters $\{\xi^k, k = 0, \dots, K\}$ and $\{\eta^k, k = M, \dots, K\}$, satisfying

$$\xi^K \leq \cdots \leq \xi^1 \leq \xi^0$$
, and $\eta^K \leq \cdots \leq \eta^M$,

and

$$\xi^k \leq \eta^{k+1}, \ k = M - 1, \dots, K - 1.$$

Illustration IV

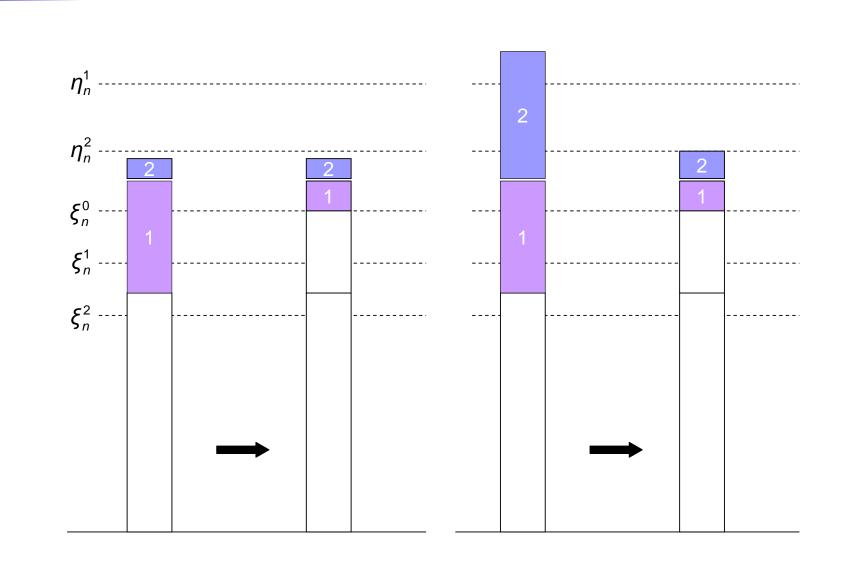
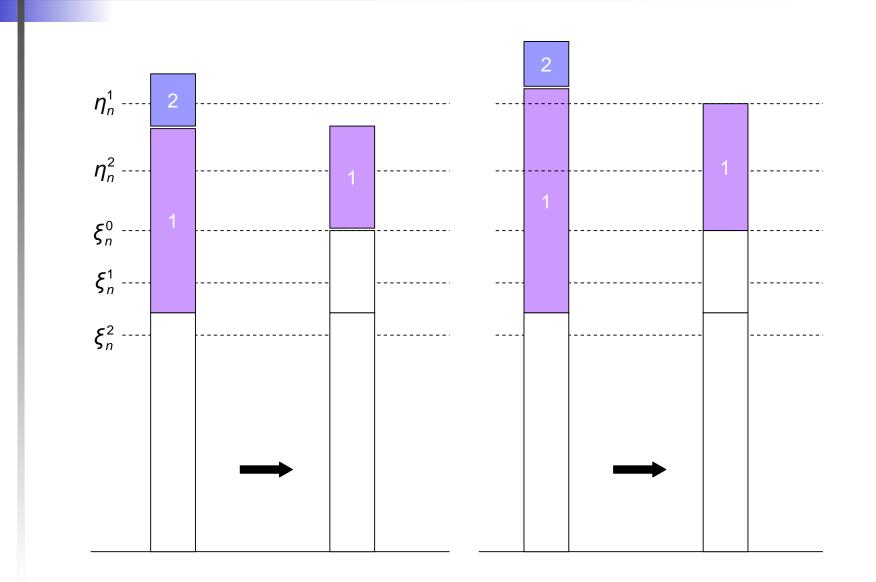


Illustration V



Then What?

- Thus, only under conditions (1) and (2) the optimal policy has a simple form.
- If these conditions are not satisfied, optimal policy is complicated and state-dependent.
- We develop simple heuristic policies with state-independent control parameters.

Heuristic I

Illustrate the heuristic solution for K = 2.
Suppose the data is stationary.

$$\begin{split} \xi^0 &= \overline{F}_D^{-1} \left(\frac{(1-\alpha)r_1 - s_1 + h}{h+b} \right), \\ \xi^1 &= \overline{F}_D^{-1} \left(\frac{(1-\alpha)r_2 - s_2 + h}{h+b} \right), \\ \xi^2 &= \overline{F}_D^{-1} \left(\frac{(1-\alpha)p + h}{h+b} \right). \end{split}$$

Heuristic I (Cont'd)

$$s_{1} + \alpha(r_{1} - r_{2}) \left[P(\eta^{1} - D + R^{1} \le \xi^{1}) + \mathbf{E} \left[\frac{D - R^{1}}{\eta^{1} - \xi^{1}} \mathbf{1} (\xi^{1} < \eta^{1} - D + R^{1} < \eta^{1}) \right] \right] + \alpha(r_{2} - p) \left[P(\eta^{2} - D + R^{1} + R^{2} \le \xi^{2}) + \mathbf{E} \left[\frac{\eta^{2} - \eta^{1} + D - R^{1} + R^{2}}{\eta^{1} - \xi^{2}} \mathbf{1} (\xi^{2} < \eta^{1} - D + R^{1} + R^{2} < \eta^{2}) \right] = 0$$

36/44

Heuristic I (Cont'd)

=

$$s_{2} + \alpha(r_{2} - p)P(\eta^{2} - D + R^{1} + R^{2} \le \xi^{2}) + \alpha(r_{2} - p)\mathsf{E}\left[\frac{D - R^{1} + R^{2}}{\eta^{2} - \xi^{2}}\mathbf{1}(\xi^{2} < \eta^{2} - D + R^{1} + R^{2} < \eta^{2})\right] 0.$$

Heuristic II

• ξ^1 and ξ^2 are determined jointly with η^1 and η^2 by solving

$$(r_2 - s_2) + G'(\xi^1) - \alpha r_1 + \alpha (r_1 - r_2) \left[P(R^1 - D \le 0) + \mathsf{E}\left[\frac{\eta^1 - \xi^1 + D - R^1}{\eta^1 - \xi^1} \mathbf{1}(\xi^1 < \xi^1 - D + R^1 < \eta^1)\right] \right]$$

= 0.

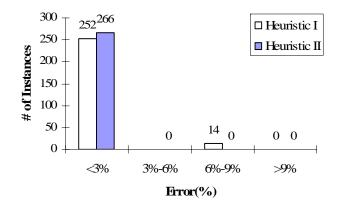
Heuristic II (Cont'd)

$$p + G'(\xi^2) - \alpha r_1 + \alpha (r_1 - r_2) \left[P(\xi^2 - D + R^1 \le \xi^1) + \left[\frac{\eta^1 - \xi^2 + D - R^1}{\eta^1 - \xi^1} \mathbf{1}(\xi^1 < \xi^2 - D + R^1 < \eta^1) \right] \right] + \alpha (r_2 - p) \left[P(-D + R^1 + R^2 \le 0) + \left[\frac{\eta^2 - \xi^2 + D - R^1 + R^2}{\eta^2 - \xi^2} \mathbf{1}(\xi^2 < \xi^2 - D + R^1 + R^2 < \eta^2) + 0 \right] \right] = 0.$$

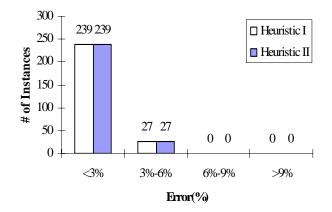
39/44

Numerical Studies I

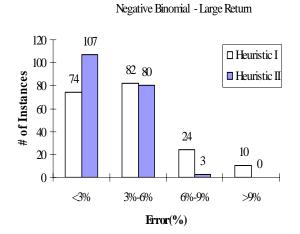




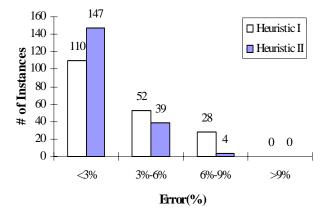
Poisson- Small Return



Numerical Studies II



Negative Binomial - Small Return



41/44

Performance of Heuristic

	average error(%)	maximum error
	~ (,	
Poisson sm return	1.22	4.78
Neg-Binomial sm return	1.36	6.86
Poisson lg return	0.98	1.77
Neg Disemiel la return	2 67	a ao ^{42/44}
Neg-Binomial Ig return	2.67	8.28

Conclusion

Inventory systems with multiple types of returned products, and with or without disposals.

- Characterize the optimal remanufacturing/manufacturing and disposal policies
- In some scenarios, simple and state-independent policy is optimal
- In others, complicated and state-dependent
- Heuristics are developed and tested numerically.

Thank You ... For Your Attention!