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Review: inverse scattering

Review: compressed sensing

Random incident and scattering directions: SIMO, SISO
Random illumination

Resolution and superresolution

MUSIC: thresholding, noise tolerance.



Inverse scattering

e Plane wave incidence
QEAHV — ms.o&..mu r e H%&
where d € S9-1 ¢ =2 3 is the incident direction.

co = 1: w = frequency/wavenumber.

e The scattered field uS u — u' then satisfies the Lippmann-

Schwinger equation:
WS(r) = w? \% () (W) + wS()) G, r)ar

where G is the Green function for the operator —(A + w?).

e Measurement: scattered field (near field) or the scattering am-
plitude (far field).



e Far-field asymptotic: d = 3

plwlr—r'| N ms.E_H._mls.Ew.H.\
4rlr —r!/|  4m|r|
Hence
< m&E_H._ L 1 ~
w AH.v - _H._A&|”_.v\w \QAHQ Qv I_I @ E ) r = H.\_H._u d = Mg 3

where the scattering amplitude A is determined by the formula

w2

AF,d) = - %imv:oﬁ.@mé&%\.
ﬁ.

e Born approximation

w2

\%g () Aw\vml&sw\.m&.\.

e Goal: determine v from measurement data: A.

Standard theory (Nachman, Novikov, Ramm, Sylvester-Uhlmann
etc) of inverse scattering asserts the injectivity of the mapping



from v € Qm with a nonnegative imaginary part to the corre-
sponding scattering amplitude for a fixed frequency in three di-
mensions. That is, the refractive index can in principle be deter-

mined uniquely by the full knowledge of A(%,d),Vd, T, for a fixed
Ww.

Inverse problem: discrete vs. continuum.
Finite data, finite number of pixels in computation domain.

Issue of errors (external or model-mismatch).



Compressed sensing with RIP

e Linear inverse problem: ¥ = X + F where ® is an n xm matrix
with

n (# rows) < m (# columns),

i.e. severely underdetermined.

e Prior information: the target vector is sparse, || X||g = s ~ n.

Difficulty: to identify the low dimensional subspace (the support
space) out of @wv of them in a high dimensional vectors space.

e Basis pursuit denoising or Lasso

min ||Z||1, S.t.||Y —®Z|><e€
min 121 __ Io <

where ¢ is the size of error, i.e. ||E|s <e.

Recovery depends on RIP /incoherence property of ® and sparsity
of X.



e Restricted isometry property (RIP): Define the restricted isom-
etry constant (RIC) ds < 1,s € N to be the smallest positive
number such that the inequality

(1—-68:)]12]153 < |®2]13 < (1 +8)|1Z]I3

holds for all Z € C™ of sparsity at most s.

Theorem 1 (Candes 08)

Suppose
bog < V2 — 1.
Then the solution X of Lasso satisfies
IX - Xlo < C1s7Y2)X - XO||1 + Cge

where X(8) js the best s—sparse approximation of X.

Examples: random i.i.d. matrices (no structure), random partial
Fourier matrices (i.e. random row selections from DFT).

Theorem 2 (Rauhut 2008)



If

n 1
> 05 %sIn?sinmIn=

Inn Y

forv € (0,1) and some absolute constant C, then with probability
at least 1—~ the random partial Fourier matrix satisfies the bound

0s < 0.

DFT uses uniform sampling over the full Fourier domain.

Our scattering matrix is sampling only a small part of it.



Mutual coherence

e [ he mutual coherence

1(®) = max Sk i

17 /\Mw _e\ﬁ._m/\mw _GS_M.

Proposition 1

6s < (s —1).



Sufficient condition for recovery

n(2s—1)<+v2-1

or

s<—|14+——-

H §|H
|MA p v

Lower bound:

3|3 H
tw/\zﬁngvHvNHGT\mv.

Hence, by mutual coherence alone, we can recover

s = 0(vn)

objects.
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Theorem 3 (Candes-Plan 09) Assume that E = (E;) € C" and
FE;,j = 1,...,n are i.i.d. complex Gaussian r.v.s with variance o2

(e = O(o+/n)). Suppose that
u(®) < Ag/logm

and
Com

s < )
— __Av:m_oag

Assume

min | X;| > 8o+v/210g m.
2

Then the solution X of
1
min Y — ®Z||5+ 0 -2v/21ogm||Z|;

recovers the support of X with high probability at least 1—2m~1((2xlogm)~
mSIHV _ @ASIM_OQ wv.

Typically,

B2 ~ m =  s=0O(n/logm).



Point scatterers

scattered waves

= X = N

Source ¢ vWWV co sensor A% ) c o
Reciprocity: SIMO ~ multi-shot SISO measurement.

Assumption: point scatterers sit on a finite regular grid of spacing
l.

Measurement: randomly sample the scattering directions r;,l =

1,....n.



SIMO (single-input-multiple-output)

The scattering amplitude is a finite sum

w2 m

A(F,d) = - vju(r;)e Wit
j=1

Excitation field u(r;) satisfies the Foldy-Lax equation
w(ry)) = u'(r;) +w? Y G(ryrj)vulr;)
1]
where all the multiple scattering effects are included but the self
field is excluded to avoid blow-up.

Let X = (vju(r;)) € C'". The (I,j)-entry of the sensing matrix is

ml&EA&. sin 0;+x; cos 6;)

where 0; is the sampling angle and r; = (x;,2;) are grid points.

This is not the standard random partial Fourier matrix!



Coherence bound

Theorem 4 (AF 2009)

Suppose
0 72
m < WmN \mu J, K > 0.
Then the sensing matrix satisfies the coherence bound
V2K
P) < °
w(®) <x°+ n

with probability greater than (1 — §)? where

X° < (1 4+ wf) 72| 154 00,

where || - ||t o0 iS the HSlder norm of order t > 1/2 and the constant
c; depends only on t.

For d = 3,

X5 < er(1 4+ wd) BN 00



If, however, supp(f°) does not contains any Blind Spot, then x°
satisfies the bound

X° < en(1 4+ wf) M 500

where the constant c;, depends only on h.
e We do not need full view measurement: the support of > can
be a small portion of S4-1 4 =2 3.
We need some smoothness in £°: a number of existing numerical
tests (by others) neglect this!

e TO have kK1, need w/>1and n>1.

e In the case of random partial Fourier matrix, x> = 0.



Proof uses concentration inequality and stationary phase analysis.

e [ he pairwise coherence has the form

e Hoeffding inequality

nt2
for all positive values of t.
e EXxpectation estimation:
H n S / Mﬁ. .o~ /
SE| Y el = \o et (=) 1S(9Yap  F = (cos,sin )
n —1

which is the Herglotz wave function with kernel f>.



Operator norm bound

Theorem 5 (AF 2009)

For the SIMO measurement we have

T he probability bound is probably not optimal.



Multiple-scattering wave

Lippmann-Schwinger equation

u(ry) = u'(r;) + w? W G(r;, x;)vju(X;)
el

Let 45, be the indices for which v(r; ) # 0. Define the illumination
and full field vectors at the locations of the scatterers:

(u'(riy), ooy (r; )T € C8
(u(riy), - ulr; )T € C.

[y
U

Let G be the s x s matrix
and V the diagonal matrix

Y = Q_m@Q\&Hv ceny Ts.mv.
Lippmann-Schwinger equation can be written as

U=U"4+w2GVU



or
U=U"4w?’GX
On the other hand,

-1 .
N”<AH|€MQ<V U'.
Theorem 6 (AF 2009)

Suppose

w2 is not an eigenvalue of the matrix GV

and

. —1
U' is not orthogonal to any row vector of AH — Ewﬂ%v .

Then the true target V is given by

X

Y = dia ~ ~
J W2GX 4+ U

where the division is in the entry-wise sense (Hadamard product).



Near-field measurements

Sensors

incident wave

sources

scattered wave

SIMO ~ multi-shot SISO measurement.

min




Theorem 7 (AF 2009)

Suppose
) 2,2
m < —e2H8 /TG o >0

where cg depends on the minimum distance Anin between {z = 0}
and the lattice (For d = 2, rg = O(—109Apin), for d = 3, rg =
O(AZ1)).

min

The mutual coherence obeys

W @) < |C(Amm)| 2 A@m + «ﬂv d=2
p(P) < _QADBme_IM A/\/WMA + E@hv , d=23

for some constant ¢ (independent of w > 0 ford =2 and w > 1 for
d = 3), with probability greater than (1 — §)2, where Amax is the
largest distance between the array and the lattice.

Need wl > 1 and n > 1.
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wl ~ 17

Multi-shot SISO schemes provide more information



Multi-shot SISO schemes

The (I,7)-entry of ® € C**™ js

|\@.EN@.HQ Q&ENMN.HQ. —_ @&SNNAQMAMED 0;—sin @«Dl_le AOOm 0;—Ccos gvvu

€ =
j=G1—1) + .

o Let (p;,¢;),i = 1,..,n be the polar coordinates of i.i.d. uniform
r.v.s (&,m) € [0,27]°.

e Scheme I. This scheme employs 2—band limited probes, i.e.
wy € [—2,2]. Set

~

0, = 0,+m7=¢; (backward sampling)
$201

V2
[=1,....,n. In this case the scattering amplitude is always sam-
pled in the back-scattering direction analogous to SAR.

W) =



e Scheme II. This scheme employs single frequency probes no less
than €2:

wp =782, ~v2>1, [=1 ..n.

Set

0; = ¢; + arcsin ——=
l ! f\

f\

T he difference between the incident angle and the sampling angle
IS

0, = ¢; — arcsin =

0, — 0, = 2arcsin ——  (scattering angles)

f\
which diminishes as v — oo. In other words, in the high frequency

limit, the sampling angle approaches the incident angle. This
resembles the setting of the X-ray tomography.



e Theorem 8 (AF 2009)

Suppose
QU =7/V2.

Then scheme I and II satisfy RIP with high probability and the
error bound

IX - X2 < O157 12X — XO||y + Coe.



Numerical tests
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(left) Source inversion with the paraxial sensing matrix 40 source
points and 121 antennas. The resulting error is 0.0164 while the
error with exact Green function is 7 x 10716 (not shown). (right)
MFP image produced on the same grid. The red circles represent
the true locations of the targets in both plots.
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Compressed imaging by MFP (bottom) versus BP (top). The num-
ber of recoverable objects as a function of the number of sensors
n=1,2,3,4,5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100,
120, 150, 200, 300, 600 with np = 600 fixed.



Scheme I: success probability
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Success probabilities for Scheme I. As the backward sampling condi-
tion is increasingly violated, the performance degrades accordingly.



Scheme II: success probability
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Success probabilities for Scheme II with v = 1,20 and the scattering
angle condition violated in various degrees.



Comparison of SIMO and SISO

—+H=— SIMO gamma=1
SIMO gamma=20

—<— SIMO gamma=200

— — — SISO gamma=1 .

i
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Solid curves are the success probabilities for the SIMO measurement
at v = 1,20,200 and the dashed curve is the SISO Scheme II at

v = 1.



Distributed extended targets

The wavelet expansion

v(x,z) = MU Sob%wb@umv

p,q€Z?
where

Up.q(r) =27 (P1FP2)/24(27Pr _q), p,q e Z?
with
27 Pr = (27P1g, 27P2y)

form an ONB in L2(R?).

Littlewood-Paley basis
W(r) = (m2z2) " L(sin (2rz) — sin (7z)) - (sin (272) — sin (72))
which is band-limited

1
B(E,¢) = ﬁmi Cw< el Icl < 2m

0, otherwise.



e With the incident fields
Q_w?v = m@éﬁ.mﬁ k=1, ..n
we have

vp=2r Y 201Hp/2y, o2 (DT a4 2P (7, — dy))
p,q€Z?
with cutoffs

o Let
p1—1 pr—1 ;
L= Y Y @my+1)% 4 (g1 +mp)(2mp + 1) + (g2 +mp + 1),
J1=—Px Jo=—D«
_Q_Oo < mp, _Hu_oo < DPx,
pi—1 pp-1
E= > > @+ 1)+ (¢ +np)@2ny + 1)+ (¢h+ 1y + 1),
J1=—DPx J2=—Dx
9loo < npyy [P loo < i



Define the sensing matrix elements to be
1

and let ® = [Py ], where dy, T, wy are given below.

b1 = P(w2P (Fy — dy))er?® (dr—Tr)a

Let X = (X;) with

X; = 27 (2np + 1)2P1Fr2)/2,,

be the target vector.



e Sampling scheme:

Let &, be independent, uniform random variables on [—1, 1]
and define

oL = m ) 1+ m\? M\A S _”Ov ”_.”_
g = T 1+ ¢k, (g €[0,1]
w —

gwM%\M -1+ m\? m\a S _H|”_JOH_ .

Let (pi,Pr) be the polar coordinates of (ay, ;) used to define
schemes I and II.

o &, are zero if p = p’. Consequently the sensing matrix is the
block-diagonal matrix with each block (indexed by p = p’) in the
form of random Fourier matrix

P = et (18, +aq2C;)

The above observation means that the target structures of differ-
ent dyadic scales are decoupled and can be determined separately
by our approach using compressed sensing techniques.
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Imaging of an extended target of the scales px = 0 with mg = 32.



Localized extended targets

probe wave scattered wave

scatterers

e Interpolation from the grid

v(r) =Y g~ Qv(ta), 122
qel

Y =X 4+ FE

where E includes the discretization error.



Theorem 9 (AF 2009)

Consider the sampling schemes I and II (with v = 1). In addition
to the previous assumptions assume

27me

v —vpll1 € ——= :
157l oo (=12

Then schemes I and II satisfy RIP with high probability and the
error bound

IX — X[l» < C1s72)| X = X&)y + Coe.



Random illumination

objects
°

®
Sensors

Z=Zo

e Rayleigh resolution:

Al
—=0(1)
20\

e Paraxial Green function &

wzo . .
e iwle—€2/(220) yiwly—nl?/(220)

Qbm_\ﬁﬁumv — y I — AH“@“NOvu a — Amudu

A1 z0



e Random illumination u'. Assume we have a full control of the

source points in {(x,y,2) : z,y € [-L/2,L/2],z = z1} and write
the incident wave as
L/2 rL/2

QRHV ” |F\M |h\M QUm?AH.v Amv m, NHVV\.AMU dv&m&d

et the source distribution f be a complex-valued, circularly sym-
metric Gaussian white-noise field of variance k2:

E(fE&mrE.n)| = x26(—¢n—n)
E[f&mfE )| = 0, v&&

Fresnel transformation is unitary and hence u' is also a complex-
valued, circularly symmetric Gaussian random field.

The random incident field takes on i.i.d. random values at grid
points. Since the incident field has the same magnitude through-
out the object plane, after normalization its effect at the grid
points can be represented by a phase factor %@L. = 1,...,. N



where 60, are i.i.d uniform random variables in [0, 2] (i.e. circu-
larly symmetric).

Theorem 10 Suppose
2
@mﬂz\wnT 2K < aQ
/P v/np — log N

where
0 — max |E Am&mNEAﬁ\lab\mov R Am@.SEASTSv\SV_ .
73’
Assume that the s objects are real-valued and satisfy
and
g < _onP
— 2log N

Then the Lasso estimate X with v = 2+/2log N has the same
support as X with probability at least

N

1 __ N _
T on2p(p—1)e (w12

oV N
2N~ L((2rlog N)1/2 4 sN—1) — o(N—21092y)y,

1—-26—pn(n—1)



The superresolution effect can occur when the number p of ran-
dom probes is large. Consider, for example, the case of n =1
and hence the aperture A is essentially zero. Since a < 1, the
condition

KvV2 4+ 2K? - a0

VP — logN

and
¢ < 0P
— 2log N

implies that the Lasso with v = 24/210g9 N recovers exactly the
support of s objects.



Numerical results with RI

Random illuminations
0.9f \ - — MR
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The Lasso performance comparison between RI with n =11,p =6
and MR with n = 11. The vertical axis is for the success probability
and the horizontal axis is for the number of objects. The success
probability is estimated from 1000 independent trials.
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Random illuminations—exact
Random illumination—paraxial
MR-exact
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The numbers of recoverable (by the Lasso) objects for RI with p =
(n+ 1)/2 and MR as n varies. The curves indicate a quadratic
behavior predicted by the theory. The difference between recoveries
with the exact and paraxial Green functions is negligible in both the
RI and MR set-ups.



Subspace Pursuit

A.OO ./ T T T
—#— Exact Green function
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The number of recoverable objects in the under-resolved case as a
function of the number of sensors n = 1,2,3,4,5, 6, 8, 10, 12, 15,

20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200,

np = 600 fixed.

300, 600 with



MUSIC algorithm

e Define the data matrix Y = (Y ;) € C"*™ as

M\\ak\(\»A\m’\?vau k= ”_J..J3; [ = ”_J..JS

where we keep open the option of normalizing Y in order to

simplify the set-up. The data matrix is related to the object
matrix

X =diag(§;) € C°*°,  j=1,..s

by the measurement matrices ® and ¥ as

Y = dX U™
where ® and W are, respectively,
1 o
b, . = ®|s€mw.ﬂw c AQS\XM
\Arw /\m
1 .
W, . — mINEQN.J c CMmXs,
Nrw /\m

e [ he standard version of MUSIC algorithm deals with the case of
n=m and §, =d;, k= 1,...,n as stated in the following result.



Proposition 2 (Kirsch 02, 08) Let {8, = d;, k € N} be a count-
able set of directions such that any analytic function on the unit
sphere that vanishes in §;,, Yk € N vanishes identically. Let IC C R3
be a compact subset containing §. Then there exists ng such
that for any n > ng the following characterization holds for every
re k.

1 o o o
re& ifand only if ¢r=——(e WS1T g~ws2T ... o~wSn Y c Ran(P).

NG

Moreover, the ranges of ® and Y coincide.

Remark 1 As a consequence, r € § if and only if Pgr = 0O
where P is the orthogonal projection onto the null space of Y*
(Fredholm alternative). And the locations of the scatterers can
be identified by the singularities of the imaging function

1

T = e

e Theorem 11 Suppose i, <1 and ||E|2 = e.



The thresholding rule then the object support S can be identified
by the thresholding rule

Seq1(1+65)\ 7
M I_I %m - %,ml_l”_.

under the following bound on the noise-to-scatterer ratio (NSR)

rckC:J(r)>2(1-—

2
T A (- 5)2A - (1 e
m:i: m:i: m:ﬁ:
where
22
A = minfy, (EF0) Ehax) 1 (G 011+ 0)
(1 —-90s)° &5, 5v/2 2405 — 05141
— _ 2
) = T2 H+/\Mwa+c +16

and £max/Emin IS the dynamic range of scatterers.



MUSIC simulations
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Comparison of MUSIC and BP performances, with both using the
whole data matrix: the number s of recoverable scatterers versus
the number of sensors n with A = 100 (left), the well-resolved case,
and A = 10 (right), the under-resolved case. In the well-resolved
case, BP delivers a much better (quadratic-in-n) performance than
MUSIC: in the under-resolved case, MUSIC outperforms BP whose
performance tends to be unstable in this regime. The numbers of re-
coverable scatterers by BP are calculated based on successful recov-
ery of at least 90 out of 100 independent realizations of transceivers
and scatterers while the success rate of MUSIC is 100%.
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Comparison of MUSIC and BP performances with BP employing
only single column of the data matrix: the number s of recoverable
scatterers versus the number of sensors n with A = 100 for n €
[10,30] (left) and n € [150,200] (right). Both BP curves show
a roughly linear behavior with slope less than that of the MUSIC
curves.
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Success probability of the MUSIC reconstruction versus aperture for
n = 10,s = 9 (left), n = 100,s = 9 (middle) and n = 100,s = 99
(right). Note the different aperture ranges for the three plots. The
success rate is calculated from 1000 trials. Increasing the number of
transceivers for the same number of scatterers reduces the aperture
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required for the same success rate.

is about 7 times (middle to right).

0.32 0.34

The reduction of aperture is
about three folds (left to middle). On the other hand, higher number
of scatterers with the same number of transceivers also demands
larger aperture for the same success rate. The increase in aperture



Success probability of MUSIC versus the number of transceivers with
A=05,5s=9 (left), A = 0.2,s = 9 (middle) and A = 15,5 = 99
(right). The probabilities are calculated from 1000 independent
trials.
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Success probability of MUSIC reconstruction of s = 10 scatterers
with n = 100 transceivers versus the noise level o in the well-resolved
case A = 100 (left) and the under-resolved case A = 10 (right). The
success rate is calculated from 1000 trials. Note the different scales
of o in the two plots. Noise sensitivity increases dramatically in the
under-resolved case.



A=100,s=10,0=1.5

0.95F

0.9

0.85

0.8

0.75

0.7

0.65 . . . . . 0.55 . . . . . . . .
100 120 140 160 180 200 220 100 200 300 400 500 600 700 800 900 1000

Success probability of MUSIC reconstruction of s = 10 scatterers as
a function of n with ¢ = 150% in the well-resolved case A = 100
(left) and ¢ = 5% in the under-resolved case A = 10 (right). The
success rate reaches the plateau of 85% near n = 1000 in the under-
resolved case. The success rate is calculated from 1000 trials.
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