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The Problem

Single period problem – Newsvendor problem

Multiple-period problem

Optimal strategy – Base-stock policy

Multiple types of returns – Motivating examples
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Some related literature

Simpson (1978)

Inderfurth (1997)

Decroix (2006)

Decroix and Zipkin (2005)

All these papers consider a single type of
returned products.
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Other related and review
articles

Heyman (1977)

van der Laan, et al. (1999)

van der Laan and Teunter (2005)

Fleischmann et al. (1997)

Guide and Srivastava (1997)
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Model Details

Periodic review system, periods 1 to N .

K types of returned products.

Disposal may or may not be allowed.

Manufacturing and remanufacturing times are
equal, and are assumed, without loss of
generality, to be 0.

The demand for serviceable product over the
periods are D1, D2, . . . , DN .
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Cost Structure

Production cost (or ordering cost) for
serviceable product, p.

Repair cost for type j return is rj,
where p ≥ rj, j = 1, . . . ,K.

Stocking (holding) cost for type i return is si,
i = 1, . . . ,K.

WLOG, assume

(1 − α)r1 − s1 ≤ · · · ≤ (1 − α)rK − sK .
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Cost Structure (Cont’d)

There is holding cost for serviceable product.

Consider backlog model (lost-sales model can
be similarly studied)– shortage cost for backlog.

Holding cost for serviceable product and

shortage cost for backlog is a general convex

function: Expected one-period cost G(x), i.e.,

G(x) = hE[max{x − D, 0}] + bE[max{D − x}].
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Our Goal

Find/characterize the optimal manufacturing
(ordering), remanufacturing, and disposal
strategy so that the total expected (discounted)
cost is minimized.
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Events Timeline

n n+1

How many to 
remanufacture?

How many to 
manufacture?

How many to 
dispose?

Demand
arrives

Returns
arrive

All costs
incurred
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Formulation

Type i returns over the periods are
Ri

1, R
i
2, . . . , R

i
N , i = 1, . . . ,K.

Let Rn = (R1
n, R

2
n, . . . , R

K
n ).

(Dn,Rn) can have arbitrary joint distribution,
but (D1,R1), (D2,R2), . . . , (DN ,RN ) are
assumed to be independent.

There is a discount factor α.
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Formulation (Cont’d)

In = inventory level of serviceable product
at the beginning of period n;

J i
n= inventory level of type i return product

at the beginning of period n;

Jn = (J1
n, . . . , JK

n );

in = the inventory level of serviceable product
after manufacturing and remanufacturing
decisions but before demand is realized in
period n;
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Formulation (Cont’d)

jk
n = the inventory level of type k returned

product after remanufacturing and disposal
decisions but before return occurs in period n;

jn = (j1
n, . . . , j

K
n );

wk = the remanufacturing quantity of type k
return, k = 1, . . . ,K;

w = (w1, . . . , wK).
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Formulation (Cont’d)

Given (In,Jn), let Vn(In,Jn) be the minimum
total discounted cost from period n to the end
of the planning horizon.

Vn(In,Jn)

= min
w,jn,in

{ K∑
k=1

rkwk + p

(
in − In −

K∑
k=1

wk

)

+
K∑

k=1

sk(j
k
n + ERk

n) + G(in) + αEVn+1(in − D, jn + R)

}
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Constraints

This optimization is subject to constraints

jk
n ≥ 0, k = 1, . . . ,K

0 ≤ wk ≤ Jk
n − jk

n, k = 1, . . . ,K,∑K
k=1 wk ≤ in − In.

As Simpson (1978), let VN+1(i, j) = 0 for
any i, j.

15/44



Single type of returns

Simpson (1978).

Simpson’s result: Strategy for period n is
determined by two numbers: ξ0 ≥ ξ1, such that

if initial serviceable inventory level is at least ξ0,
do not manufacture/remanufacture;

if initial serviceable inventory level is less than ξ0,
then try to repair to level ξ0;

if after repairing the serviceable product inventory
level is less than ξ1, then manufacture up to ξ1.
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What Happens if Multiple Types
of Returns?

One might want to expect that Simpson’s
result extends to multiple-type of returns.

This is not true.

Under some conditions the control parameters
of the optimal strategy is state-independent,
but in general, they are not.
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System without Disposal

wk = Jk − jk.

Change of variable and let x = (x0, . . . , xK):

x0 = I,

xk = I +

k∑
�=1

J �, k = 1, . . . ,K,

y0 = i,

yk = i +

k∑
�=1

j�, k = 1, . . . ,K
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Modified Formulation

Given x, let Vn(x) be the value function.

Vn(x) = min
y

{Hn(y)} − r1x
0 +

K−1∑
k=1

(rk − rk+1)x
k

+(rK − p)xK

s.t. x0 ≤ y0 ≤ y1 ≤ · · · ≤ yK ,

xK ≤ yK ,

yk+1 − yk ≤ xk+1 − xk, k = 0, . . . ,K − 1.
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Hn(y)

Hn is given by

Hn(y)

= (r1 − s1)y
0 + G(y0)

+
K−1∑
k=1

(rk+1 − rk + sk − sk+1)y
k

+(p − rK + sK)yK

+αE[Vn+1(y
0 − D, y1 + R1 − D, y2 + R1 + R2 − D,

. . . , yK + ReT − D)].
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A Technical Result

Lemma: If system parameters satisfy

r1 − s1 ≤ r2 − s2 ≤ · · · ≤ rK − sK , (1)

then Vn(x) can be decomposed as

Vn(x) =
K∑

k=0

Qk
n(x

k),

in which Qk
n(·) is a univariate convex function

for each k.
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Theorem

Under condition (1), the optimal
manufacturing/remanufacturing strategy is
determined by K + 1 parameters
ξ0 > ξ1 > · · · > ξK , such that,

when ξ� ≤ x0 < ξ�−1, then do not use
returned product of type � + 1, . . . ,K + 1

ξK+1 = −∞, ξ−1 = ∞ and K + 1 is new
product (manufacturing or ordering).
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Theorem (Cont’d)

Repair type 1 to bring inventory level to ξ0,
otherwise, repair type 2 to ξ1, ..., and the
process continues, until, repair (or
manufacture) type � + 1 to ξ�.

Illustrate the case � = 0,K + 1.

Example K = 2.
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Illustration I
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What happens if ...

What happens if r1 − s1 ≤ r2 − s2 is not
satisfied?

The optimal policy will no longer be
determined by simple thresholds.

Example
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Example

K = 2, r1 = 4, r2 = 2, s1 = 2, s2 = 1, p = 5, α = 1,
h = 3, b = 5, N = 2. Poisson demand rates 3, and 4.

(x0, x1, x2) (y0∗, y1∗, y2∗)
(4,14,17) (12,14,17)
(4,15,16) (13,15,16)
(4,15,17) (13,15,17)
(4,15,18) (12,15,18)
(4,15,19) (12,15,19)
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What is optimal, then?

Suppose r1 − s1 > r2 − s2.

Hn(x) is no longer decomposable.

We can characterize the optimal policy, which
is complicated with state-dependent control
parameters.

We also develop simple heuristic policies.
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Systems with Disposals

Suppose there exists an M , for k ≥ M ,
type k returns can be disposed.

Under stronger condition s1 ≤ · · · ≤ sK , the
optimal policy is determined by a set of
control parameters.

Otherwise the optimal policy can be
characterized, and it is complicated
with state-dependent control parameters.
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Theorem

Under condition (2), the optimal
remanufacturing/manufacturing and disposal
policy for period n, is determined by two sets
of parameters {ξk, k = 0, . . . ,K} and
{ηk, k = M, . . . ,K}, satisfying

ξK ≤ · · · ≤ ξ1 ≤ ξ0, and ηK ≤ · · · ≤ ηM ,

and

ξk ≤ ηk+1, k = M − 1, . . . ,K − 1.
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Illustration IV
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Illustration V
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Then What?

Thus, only under conditions (1) and (2) the
optimal policy has a simple form.

If these conditions are not satisfied, optimal
policy is complicated and state-dependent.

We develop simple heuristic policies with
state-independent control parameters.

34/44



Heuristic I

Illustrate the heuristic solution for K = 2.

Suppose the data is stationary.

ξ0 = F
−1
D

(
(1 − α)r1 − s1 + h

h + b

)
,

ξ1 = F
−1
D

(
(1 − α)r2 − s2 + h

h + b

)
,

ξ2 = F
−1
D

(
(1 − α)p + h

h + b

)
.
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Heuristic I (Cont’d)

s1 + α(r1 − r2)

[
P (η1 − D + R1 ≤ ξ1)

+E

[
D − R1

η1 − ξ1
1(ξ1 < η1 − D + R1 < η1)

]]

+α(r2 − p)

[
P (η2 − D + R1 + R2 ≤ ξ2)

+E

[
η2 − η1 + D − R1 + R2

η1 − ξ2
1(ξ2 < η1 − D + R1 + R2 < η2)

= 0
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Heuristic I (Cont’d)

s2 + α(r2 − p)P (η2 − D + R1 + R2 ≤ ξ2)

+α(r2 − p)E

[
D − R1 + R2

η2 − ξ2
1(ξ2 <

η2 − D + R1 + R2 < η2)

]

= 0.
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Heuristic II

ξ1 and ξ2 are determined jointly with η1 and η2

by solving

(r2 − s2) + G′(ξ1) − αr1 + α(r1 − r2)

[
P (R1 − D ≤ 0)

+E

[
η1 − ξ1 + D − R1

η1 − ξ1
1(ξ1 < ξ1 − D + R1 < η1)

]]

= 0.
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Heuristic II (Cont’d)

p + G′(ξ2) − αr1 + α(r1 − r2)

[
P (ξ2 − D + R1 ≤ ξ1) +

E

[
η1 − ξ2 + D − R1

η1 − ξ1
1(ξ1 < ξ2 − D + R1 < η1)

]]

+α(r2 − p)

[
P (−D + R1 + R2 ≤ 0)

+E

[
η2 − ξ2 + D − R1 + R2

η2 − ξ2
1(ξ2 < ξ2 − D + R1 + R2 < η2)

]

= 0.
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Numerical Studies I
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Numerical Studies II

Negative Binomial - Small Return
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Performance of Heuristic

average error(%) maximum error(

Poisson sm return 1.22 4.78

Neg-Binomial sm return 1.36 6.86

Poisson lg return 0.98 1.77

Neg-Binomial lg return 2.67 8.2842/44



Conclusion

Inventory systems with multiple types of returned
products, and with or without disposals.

Characterize the optimal remanufacturing/manufacturing
and disposal policies

In some scenarios, simple and state-independent policy
is optimal

In others, complicated and state-dependent

Heuristics are developed and tested numerically.
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Thank You  …
For Your Attention!
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