Maximal Exponents of Polyhedral Cones

Bit－Shun Tam

Department of Mathematics
Tamkang University
Tamsui，Taiwan 251，R．O．C．

Joint work with R．Loewy and M．A．Perles

完結篇

Table of Contents

1. Prologue
2. Definitions
3. The major result
4. Special digraphs for K-primitive matrices
5. A preliminary result
6. The minimal cones case
7. The 3-dimensional case
8. The higher-dimensional case
9. Uniqueness of exp-maximal cones and their exp-maximal primitive matrices

- Prologue
$A \geq 0$ (entrywise nonnegative) is primitive if there exists $p \in \mathbb{Z}_{+}$such that $A^{p}>0$ (positive).

Theorem 1. (Wielandt, 1950) For any $n \times n$ primitive $A, \gamma(A) \leq(n-1)^{2}+1$. Equality holds iff

$$
P^{T} A P=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Question (S. Kirkland, 1999) If K is a polyhedral cone in \mathbb{R}^{n} with m extreme rays, and A is K primitive, is $(m-1)^{2}+1$ always an upper bound for the exponent $\gamma(A)$ of A (i.e., the least positive integer k such that $\left.A^{k}(K \backslash\{0\}) \subseteq \operatorname{int} K\right)$?

- Definitions
K : a proper cone in \mathbb{R}^{n} - closed, pointed, full convex cone; that is, $K+K \subseteq K ; \alpha K \subseteq K$ for all $\alpha>0 ; K \cap(-K)=\{0\} ;$ span $K=K$; topologically closed, and with nonempty interior w.r.t. usual topology.

Polyhedral cone (finitely generated cone)

\mathbb{R}_{+}^{n} : nonnegative orthant

A polyhedral cone with five extreme rays
A is K-nonnegative, $A \geq^{K} 0: A K \subseteq K$.
A is K-primitive: A is K-nonnegative and $\exists k$ s.t. $A^{k}(K \backslash\{0\}) \subseteq \operatorname{int} K$; exponent of A, denoted by $\gamma(A)$, for least such k.
$\gamma(K)=\max \{\gamma(A): A$ is K-primitive $\}$, known as exponent of K.
$\gamma\left(\mathbb{R}_{+}^{n}\right)=(n-1)^{2}+1$.
$\mathcal{P}(m, n)$: set of n-dimensional polyhedral cones with m extreme rays $(3 \leq n \leq m)$.

Question. What is max $\{\gamma(K): K \in \mathcal{P}(m, n)\}$?
In the study of exponents, the general polyhedral cone case is different from the classical nonnegative matrix case. It is considerably more difficult.

- Background research

Work on exponents of polyhedral cones can be considered as a ramification of the geometric spectral theory of nonnegative linear operators - PerronFrobenius theory of cone-preserving maps.

Joint work with Hans Schneider (and S.-F. Wu): 6 research papers (totally 216 pages), a research-expository paper (71 pages) and an expository article.
B.S.-Tam and H. Schneider, Matrices leaving a cone invariant, in Handbook of Linear Algebra, Chapter 26, edited by L. Hogben, Chapman \& Hall, 2007.
B.S.-Tam, A cone-theoretic approach to the spectral theory of positive linear operators: the finitedimensional case, Taiwanese J. Math. 5 (2001), 207277.

- Equivalent problem:

To determine the maximum value of $\gamma(C)$ over all ($n-1$)-polytopes C with m extreme points, having the origin as an interior point, where $\gamma(C)$ is the maximum of the exponents of C-primitive matrices.

When C is a symmetric convex body, not necessarily a polytope, C can be used to define a norm. Then $\gamma(C)$ is equal to the critical exponent of the induced norm, that is, the smallest positive integer k with the property that $\left\|A^{k}\right\|=\|A\|=1$ imply $\|A\|^{l}=1$ for all positive integers l. Much studied by V. Pták.

- Major result

Main Theorem.

$K_{0} \in \mathcal{P}(m, n)$ is an exp-maximal cone:
$\gamma\left(K_{0}\right)=\max \{\gamma(K): K \in \mathcal{P}(m, n)\}$.
A is exp-maximal K-primitive: $\gamma(A)=\gamma(K)$,
(K, exp-maximal cone)
Uniqueness issue: For optimal cones and optimal K-primitive matrices ?
$A_{1} \geq{ }^{K_{1}} 0$ and $A_{2} \geq^{K_{2}} 0$ are cone-equivalent if
\exists linear isomorphism P s.t. $P K_{2}=K_{1}$ and $A_{2}=$ $P^{-1} A_{1} P$.

- Further definitions.

For an $n \times n$ matrix A, the usual digraph $G(A)$ of A has vertex set $\{1, \ldots, n\} ;(i, j)$ is an arc if and only if $a_{i j} \neq 0$.

For a K-primitive matrix A,

$$
\gamma(A, x):=\max \left\{k: A^{k} x \in \operatorname{int} K\right\} \text {, local expo- }
$$ nent.

Clearly, $\gamma(A)=\max \{\gamma(A, x): x$ extreme vector of $K\}$.
$\Phi(x):=$ face of K generated by x.

$D_{K}(A)$, digraph associated with A :

vertex set consists of extreme rays of K; $(\Phi(x), \Phi(y))$ is an arc iff $\Phi(y) \subseteq \Phi(A x)$.

When $A \geq 0, D_{\mathbb{R}_{+}^{n}}(A) \cong$ usual digraph of A^{T}.

- Relevance of circuits of $D_{K}(A)$
\exists a directed walk of length k from $\Phi(x)$ to $\Phi(y)$ implies $\quad \Phi(y) \subseteq \Phi\left(A^{k} x\right)$

If there exists a circuit of length k containing $\Phi(x)$ then we have $\Phi(x) \subseteq \Phi\left(A^{k} x\right)$.

If $\Phi(x)=\Phi\left(A^{k} x\right)$ then A^{k} is K-reducible, contradicting K-primitivity of A. So we have $\Phi(x) \subset$ $\Phi\left(A^{k} x\right)$.

Continuing the argument, we obtain $\Phi(x) \subset \Phi\left(A^{k} x\right) \subset \Phi\left(A^{2 k} x\right) \subset \cdots \Phi\left(A^{l k} x\right)=K$, implying $A^{l k} x \in \operatorname{int}$ K.

- Special digraphs for K-primitive matrices

The longer the shortest circuit in $D_{K}(A)$, the more likely $\gamma(A)$ has a larger value.

Lemma 1. Let $K \in \mathcal{P}(m, n)(3 \leq n \leq m)$ and let A be a K-primitive matrix. Then the length of the shortest circuit in the digraph $(\mathcal{E}, \mathcal{P}(A, K))$ equals $m-1$ if and only if the digraph $(\mathcal{E}, \mathcal{P}(A, K))$ is given by Figure 1 or Figure 2.

Figure 1.

Figure 2.
$D_{K}(A)$ given by Figure 1 implies: $A x_{i}=\lambda_{i} x_{i+1}$ for $i=1, \ldots, m-1$ and $A x_{m}=a_{1} x_{1}+a_{2} x_{2}$, where λ_{i} 's and $a_{1}, a_{2}>0$.

- A preliminary result

Theorem 2. Let $K \in \mathcal{P}(m, n)$.

(i) If A is K-primitive, then $\gamma(A) \leq\left(m_{A}-1\right)(m-$ 1) +1 , where m_{A} is the degree of the minimal polynomial of A.
(ii) $\gamma(K) \leq(n-1)(m-1)+1$, equality holds only if $\exists K$-primitive matrix A s.t. $D_{K}(A)$, the digraph associated with A, is (up to graph isomorphism) given by Fig. 1.
(iii) If A is K-primitive and $\gamma(A)=(n-1)(m-1)$ then $D_{K}(A)$ is given by Fig. 1 or Fig. 2.

Kirkland's question: Always $\gamma(A) \leq(m-1)^{2}+1$? Yes!

- When $D_{K}(A)$ is given by Fig. 1 or Fig. 2:

Minimal cone : n-dim. polyhedral cone with $n+1$ extreme rays.

Lemma 2. Let $K \in \mathcal{P}(m, n)$. Let $A \geq^{K} 0$. Suppose $D_{K}(A)$ given by Fig. 1 or Fig. 2.
(i) If K is non-simplicial then K is indecomposable or K is an even-dimensional minimal cone which is the direct sum of a ray and an indecomp. minimal cone with a balanced relation for its extreme vectors.
(ii) $\gamma(A)=\gamma\left(A, x_{1}\right)$ or $\gamma\left(A, x_{2}\right)$, depending on whether $D_{K}(A)$ given by Fig. 1 or Fig. 2.
(iii) A is K-primitive, nonsingular, non-derogatory, and has a unique annihilating polynomial of the form $t^{m}-a t-b$, where $a, b>0$.

- The minimal cone case:

Theorem 3. Let $n \geq 3$ be a given positive integer.
(i)

$$
\begin{aligned}
& \max \{\gamma(K): K \in \mathcal{P}(n+1, n)\} \\
= & \begin{cases}n^{2}-n+1 & \text { for odd } n \\
n^{2}-n & \text { for even } n .\end{cases}
\end{aligned}
$$

(ii) Let $K \in \mathcal{P}(n+1, n)$.

For odd n, K is exp-max. iff K is indecomp. with balanced relation for its extreme vectors.

For even n, K is exp-max. iff K is indecomp. with a balanced relation for extreme vectors, or $K=a$ ray \oplus an indecomp. minimal cone with a balanced relation for extreme vectors.
(iii) Concerning exp-maximal K-primitive matrices.

- The 3-dimensional case:

Theorem 4. Let $m \geq 3$.
(i) $\max \{\gamma(K): K \in \mathcal{P}(m, 3)\}=2 m-1$.
(ii) $\forall K \in \mathcal{P}(m, 3), K$ is exp-maximal iff $\exists K$ primitive A s.t. $D_{K}(A)$ is given by Fig. 1.
(iii) ...

Figure 1.

If $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{i+1}\right)$ are neighborly extreme rays of K for $i=1, \ldots, m$ and A satisfies

$$
\begin{aligned}
A x_{i} & =x_{i+1} \text { for } i=1, \ldots, m-1 \\
\text { and } A x_{m} & =(1-c) x_{1}+c x_{2}, 0<c<1,
\end{aligned}
$$

then $D_{K}(A)$ is given by Figure 1 .
Try: $x_{1}=(1,0,1)^{T}, x_{2}=(r \cos \theta, r \sin \theta, 1)^{T}, \ldots$
$x_{m}=\left(r^{m-1} \cos (m-1) \theta, r^{m-1} \sin (m-1) \theta, 1\right)^{T}$
and $A=r\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \oplus[1]$.

Work on the minimal cone case and the 3-dimensional
case has led us to conjecture the maximum value of $\gamma(K)$ as given in our main result.

Theorem 3 continued:
(iii) $\forall \theta \in\left(\frac{2 \pi}{m}, \frac{2 \pi}{m-1}\right)$, let r_{θ} denote the unique positive real root of the poly. $g_{\theta}(t)$ given by :

$$
g_{\theta}(t)=\frac{\sin (m-1) \theta}{\sin \theta} t^{m}-\frac{\sin m \theta}{\sin \theta} t^{m-1}+1 .
$$

Let K_{θ} be the polyhedral cone in \mathbb{R}^{3} generated by the vectors

$$
x_{j}(\theta):=\left[\begin{array}{c}
r_{\theta}^{j-1} \cos (j-1) \theta \\
r_{\theta}^{j-1} \sin (j-1) \theta \\
1
\end{array}\right], j=1, \ldots, m
$$

Also, let $A_{\theta}=r_{\theta}\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \oplus[1]$. Then $x_{1}(\theta), \ldots, x_{m}(\theta)$ are the extreme vectors of K_{θ}, K_{θ} is an exp-maximal polyhedral cone and A_{θ} is an exp-maximal K_{θ}-primitive matrix.

- The higher-dimensional case:

Lemma 3. For any positive integers $m, n, 3 \leq n \leq$ m, there exists $K \in \mathcal{P}(m, n)$ with a K-primitive A such that $D_{K}(A)$ given by Fig. 1.

For even m, the desired exp-maximal cone K has extreme vectors x_{1}, \ldots, x_{m} given by:
$x_{j}=\left[\begin{array}{c}r_{1}^{j-1} \cos (j-1) \theta_{1} \\ r_{1}^{j-1} \sin (j-1) \theta_{1} \\ \vdots \\ r_{p}^{j-1} \cos (j-1) \theta_{p} \\ r_{p}^{j-1} \sin (j-1) \theta_{p} \\ a^{j-1} \\ 1\end{array}\right]$ or $\left[\begin{array}{c}r_{1}^{j-1} \cos (j-1) \theta_{1} \\ r_{1}^{j-1} \sin (j-1) \theta_{1} \\ \vdots \\ r_{p}^{j-1} \cos (j-1) \theta_{p} \\ r_{p}^{j-1} \sin (j-1) \theta_{p} \\ 1\end{array}\right]$,
depending on whether n even or odd. Here $1, a$ are real roots and $r_{j} e^{ \pm \theta_{j}}\left(j=1, \ldots, \frac{m-2}{2}\right)$ are non-real complex roots of

$$
h(t)=t^{m}-c t-(1-c),
$$

where $c \in(0,1)$, suitably chosen; also, $\theta_{1} \in\left(\frac{2 \pi}{m}, \frac{2 \pi}{m-1}\right)$.
The desired exp-max. K-primitive matrix A is:
$r_{1}\left[\begin{array}{rr}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right] \oplus \cdots \oplus r_{p}\left[\begin{array}{rr}\cos \theta_{p} & -\sin \theta_{p} \\ \sin \theta_{p} & \cos \theta_{p}\end{array}\right] \oplus[a] \oplus[1]$
or
$r_{1}\left[\begin{array}{rr}\cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right] \oplus \cdots \oplus r_{p}\left[\begin{array}{rr}\cos \theta_{p} & -\sin \theta_{p} \\ \sin \theta_{p} & \cos \theta_{p}\end{array}\right] \oplus[1]$,
depending on whether n is even or odd.

Main Theorem.

Already have
$\max \{\gamma(K): K \in \mathcal{P}(m, n)\} \leq(n-1)(m-1)+1$.
By calculation,
$\Phi\left(A^{(n-1)(m-1)-1} x_{1}\right)=\Phi\left(x_{m-n+1}+\cdots+x_{m-1}\right)$,
$\Phi\left(A^{(n-1)(m-1)} x_{1}\right)=\Phi\left(x_{m-n+2}+x_{m-n+3}+\cdots+x_{m}\right)$.
Remains to show
(1) When n even, m odd: $\forall K \in \mathcal{P}(m, n), \gamma(K) \leq$ $(n-1)(m-1)$.

Loewy and I couldn't prove it for a couple of years.
(2) For m even or m and n both odd (resp., for m odd and n even), $\exists K \in \mathcal{P}(m, n)$ and K-primitive $\operatorname{matrix} A$ s.t. $D_{K}(A)$ is given by Fig. 1 and $x_{m-n+2}+$ $x_{m-n+3}+\cdots+x_{m} \in \partial K$ (resp., $x_{m-n+1}+x_{m-n+2}+$ $\left.\cdots+x_{m-1} \in \partial K\right)$.

To prove (2) when m is even or m, n are both odd:
As $c \rightarrow 0^{+}, h(t):=t^{m}-c t-(1-c) \rightarrow t^{m}-$ 1. In the proof of Lemma 3, take $r_{j} e^{ \pm i \theta_{j}} \approx e^{ \pm \frac{2 \pi j}{m}} i$. Then $K \approx K_{0}, x_{j} \approx y_{j}, j=1, \ldots, m$, where $K_{0}=$
$\operatorname{pos}\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$,

$$
y_{j}=\left[\begin{array}{c}
\cos (j-1) \frac{2 \pi}{m} \\
\sin (j-1) \frac{2 \pi}{m} \\
\cos (j-1) \frac{4 \pi}{m} \\
\sin (j-1) \frac{4 \pi}{m} \\
\vdots \\
\cos (j-1) \frac{(n-1) \pi}{m} \\
\sin (j-1) \frac{(n-1) \pi}{m} \\
1
\end{array}\right] \text { or }\left[\begin{array}{c}
\cos (j-1) \frac{2 \pi}{m} \\
\sin (j-1) \frac{2 \pi}{m} \\
\cos (j-1) \frac{4 \pi}{m} \\
\sin (j-1) \frac{4 \pi}{m} \\
\vdots \\
\cos (j-1) \frac{(n-2) \pi}{m} \\
\sin (j-1) \frac{(n-2) \pi}{m} \\
(-1)^{j-1} \\
1
\end{array}\right],
$$

depending n odd, or n, m both even. Reduces to showing that $\sum_{j=1}^{n-1} y_{j} \in \partial K_{0}$ and generates a simplicial face.

When m is odd and n is even, still use the K in the proof of Lemma 3, but letting $c \rightarrow 1^{-}$instead.

The problem is reduced to showing that $\operatorname{det} Q_{p}$ ($p=$ $n, \ldots, m)$ are nonzero and have the same sign, where

$$
Q_{p}:=\left[\begin{array}{lllll}
y_{1} & y_{2} & \cdots & y_{n-1} & y_{p}
\end{array}\right] .
$$

After hard work we succeeded in finding a proof. It involves certain generalized Vandermonde matrices, the complete symmetric polynomials, the JacobiTrudi determiant, and a nontrivial result about polynomials with nonnegative ceofficients.

We (Loewy and I) published two papers and was about to submit the third paper:

1. Maximal exponents of polyhedral cones (I), J. Math. Anal. Appl. 365 (2010), 570-583.
2. Maximal exponents of polyhedral cones (II), Linear Algebra Appl. 432 (2010), 2861-2878.

The conclusion of a story is often changed by the happening of another story.
S. Sergeev $\xrightarrow{\text { Dec.2009,visit }} H$. Schneider \longrightarrow V.S. Grinberg (1989 paper) \longrightarrow M.A. Perles (1964 Ph.D. thesis):
V.S. Grinberg, Wielandt-type bounds for primitive matrices of partially ordered sets, Mat. Zametki 45 (1989), 30-35 (Russian); translation in Math. Notes 45 (1989), 450-454.
M.A. Perles, Critical Exponents of Convex Bodies, Ph.D. thesis, 1964, 169 pages (in Hebrew).
M.A. Perles, Critical exponents of convex sets, in: Proceedings of the Colloquium in Convexity (Copenhagen, 1965), (1967), 221-228.
(1) and (2) are done in Perles' Ph.D. thesis, unpublished.

- Perles' proof of (2):

He makes use of the following
Lemma 4. (Scott, 1879) Let p be a given positive integer. For any $\theta \in \mathbb{R}$, denote by $x(\theta)$ the vector

$$
(\cos \theta, \sin \theta, \cos 2 \theta, \sin 2 \theta, \cdots, \cos p \theta, \sin p \theta)^{T}
$$

of $\mathbb{R}^{2 p}$. For any $\theta_{0}, \theta_{1}, \ldots, \theta_{2 p} \in \mathbb{R}$, we have:

$$
\left|\begin{array}{cccc}
x\left(\theta_{0}\right) & x\left(\theta_{1}\right) & \cdots & x\left(\theta_{2 p}\right) \\
1 & 1 & \cdots & 1
\end{array}\right|=4^{p^{2}} \prod_{0 \leq i<j \leq 2 p} \sin \frac{1}{2}\left(\theta_{j}-\theta_{i}\right) .
$$

- Perles' proof of (1): If $D_{K}(A)$ is given by Figure 1 and $\gamma(A)=(n-1)(m-1)+1$, then :

$$
\begin{aligned}
& \operatorname{sgn}|\mathrm{A}| \operatorname{sgn}\left|x_{m} x_{1} \cdots x_{n-1}\right| \\
& =\operatorname{sgn}\left|A x_{m} A x_{1} \cdots A x_{n-1}\right| \\
& =\operatorname{sgn}\left|(1-c) x_{1}+c x_{2} \quad x_{2} \cdots x_{n}\right| \\
& =\operatorname{sgn}\left|x_{1} x_{2} \cdots x_{n}\right| \\
& =(-1)^{n-1} \operatorname{sgn}\left|x_{n} x_{1} \cdots x_{n-1}\right| \neq 0 \text {. }
\end{aligned}
$$

We obtain $\operatorname{sgn}(|\mathrm{A}|)=(-1)^{\mathrm{n}-1}$. Similarly, we have

$$
\left.\begin{aligned}
& (\operatorname{sgn}(|\mathrm{A}|))^{\mathrm{m}} \operatorname{sgn}\left(\mid x_{m-n+2}\right. \\
\cdots & x_{m} \\
= & \left.x_{1} \mid\right) \\
\operatorname{sgn} \mid x_{m-n+2} & \cdots
\end{aligned} x_{m} \quad \alpha x_{1}+\beta x_{2} \right\rvert\,, ~ \$
$$

and hence $(\operatorname{sgn}(|\mathrm{A}|))^{\mathrm{m}}=1$. But $\operatorname{sgn}(|\mathrm{A}|)=(-1)^{\mathrm{n}-1}$,
so $(-1)^{(n-1) m}=1$ or $(n-1) m \equiv 0(\bmod 2)$.

- Exp-maximal cones and exp-maximal primitive matrices

Theorem 5. (a) For every positive integer $m \geq$ 5, up to linear isomorphism, K_{θ} are precisely all the exp-maximal cones in $\mathcal{P}(m, 3)$, uncountably infinitely many of them.
(b) When $m \geq 6$, we have:
(1) For each $\theta \in\left(\frac{2 \pi}{m}, \frac{2 \pi}{m-1}\right)$, there is (up to multiples) only one exp-maximal K_{θ}-primitive matrix.
(2) The automorphism group of K_{θ} consists of scalar matrices only.
(3) For any $\theta_{1}, \theta_{2} \in\left(\frac{2 \pi}{m}, \frac{2 \pi}{m-1}\right), \theta_{1} \neq \theta_{2}$, the cones $K_{\theta_{1}}, K_{\theta_{2}}$ are not linearly isomorphic.
(c) When $m=5$,
(i) The automorphism group of K_{θ} consists of the identity matrix and an involution P, different from the identity matrix, together with their positive multiples.
(ii) For each $\theta \in\left(\frac{2 \pi}{5}, \frac{\pi}{2}\right)$, there are (up to multiples) precisely two exp-maximal K_{θ}-primitive, namely, K_{θ} and $P^{-1} A_{\theta} P$.
(iii) For any $\theta_{1}, \theta_{2} \in\left(\frac{2 \pi}{m}, \frac{2 \pi}{m-1}\right), \theta_{1} \neq \theta_{2}$, the cones $K_{\theta_{1}}, K_{\theta_{2}}$ are not linearly isomorphic.

To show that when $m \geq 6$, (up to multiples) expmaximal K_{θ}-primitive matrix is unique:

$$
A_{\theta} x_{j}=x_{j+1} \text { for } j=1, \ldots m-1
$$

Suppose B is another exp-maximal K_{θ}-primitive matrix. Then there exists $p, 1 \leq p \leq m$ such that $B x_{j}=\lambda_{j} x_{j+1}$ for $j=p, p+1, \ldots, p+m-2$, where $\lambda_{j}>0$ (or ...).

Hence $B x_{j}$ is a positive multiple of $A_{\theta} x_{j}$ for $m-2$ or at least $4 x_{j}$'s (as $m \geq 6$). As the underlying space is 3 -dimensional, B is a positive multiple of A_{θ}.

