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The Problem

m Single period problem — Newsvendor problem
= Multiple-period problem

m Optimal strategy — Base-stock policy

= Multiple types of returns — Motivating examples
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Some related literature

m Simpson (1978)

m Inderfurth (1997)

m Decroix (2006)

m Decroix and Zipkin (2005)

m All these papers consider a single type of
returned products.
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Other related and review
articles

= Heyman (1977)

m van der Laan, et al. (1999)

m van der Laan and Teunter (2005)
m Fleischmann et al. (1997)

m Guide and Srivastava (1997)

5/44



Model Detalls

m Periodic review system, periods 1 to V.
m K types of returned products.
m Disposal may or may not be allowed.

= Manufacturing and remanufacturing times are
equal, and are assumed, without loss of
generality, to be 0.

m The demand for serviceable product over the
periods are Dy, Ds, ..., Dy.
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Cost Structure

m Production cost (or ordering cost) for
serviceable product, p.

= Repair cost for type j return is r;,
wherep >r;, j=1,... K.

m Stocking (holding) cost for type 7 return is s;,
i=1,... K.

m WLOG, assume
(1—a)ri—51<--- < (1 —a)rg — sk.
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Cost Structure (Cont’d)

m There Is holding cost for serviceable product.

m Consider backlog model (lost-sales model can
be similarly studied)— shortage cost for backlog

m Holding cost for serviceable product and
shortage cost for backlog is a general convex
function: Expected one-period cost G(z), i.e.,

G(x) = hEmax{x — D,0}| + bEmax{D — x}]
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Our Goal

m Find/characterize the optimal manufacturing
(ordering), remanufacturing, and disposal
strategy so that the total expected (discounted)
cost IS minimized.
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Events Timeline
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Formulation

= Type 1 returns over the perlods are
1, .. R?\], Z — ]. K.

m Let Rn = (R%,R?L,...,Rff).

= (D,,R,) can have arbitrary joint distribution,
but (Dl, Rl), (DQ, Rg), Ceey (DN, RN) are
assumed to be independent.

m There Is a discount factor «.
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Formulation (Cont’d)

m [, = Inventory level of serviceable product
at the beginning of period n;

m J'=inventory level of type i return product
at the beginning of period n;

mJ,=(J., ... T8

m ;, = the inventory level of serviceable product
after manufacturing and remanufacturing
decisions but before demand is realized In
period n;
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Formulation (Cont’d)

= ;¥ = the inventory level of type % returned
product after remanufacturing and disposal
decisions but before return occurs in period n;

850 = (Jns - );
m w;, = the remanufacturing quantity of type &
return, k=1,..., K,

mwW = (wy,...,Wg).
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Formulation (Cont’d)

m Given ([,,,J,), let V,,(1,, J,) be the minimum
total discounted cost from period n to the end
of the planning horizon.

Vidn, Jn)
K K
= min {Z LW + P (zn — I, — Zwk>
w,7,,n Cp_q k=1

K :
+ Y k(i + ERE) 4+ G(in) + aEV,a(in — D, 4, + R)
k=1 .
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Constraints

m This optimization Is subject to constraints
mi">0,k=1,...,K
m0<w, <J'—ji* k=1,... K,
m Zle wr < 1, — 1.

m As Simpson (1978), let Vy,1(¢,7) = 0 for
any i, j.
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Single type of returns

= Simpson (1978).

m Simpson’s result: Strategy for period n Is
determined by two numbers: £ > ¢!, such that

m if initial serviceable inventory level is at least £V,
do not manufacture/remanufacture;

m if initial serviceable inventory level is less than ¢,
then try to repair to level £°;

m If after repairing the serviceable product inventory
level is less than &1, then manufacture up to &*.
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What Happens if Multiple Types
of Returns?

= One might want to expect that Simpson’s
result extends to multiple-type of returns.

m This IS not true.

m Under some conditions the control parameters
of the optimal strategy Is state-independent,
but In general, they are not.
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System without Disposal

lwk:Jk—jk.

m Change of variable and let x = (zg, ..., rk):
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Modified Formulation

m Given x, let V,(x) be the value function.
K-1

Va(x) = mym{Hn(y)} —ra’ + Z("“k — Tk+1)37k

k=1
+(rg — p)a™
s.t. 2’ <y¥ <yt <o <yh,
T



m H, IS given by

H,(y)
= (r1—s1)y’ +G(y")
K—1
T Z(Tkﬂ — T+ S — Sk+1)yk
k=1

+(p—rg + sK)yK

+aE[V,(y’ —D,y' + R' — D,y* + R' + R* — D,
., y™ + Re' — D).
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A Technical Result

m Lemma: If system parameters satisfy
r1— 51 <1y — 8y < - < — S, (1

then V,,(x) can be decomposed as

Vix) = 3 Q)

in which Q*(-) is a univariate convex function

for each k.
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Theorem

m Under condition (1), the optimal
manufacturing/remanufacturing strategy Is
determined by K + 1 parameters

0> ¢l > ..o > 8 such that,

m when £f < 2Y < ¢71, then do not use
returned productoftype /+1,..., K + 1

m Al = oofl_ooandK+1|snew
product (manufacturing or ordering).
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\ Theorem (Cont'd)

= Repair type 1 to bring inventory level to &Y,
otherwise, repair type 2 to ¢!, ..., and the
process continues, until, repair (or

manufacture) type ¢ + 1 to &°.
m |llustrate the case ¢/ = 0, K + 1.
m Example K = 2.

23/4.



lllustration |
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lllustration |l
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lllustration Il
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What happens if ...

m What happens if r; — 51 < r9 — s9 1S not
satisfied?

= The optimal policy will no longer be
determined by simple thresholds.

m Example

2714



Example

BK=2,r=4ry=2,81=2,55=1,p=5,a=1,
h=3,b=>5, N =2. Poisson demand rates 3, and 4.

(20, 21, %) | (%, v, y?)
(4,14,17) | (12,14,17)
(4,15,16) | (13,15,16)
(4,15,17) | (13,15,17)
(4,15,18) | (12,15,18)
(4,15,19) | (12,15,19)
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What is optimal, then?

m SUppose r; — s; > 1r9 — So.
m H,(x) is no longer decomposable.

m We can characterize the optimal policy, which
IS complicated with state-dependent control
parameters.

m We also develop simple heuristic policies.
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Systems with Disposals

m Suppose there exists an M, for k£ > M,
type k returns can be disposed.

m Under stronger condition s; < --- < sy, the
optimal policy Is determined by a set of
control parameters.

m Otherwise the optimal policy can be
characterized, and it is complicated
with state-dependent control parameters.
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Theorem

= Under condition (2), the optimal
remanufacturing/manufacturing and disposal
policy for period n, Is determined by two sets

of parameters {¢*.k =0,..., K} and
{n* k=M,... 6 K}, satisfying
&< <<’ and gt <<t

T — ’

and

o<t k=M-1,...,K -1
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lllustration IV
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lllustration V
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Then What?

m Thus, only under conditions (1) and (2) the
optimal policy has a simple form.

m |f these conditions are not satisfied, optimal
policy Is complicated and state-dependent.

m We develop simple heuristic policies with
state-independent control parameters.
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Heuristic |

m |llustrate the heuristic solution for K = 2.
m Suppose the data is stationary.

€0 FD ((1—a)r1—31+h>7

h+0b
(1 —a)ro —ss+ h
5FD< h+0b )
—1((1—a)p+h
g_FD< h+b )
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Heuristic | (Cont’d)

s1+alr —r) |P(n' =D+ R' <¢')

'D— R
+E n1_€11(§1<n1—D+R1<n1)

+a(rs —p)|P(n" = D+ R"+ R* < &)

772—771—|—D—R1—|—R2
771_§2

+E 1(& <n' =D+ R'+ R* <n?)

=0
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Heuristic | (Cont’d)

sy +ars —p)P(n® = D+ R' 4+ R* < &%)
D — R'+ R’

e 1(¢° <

n* — D+ R' + R* <n?)
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Heuristic |l

m ¢! and £2 are determined jointly with ! and n?
by solving

(ro — 89) + G'(&") — ary + a(ry — 1)

+E

Ul—gl—I—D—Rl

771_61

1< ¢ - D+ R <t

P(R*—-D<0
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Heuristic Il (Cont’d)

p+G(&) —ar +alr —r) | P — D+ R <&+

_771—52—|—D—R1
nt — €1

1 <& -D+R <)

+a(ry — p) | P(=D + R' + R* <0)

-772—§2+D—R1—|—R2
n2 — €2

1(& <& - D+ R + R < 1)
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# of Instances
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Negative Binorrial - Large Retum

Numerical Studies Il
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Performance of Heuristic

average error(%) maximum errol

Poisson sm return 1.22 4.78
Neg-Binomial sm return 1.36 6.86
Poisson Ig return 0.98 1.77

Neg-Binomial Ig return 2.67 g 28" %




Conclusion

® Inventory systems with multiple types of returned
products, and with or without disposals.

m Characterize the optimal remanufacturing/manufacturing
and disposal policies

B In some scenarios, simple and state-independent policy
IS optimal

® |In others, complicated and state-dependent

m Heuristics are developed and tested numerically.
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Thank You ...
For Your Attention!
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