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Introduction

Introduction

Let γ0 be smooth convex embedded closed curve in R2 parametrized by
X0 (α) , α 2 S1.
Consider the expanding �ow8<:

∂γ
∂t (α, t) = G

�
1

k (α,t)

�
N (α, t) , α 2 S1, t > 0,

γ (α, 0) = X0 (α) , α 2 S1,
(�)

where
N (α, t): the unit outward normal to γ (α, t)

k (α, t): the curvature

G : (0,∞)! (0,∞) is a smooth function with G 0 > 0 everywhere
(parabolicity condition).
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Introduction

By two formulae concerning length L (t) and enclosed area A (t):

dL
dt
(t) =

Z
γt

�
∂γ

∂t
, kN

�
ds and

dA
dt
(t) =

Z
γt

�
∂γ

∂t
,N
�
ds,

we have
d
dt

�
L2 (t)� 4πA (t)

�
= 2

�Z
γt

ds
Z

γt

kG
�
1
k

�
ds �

Z
γt

kds
Z

γt

G
�
1
k

�
ds
�
� 0

since G 0 > 0.
If A (t)! ∞ as t ! Tmax, then by the Bonnesen inequality

L2 (t)
4πA (t)

� 1 � π

�
1� rin (t)

rout (t)

�2
where rin (t) and rout (t) are respectively the radii of the largest inscribed
circle and the smallest circumscribed circle of the curve γ (�, t) , and so
rin (t) /rout (t)! 1 as t ! ∞. That is, γt evolves to become more and
more circular.
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Introduction

Goal : Under the mild assumption on the speed function G , we want to
describe the asymptotic shape and location of γt . In fact,

γt will asymptotically look like the expanding circes C (�, t) centered
at some point (a, b) .

Does the center (a, b) lie in the interior of γ0?
Yes. Under the assumption, we will show that the center lies in the
interior of γ0.

Finally, we will give an example to demonstrate that if the assumption
of the speed function is not satis�ed, the the center of expansion may
not exist in general.
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Introduction

De�nition of the support function U

Let γ (ϕ) , ϕ 2 I , be a smooth curve plane curve. The support function is
de�ned by

u (ϕ) := hγ (ϕ) ,Nout (ϕ)i , ϕ 2 I .

For a convex closed curve γ0, in terms of its outward normal angle
θ 2 S1, u is de�ned as

u (θ) = hP (θ) , (cos θ, sin θ)i , θ 2 S1 (1)

where P (θ) is the position vector of the unique point p 2 γ0 whose
outward normal angle is θ. Moveover the curveture k0 (θ) can be
expressed as

k0 (θ) =
1

uθθ (θ) + u (θ)
> 0, for all θ 2 S1. (2)
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Introduction

Note that γ0 is a circle with radius R centered at (a, b) 2 R2 if and
only if

u0 (θ) = R + a cos θ + b sin θ, θ 2 S1.
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Introduction

In terms of the support function u (θ, t) of γ (�, t) , where the parameter
θ 2 S1 represents the outward normal angle, �ow (�) is equivalent to the
following scalar equation8><>:

∂u
∂t
= G (uθθ + u) , θ 2 S1, t > 0

u (θ, 0) = u0 (θ) > 0, θ 2 S1.
(3)

together with the condition

uθθ (θ, t) + u (θ, t) > 0, (4)

whenever the solution exists.
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Introduction

Assume (u0)θθ (θ) + u (θ) � δ > 0 for all θ 2 S1.

Theorem (Chow-Tsai, [CT])

There exists a unique solution u 2 C∞ �S1 � [0,Tmax)� to the equation
(3) satisfying (4) , where 0 < Tmax � ∞, such that lim

t!Tmax
umin (t) = ∞.

Futhermore,
(i) uθθ + u � δ > 0 on S1 � [0,Tmax).

(ii) uθ and uθθ are uniformly bounded.

(iii) there exists a constant C > 0 such that

0 � umax (t)� umin (t) < C , t 2 [0,Tmax).
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Introduction

Theorem (Chow-Tsai, [CT])

There exists a solution R (t) to the ODE dR/dt = G (R) on [0,Tmax)
such that

umin (t) � R (t) � umax (t) ,
and the support function ũ = u/R to the rescaled curves γ̃ = γ/R
satis�es

kũ � 1kC 2(S 1) �
C
R (t)

, t 2 [0,Tmax).

Furthermore, if lim
z!∞

G (z) = ∞, then such an R (t) is unique.

The shapes of the curves become round asymptotically in the sense that if
one rescales the equation appropriately, the support functions of the
rescaled curves converge uniformly to the constant function 1 in C 2-norm.
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Introduction

In this talk, we want to show that under a mild assumption on the speed
function G , there exists a center of expansion where we expand a convex
embedded closed curve in R2; that is, (without rescaling) the expanding
curve γ (�, t) asymptotically looks like the expanding circles C (�, t)
centered at some point (a, b) in C 1-norm.
From now on, we assume the speed function G satis�es the following
assumption:

Main assumptions (�) on G . We assume
(�1) : limz!∞ G (z) = ∞, and
(�2) : For any constant C > 0, there exists a constant λ > 0 such that

0 <
1
λ
� G 0 (ξ)
G 0 (z)

� λ for all ξ 2 [z � C , z + C ] (5)

as long as z is large enough.
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Existence of the Center of Expansion

Existence of the Center of Expansion

Remark

One can check that if there exists a number z0 > 0 so that log G 0 (z)
is uniformly continuous on [z0,∞), then the condition (�2) is
satis�ed.

Examples for G (z) satisfying (�2) include
G (z) = zα, G (z) = [log (z + 1)]α , G (z) = eαz , where α > 0 is any
constant, and many more.

Lemma

Assume (�1) , (�2) and that the convex closed initial smooth curve γ0
encloses the origin. Then under �ow (�), the support function
u (θ, t) 2 C∞ �S1 � [0,Tmax)� of γ (�, t) satis�es the estimate

lim
t!Tmax

ku (θ, t)� (R (t) + a cos θ + b sin θ)kC 1(S 1) = 0 (6)

for some constant (a, b) 2 R2.

We call (a, b) 2 R2 the center of expansion of γ (�, t) . (6) says that
asymptotically u (θ, t) has no higher mode of Fourier series coe¢ cients.
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Existence of the Center of Expansion

Remark

Notice the relation between the position vector P (θ) and the support
function U (θ)

P (θ) = U (θ) (cos θ, sin θ) + Uθ (θ) (� sin θ, cos θ) (7)

and
1
2π

Z 2π

0
P (θ) dθ =

1
π

Z 2π

0
U (θ) (cos θ, sin θ) dθ. (8)

Due to (7) , the geometric meaning of (6)is that as γ (�, t) expands
to in�nity, its support function is close to that of the expanding circle
C (�, t) , where C (�, t) is centered at (a, b) 2 R2 with radius R (t) ,
t 2 [0,Tmax).
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Existence of the Center of Expansion

Remark

Due to (8) and (6) ,

(a, b) = lim
t!Tmax

1
π

Z 2π

0
u (θ, t) (cos θ, sin θ) dθ (9)

= lim
t!Tmax

1
2π

Z 2π

0
P (θ, t) dθ.

( Important) Under the �ow (�), the isoperimetric di¤erence
L2 (t)� 4πA (t) of γ (�, t) is always decreasing for t 2 [0,Tmax).
Moreover, if the �ow (�) has a center of expansion, then

L2 (t)� 4πA (t)! 0 as t ! Tmax.
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Existence of the Center of Expansion

Sketch the proof of Lemma:

The key poins are the following:

(�1) guaratees the ODE solution R (t) is unique and the time interval
for the rescaled new time τ is in�nite so that we have enough time to
establish stabilization to a cos θ + b cos θ (as τ ! ∞) .

(�2) implies that the rescaled equation is uniformly parabolic.

Set w (θ, t) = u (θ, t)� R (t) , (θ, t) 2 S1 � [0,Tmax) where R (t) is
from Theorem ([CT]).

The evolution equation of w (θ, t) is8<:
∂w
∂t (θ, t) = a (θ, t) [wθθ (θ, t) + w (θ, t)] ,

a (θ, t) =
R 1
0 G

0 (s (wθθ + w) (θ, t) + R (t)) ds > 0.
(10)
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Existence of the Center of Expansion

To make (10) uniformly parabolic, recale time by setting

τ (t) = log [G (R (t)) /G (R (0))] 2 [0,∞), t 2 [0,Tmax).
) τ (Tmax) = ∞ (since G satis�es (�) 1.) and (10) becomes8<:

∂w
∂τ (θ, τ) = A (θ, τ) [wθθ (θ, τ) + w (θ, τ)] , (θ, τ) 2 S1 � [0,∞)

A (θ, τ) = 1
G 0(R (t))

R 1
0 G

0 (s (wθθ + w) (θ, t) + R (t)) ds
(11)

with
0 <

1
λ
� A (θ, τ) � λ , (uniformly parabolic)

jw (θ, τ)j , jwθ (θ, τ)j , jwθθ (θ, τ)j ,
����∂w∂τ

(θ, τ)

���� � C
where C is a positive constant independent of (θ, τ) .
To (11), we want to show that there exist a, b 2 R such that

kw (θ, τ)� a cos θ � b sin θkC 1(S 1) ! 0 as τ ! ∞.
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Existence of the Center of Expansion

let Y be the function space
�
c1 cos θ + c2 sin θ : c1, c2 2 R, θ 2 S1

	
and set

ρ (τ) = inf
v2Y

kw (�, τ)� vkL2(S 1) , E (τ) =
1
2

Z 2π

0

 �
∂w
∂θ

�2
� w2

!
dθ, τ 2 [0,∞).

(12)
) E (τ) is non-increasing in τ 2 [0,∞) and limτ!∞ ρ (τ) = 0.
) there are bounded functions a (τ) , b (τ) such
that kw (θ, τ)� a (τ) cos θ � b (τ) sin θkL2(S 1) ! 0 as τ ! ∞.

Moreover, since wθθ (θ, τ) is uniformly bounded, this convergence is
actually valid in the space C 1

�
S1
�
.

Finally denote by Z [u] the number of sign changes of a function
u (θ) on S1. For any v 2 Y , the number Z [w (�, τ)� v ] is
non-increasing in τ 2 (0,∞) since w (θ, τ)� v (θ) is also a solution
to equation (11). As a result of it, we can infer the convergence of
a (τ) and b (τ) to some constants a and b respectively as
τ ! ∞. The proof is done. �
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The Location of the Center of Expansion

The location of the center of expansion

Next, we want to estimate the location of the center (a, b) .
Notation:

Let L be a line perpendicular to a unit vector V 2 R2. Hence there is
a constant C such that hL,V i = C , where h, i is the inner product of
R2. Denote by

H+ (L) =
�
p 2 R2 : hp,V i > C

	
and

H� (L) =
�
p 2 R2 : hp,V i < C

	
.

They are half-planes to both sides of L.

Let γ � R2 be an embedded smooth closed curve and let γL be the
re�ection of γ about the line L, i.e.,

γL = fp � 2 (hp,V i � C )V : p 2 γg . (13)
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The Location of the Center of Expansion

v
L L

H+(L)H­(L) H+(L)H­(L)

v

reflectionγ
γ

L
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The Location of the Center of Expansion

De�nition

We say that we can re�ect γ strictly at (L,V ) if

γL \H� (L) � int (γ) \H� (L) (14)

and V /2 Tγp (the tangent space to γ at p) for any p 2 γ \ L. Here
int (γ) denotes the plane region interior to γ.
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The Location of the Center of Expansion

De�nition

We say that we can re�ect γ strictly up to (L,V ) if we can re�ect γ
strictly at (L0,V ) , where L0 is any line parallel to L such that hL0,V i � C .
In particular, this implies V /2 Tγp for any p 2 γ \H+ (L), where H+ (L)
denotes the closure of the region H+ (L) .

Theorem (Chow-Gulliver [CG])

Let G : (0,∞)! (0,∞) , G 0 > 0, be an arbitrary smooth function (here
it may not satisfy (�1) and (�2)). For the �ow (�), if we can re�ect the
convex γ0 strictly at (respectively, up to) (L,V ) , then we can re�ect
γ (�, t) strictly at (respectively, up to) (L,V ) for all time t 2 [0,Tmax).
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The Location of the Center of Expansion

Remark
The Aleksandrove re�ection result of Chow-Gulliver provides an elegant
geometric proof of the gradient estimate (see [C] ). Let BC (0) be a circle
centered at (0, 0) with radius R satisfying γ0 is contained in the interior of
BC (0) . Then for x 2 γt , t 2 [0,Tmax), x? := x � hx ,N (x)i and
jx?j � C .
In terms of normal angle θ, juθ (θ, t)j = jx?j � C .
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The Location of the Center of Expansion

Since γ0 is strictly convex and smooth, along each normal direction
N (θ) = (cos θ, sin θ) , θ 2 S1, there exists a unique line
L (θ) perpendicular to N (θ) , with L (θ) \ int (γ0) 6= ?, such that we
can re�ect γ0 strictly up to (L

0 (θ) ,N (θ)) where L0 (θ) is any line
parallel to L (θ) such that hL0 (θ) ,N (θ)i > hL (θ) ,N (θ)i .

Using these lines one can determine a region Ω strictly interior to γ0,
given by

Ω =
�
p 2 R2 : hp,N (θ)i � hL (θ) ,N (θ)i for all θ 2 S1

	
. (15)

This region is convex.
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The Location of the Center of Expansion

We can now prove the following:

Theorem

Let G : (0,∞)! (0,∞) , G 0 > 0, be an arbitrary smooth function
satisfying (�) (so that the center exists). Then under the �ow (�), the
center of expansion lies on Ω.

Proof.

For a �xed θ0 2 S1, we may assume N (θ0) = (0, 1) and the unique
line L (θ0) is the line y = 0 (i.e., x-axis). Also choose the origin of
R2 at some point O 2 L (θ0) \ int (γ0) .

By Theorem ([CG]), for any ε > 0 we have

γL̃ (�, t) \H�
�
L̃
�
� int (γ (�, t)) \H�

�
L̃
�

(16)

where L̃ is the line L̃ = fy = ε > 0g and moreover (0, 1) /2 Tγ (�, t)p
for all p 2 γ (�, t) \H+

�
L̃
�
for all t 2 [0,Tmax).
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The Location of the Center of Expansion

By the inclusion relation (16) we have�
1
2π

Z 2π

0
[X (θ, t)� (0, ε)] dθ, (0, 1)

�
(17)

=
1
2π

Z 2π

0
hX (θ, t)� (0, ε) , (0, 1)i dθ � 0 (18)

for all t 2 [0,Tmax), where the position vector X (θ, t) is with respect
to the origin O. Letting t ! Tmax and ε ! 0 in (17), by (9) we
obtain h(a, b) , (0, 1)i � 0, which means that the center (a, b) is on or
below the x-axis. As this property is valid for any direction θ0 2 S1, we
must have (a, b) 2 Ω. �
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Nonexistence of Center of Expansion

Nonexistence of Center of Expansion

Let K and L be two compact subsets in Rn. Their Hausdor¤ distance is
de�ned as

δ (K , L) = max
�
sup
θ2K

inf
y2L

jθ � y j , sup
θ2L

inf
y2K

jθ � y j
�
. (19)

We have the following result (see Schneider [S], p. 53):

Lemma

Assume K and L are two convex bodies in Rn, then

δ (K , L) = sup
θ2S n�1

jUK (θ)� UL (θ)j (20)

where UK (θ) and UL (θ) are the support function of K and L respectively.

For convex bodies, the enclosed area A and length L are continuous
functionals in the Hausdor¤ distance.
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Nonexistence of Center of Expansion

Now we will construct an example for the smooth speed function
G : (0,∞)! (0,∞) , G 0 > 0 everywhere which does not satisfy the main
assumption and show that the center of expansion does not exist.

Recall we have known that
if the center of expansion exists ) L2 (t)� 4πA (t)! 0 as
t ! Tmax.
Thus, if L2 (t)� 4πA (t) 6! 0 as t ! Tmax, then the center of
expansion does not exists.

Note that the existence of the limit

lim
t!Tmax

1
π

Z 2π

0
u (θ, t) (cos θ, sin θ) dθ = (a, b) 2 R2 (21)

does not necessarily imply that (a, b) 2 R2 is the center of expansion
since it may not imply that u (θ, t) is asymptotically given by
R (t) + a cos θ + b sin θ. From the viewpoint of Fourier series
expansion, it could contain terms of the form
an cos nθ + bn sin nθ, n � 2, n 2 N.
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Nonexistence of Center of Expansion

Take G (z) = 1� e�z , z 2 (0,∞) , G 0 > 0 everywhere.
) G satis�es condition (�2) but does not satisfy condition (�1) .

Under the �ow (�) , the evolution equation of the support function
u (θ, t) is

∂u
∂t
(θ, t) = 1� e�(uθθ+u). (22)

Let r (t) be the solution to the ODE:

dr
dt
(t) = 1� e�r (t), r (0) = 1.

) r (t) is de�ned on [0,∞), r (∞) = ∞.
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Nonexistence of Center of Expansion

The rescaled new time

τ (t) = log

 
1� e�r (t)
1� e�r (0)

!
2 [0,λ), λ = log

�
e

e � 1

�
< ∞.

Let w (θ, t) = u (θ, t)� r (t) . Then in terms of the new time τ it
satis�es the equation

∂w
∂τ
(θ, τ) =

h
1� e�(wθθ(θ,τ)+w (θ,τ)+r (t))

i
�
h
1� e�r (t)

i
e�r (t)

(23)

= 1� e�[wθθ(θ,τ)+w (θ,τ)] (24)

which happens to be the same as the original equation (22).
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Nonexistence of Center of Expansion

For a given su¢ ciently small ε > 0, choose T > 0 such
that τ (T ) = λ� ε/50 and let

w � (θ, τ) = cos 2θ + 100
h
τ �

�
λ� ε

50

�i
,

w� (θ, τ) = cos 2θ � 100
h
τ �

�
λ� ε

50

�i
where (θ, τ) 2 S1 � [λ� ε/50,λ) := I . We have���1� e�[w �θθ(θ,τ)+w

�(θ,τ)]
��� � 100 and

���1� e�[w�θθ(θ,τ)+w�(θ,τ)]
��� � 100, (θ, τ) 2 I .

Hence w � and w� are both super-solution and sub-solution to the
equation (23) on (θ, τ) 2 I .
Let u (θ, t) be the solution to equation( ∂u

∂t (θ, t) = 1� e�(uθθ+u), θ 2 S1, t 2 (T ,∞)

u (θ,T ) = r (T ) + cos 2θ, θ 2 S1
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Nonexistence of Center of Expansion

The geometric meaning: at time T one can use the support function
u (θ,T ) = r (T ) + cos 2θ to construct a smooth convex closed curve
γ (�,T ) with curvature

k (θ,T ) =
1

uθθ (θ,T ) + u (θ,T )
=

1
r (T )� 3 cos 2θ

> 0, θ 2 S1

and evolve it under the expanding �ow.
Then the function w (θ, t) = u (θ, t)� r (t) , t 2 [T ,∞), in terms of
the variable (θ, τ) , is a solution to (23)
on (θ, τ) 2 I with w (θ,λ� ε/50) = cos 2θ and by the maximum
principle we obtain

cos 2θ � 2ε � w� (θ, τ) � w (θ, τ) � w � (θ, τ) � cos 2θ + 2ε

on I , which implies that

(r (t) + cos 2θ)� 2ε � u (θ, t) � (r (t) + cos 2θ) + 2ε (25)

on (θ, t) 2 S1 � [T ,∞).
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Nonexistence of Center of Expansion

We choose ε to be su¢ ciently smaller, then T will become larger and
u (θ, t) will be closer to r (t) + cos 2θ on S1 � [T ,∞).
) the isoperimetric di¤erence L2 � 4πA of γ (�, t) will be close to
the isoperimetric di¤erence of the convex curve with support function
r (t) + cos 2θ for t 2 [T ,∞).
However, the isoperimetric di¤erence of the latter is a �xed positive
constant independent of time, given by
L2 (t)� 4πA (t)

=
�R 2π

0 cos 2θdθ
�2
� 2π

R 2π
0

h
(cos 2θ)2 � (cos 2θ)2θ

i
dθ = 6π2,

for all t 2 [T ,∞).

Hence the isoperimetric di¤erence of γ (�, t) is closer to the
constant 6π2 as t ! ∞ and there is no center of expansion for
γ (�, t). This also says that if u (θ, t) satis�es (25) on S1 � [T ,∞),
then it is impossible for it to satisfy an estimate of the form (6).
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On the other hand, by (25) we can infer that

1
π

Z 2π

0
u (θ, t) (cos θ , sin θ) dθ 2

�
�8ε

π
,
8ε

π

�
�
�
�8ε

π
,
8ε

π

�
for all t 2 [T ,∞), which means that the average of position vectors
of γ (�, t) is even closer to the origin (0, 0) for t 2 [T ,∞). Thus
from this example we may say that, in general, the concept of
the center of expansion is not the same as that of the
asymptotic average of position vectors.
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