Maximal Exponents of Polyhedral Cones

Bit-Shun Tam

Department of Mathematics Tamkang University Tamsui, Taiwan 251, R.O.C.

Joint work with R. Loewy and M.A. Perles

完結篇

1

Table of Contents

- 1. Prologue
- 2. Definitions
- 3. The major result
- 4. Special digraphs for K-primitive matrices
- 5. A preliminary result
- 5. The minimal cones case
- 6. The 3-dimensional case
- 7. The higher-dimensional case

8. Uniqueness of exp-maximal cones and their exp-maximal primitive matrices

• Prologue

 $A \geq 0$ (entrywise nonnegative) is **primitive** if there exists $p \in \mathbb{Z}_+$ such that $A^p > 0$ (positive).

Theorem 1. (Wielandt, 1950) For any $n \times n$ primitive $A, \gamma(A) \leq (n-1)^2 + 1$. Equality holds iff

$$P^{T}AP = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Question (S. Kirkland, 1999) If K is a polyhedral cone in \mathbb{R}^n with m extreme rays, and A is Kprimitive, is $(m-1)^2 + 1$ always an upper bound for the exponent $\gamma(A)$ of A (i.e., the least positive integer k such that $A^k(K \setminus \{0\}) \subseteq \operatorname{int} K)$?

• Definitions

K: a **proper cone** in \mathbb{R}^n — closed, pointed, full convex cone; that is, $K + K \subseteq K$; $\alpha K \subseteq K$ for all $\alpha > 0$; $K \cap (-K) = \{0\}$; span K = K; topologically closed, and with nonempty interior w.r.t. usual topology.

Polyhedral cone (finitely generated cone)

 \mathbb{R}^n_+ : nonnegative orthant

A polyhedral cone with five extreme rays

A is K-nonnegative, $A \geq^{K} 0$: $AK \subseteq K$.

A is K-primitive: A is K-nonnegative and $\exists k \text{ s.t.}$ $A^k(K \setminus \{0\}) \subseteq \text{int } K$; exponent of A, denoted by $\gamma(A)$, for least such k.

 $\gamma(K) = \max{\{\gamma(A) : A \text{ is } K \text{-primitive}\}}, \text{ known as}$ exponent of K.

 $\gamma(\mathbb{R}^n_+)=(n-1)^2+1.$

 $\mathcal{P}(m, n)$: set of *n*-dimensional polyhedral cones with m extreme rays $(3 \le n \le m)$.

Question. What is max $\{\gamma(K) : K \in \mathcal{P}(m, n)\}$?

In the study of exponents, the general polyhedral cone case is different from the classical nonnegative matrix case. It is considerably more difficult. • Background research

Work on exponents of polyhedral cones can be considered as a ramification of the *geometric spectral theory of nonnegative linear operators* — Perron-Frobenius theory of cone-preserving maps.

Joint work with Hans Schneider (and S.-F. Wu): 6 research papers (totally 216 pages), a research-expository paper (71 pages) and an expository article.

B.S.-Tam and H. Schneider, Matrices leaving a cone invariant, in *Handbook of Linear Algebra*, Chapter 26, edited by L. Hogben, Chapman & Hall, 2007.

B.S.-Tam, A cone-theoretic approach to the spectral theory of positive linear operators: the finitedimensional case, *Taiwanese J. Math.* 5 (2001), 207-277.

• Equivalent problem:

To determine the maximum value of $\gamma(C)$ over all (n-1)-polytopes C with m extreme points, having the origin as an interior point, where $\gamma(C)$ is the maximum of the exponents of C-primitive matrices.

When C is a symmetric convex body, not necessarily a polytope, C can be used to define a norm. Then $\gamma(C)$ is equal to the *critical exponent* of the induced norm, that is, the smallest positive integer k with the property that $||A^k|| = ||A|| = 1$ imply $||A||^l = 1$ for all positive integers l. Much studied by V. Pták. • Major result

Main Theorem.

 $\max\{\gamma(K): K \in \mathcal{P}(m, n)\}$ $= \begin{cases} (n-1)(m-1)+1 & \text{for } m \text{ even, or } m, n \text{ both odd} \\ (n-1)(m-1) & \text{for } m \text{ odd, } n \text{ even }. \end{cases}$

 $K_0 \in \mathcal{P}(m, n)$ is an **exp-maximal cone**: $\gamma(K_0) = \max\{\gamma(K) : K \in \mathcal{P}(m, n)\}.$

A is **exp-maximal** K-**primitive**: $\gamma(A) = \gamma(K)$, (K, exp-maximal cone)

Uniqueness issue: For optimal cones and optimal K-primitive matrices ?

 $A_1 \geq^{K_1} 0$ and $A_2 \geq^{K_2} 0$ are **cone-equivalent** if \exists linear isomorphism P s.t. $PK_2 = K_1$ and $A_2 = P^{-1}A_1P$. • Further definitions.

For an $n \times n$ matrix A, the **usual digraph** G(A)of A has vertex set $\{1, \ldots, n\}$; (i, j) is an arc if and only if $a_{ij} \neq 0$.

For a K-primitive matrix A,

 $\gamma(A, x) := \max\{k : A^k x \in \text{int K}\}, \text{ local expo-}$ nent.

Clearly, $\gamma(A) = \max{\{\gamma(A, x) : x \text{ extreme vector of } K\}}.$

 $\Phi(x) :=$ face of K generated by x.

$D_K(A)$, digraph associated with A:

vertex set consists of extreme rays of K; $(\Phi(x), \Phi(y))$ is an arc iff $\Phi(y) \subseteq \Phi(Ax)$.

When $A \ge 0, D_{\mathbb{R}^n_+}(A) \cong$ usual digraph of A^T .

• Relevance of circuits of $D_K(A)$

 \exists a directed walk of length k from $\Phi(x)$ to $\Phi(y)$ implies $\Phi(y) \subseteq \Phi(A^k x)$

If there exists a circuit of length k containing $\Phi(x)$ then we have $\Phi(x) \subseteq \Phi(A^k x)$.

If $\Phi(x) = \Phi(A^k x)$ then A^k is K-reducible, contradicting K-primitivity of A. So we have $\Phi(x) \subset \Phi(A^k x)$.

Continuing the argument, we obtain

 $\Phi(x) \subset \Phi(A^k x) \subset \Phi(A^{2k} x) \subset \cdots \Phi(A^{lk} x) = K,$
implying $A^{lk} x \in \text{int K}.$

• Special digraphs for K-primitive matrices

The longer the shortest circuit in $D_K(A)$, the more likely $\gamma(A)$ has a larger value.

Lemma 1. Let $K \in \mathcal{P}(m, n)$ $(3 \le n \le m)$ and let A be a K-primitive matrix. Then the length of the shortest circuit in the digraph $(\mathcal{E}, \mathcal{P}(A, K))$ equals m - 1 if and only if the digraph $(\mathcal{E}, \mathcal{P}(A, K))$ is given by Figure 1 or Figure 2.

 $D_K(A)$ given by Figure 1 implies: $Ax_i = \lambda_i x_{i+1}$ for $i = 1, \ldots, m-1$ and $Ax_m = a_1x_1 + a_2x_2$, where λ_i 's and $a_1, a_2 > 0$.

• A preliminary result

Theorem 2. Let $K \in \mathcal{P}(m, n)$.

- (i) If A is K-primitive, then γ(A) ≤ (m_A−1)(m−1)+1, where m_A is the degree of the minimal polynomial of A.
- (ii) γ(K) ≤ (n − 1)(m − 1) + 1, equality holds only
 if ∃ K-primitive matrix A s.t. D_K(A), the
 digraph associated with A, is (up to graph isomorphism) given by Fig. 1.
- (iii) If A is K-primitive and $\gamma(A) = (n-1)(m-1)$ then $D_K(A)$ is given by Fig. 1 or Fig. 2.

Kirkland's question: Always $\gamma(A) \leq (m-1)^2 + 1$? Yes !

• When $D_K(A)$ is given by Fig. 1 or Fig. 2:

Minimal cone : n-dim. polyhedral cone with n+1 extreme rays.

Lemma 2. Let $K \in \mathcal{P}(m, n)$. Let $A \geq^{K} 0$. Suppose $D_{K}(A)$ given by Fig. 1 or Fig. 2.

- (i) If K is non-simplicial then K is indecomposable or K is an even-dimensional minimal cone which is the direct sum of a ray and an indecomp. minimal cone with a balanced relation for its extreme vectors.
- (ii) $\gamma(A) = \gamma(A, x_1)$ or $\gamma(A, x_2)$, depending on whether $D_K(A)$ given by Fig. 1 or Fig. 2.
- (iii) A is K-primitive, nonsingular, non-derogatory, and has a unique annihilating polynomial of the form $t^m - at - b$, where a, b > 0.

• The minimal cone case:

Theorem 3. Let $n \ge 3$ be a given positive integer. (i)

$$\max\{\gamma(K): K \in \mathcal{P}(n+1,n)\}$$
$$= \begin{cases} n^2 - n + 1 & \text{for odd } n\\ n^2 - n & \text{for even } n. \end{cases}$$

(ii) Let $K \in \mathcal{P}(n+1, n)$.

For odd n, K is exp-max. iff K is indecomp. with balanced relation for its extreme vectors.

For even n, K is exp-max. iff K is indecomp. with a balanced relation for extreme vectors, or $K = a \ ray \oplus an$ indecomp. minimal cone with a balanced relation for extreme vectors.

(iii) Concerning exp-maximal K-primitive matrices. • The 3-dimensional case:

Theorem 4. Let $m \geq 3$.

- (i) $\max\{\gamma(K) : K \in \mathcal{P}(m,3)\} = 2m 1.$
- (ii) $\forall K \in \mathcal{P}(m,3), K \text{ is exp-maximal iff } \exists K$ primitive $A \text{ s.t. } D_K(A) \text{ is given by Fig. 1.}$

 $(iii) \cdots$

If $\Phi(x_i)$ and $\Phi(x_{i+1})$ are neighborly extreme rays of K for i = 1, ..., m and A satisfies

$$Ax_i = x_{i+1}$$
 for $i = 1, ..., m-1$
and $Ax_m = (1-c)x_1 + cx_2, 0 < c < 1$,

then $D_K(A)$ is given by Figure 1.

Try:
$$x_1 = (1, 0, 1)^T, x_2 = (r \cos \theta, r \sin \theta, 1)^T, \dots$$

 $x_m = (r^{m-1} \cos (m-1)\theta, r^{m-1} \sin (m-1)\theta, 1)^T$

and $A = r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \oplus [1].$

Work on the minimal cone case and the 3-dimensional

case has led us to conjecture the maximum value of $\gamma(K)$ as given in our main result.

Theorem 3 continued:

(iii) $\forall \theta \in (\frac{2\pi}{m}, \frac{2\pi}{m-1})$, let r_{θ} denote the unique positive real root of the poly. $g_{\theta}(t)$ given by :

$$g_{\theta}(t) = \frac{\sin(m-1)\theta}{\sin\theta} t^m - \frac{\sin m\theta}{\sin\theta} t^{m-1} + 1.$$

Let K_{θ} be the polyhedral cone in \mathbb{R}^3 generated by the vectors

$$x_{j}(\theta) := \begin{bmatrix} r_{\theta}^{j-1}\cos(j-1)\theta \\ r_{\theta}^{j-1}\sin(j-1)\theta \\ 1 \end{bmatrix}, \ j = 1, \dots, m.$$

Also, let $A_{\theta} = r_{\theta} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \oplus [1]$. Then $x_1(\theta), \dots, x_m(\theta)$ are the extreme vectors of K_{θ} , K_{θ} is an exp-maximal polyhedral cone and A_{θ} is an exp-maximal K_{θ} -primitive matrix.

• The higher-dimensional case :

Lemma 3. For any positive integers $m, n, 3 \le n \le m$, there exists $K \in \mathcal{P}(m, n)$ with a K-primitive A such that $D_K(A)$ given by Fig. 1.

For even m, the desired exp-maximal cone K has extreme vectors x_1, \ldots, x_m given by:

$$x_{j} = \begin{bmatrix} r_{1}^{j-1}\cos(j-1)\theta_{1} \\ r_{1}^{j-1}\sin(j-1)\theta_{1} \\ \vdots \\ r_{p}^{j-1}\cos(j-1)\theta_{p} \\ r_{p}^{j-1}\sin(j-1)\theta_{p} \\ a^{j-1} \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} r_{1}^{j-1}\cos(j-1)\theta_{1} \\ r_{1}^{j-1}\sin(j-1)\theta_{1} \\ \vdots \\ r_{p}^{j-1}\cos(j-1)\theta_{p} \\ r_{p}^{j-1}\sin(j-1)\theta_{p} \\ 1 \end{bmatrix},$$

depending on whether n even or odd. Here 1, a are real roots and $r_j e^{\pm \theta_j}$ $(j = 1, \dots, \frac{m-2}{2})$ are non-real complex roots of

$$h(t) = t^m - ct - (1 - c),$$

where $c \in (0, 1)$, suitably chosen; also, $\theta_1 \in (\frac{2\pi}{m}, \frac{2\pi}{m-1})$.

The desired exp-max. K-primitive matrix A is:

$$r_{1} \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} \end{bmatrix} \oplus \cdots \oplus r_{p} \begin{bmatrix} \cos \theta_{p} & -\sin \theta_{p} \\ \sin \theta_{p} & \cos \theta_{p} \end{bmatrix} \oplus [a] \oplus [1]$$

or
$$r_{1} \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} \end{bmatrix} \oplus \cdots \oplus r_{p} \begin{bmatrix} \cos \theta_{p} & -\sin \theta_{p} \\ \sin \theta_{p} & \cos \theta_{p} \end{bmatrix} \oplus [1],$$

depending on whether n is even or odd.

Main Theorem.

$$\max\{\gamma(K): K \in \mathcal{P}(m, n)\} \\ = \begin{cases} (n-1)(m-1) + 1 & \text{for } m \text{ even, or } m, n \text{ both odd} \\ (n-1)(m-1) & \text{for } m \text{ odd}, n \text{ even }. \end{cases}$$

Already have

$$\max\{\gamma(K): K \in \mathcal{P}(m, n)\} \le (n - 1)(m - 1) + 1.$$

By calculation,

$$\Phi(A^{(n-1)(m-1)-1}x_1) = \Phi(x_{m-n+1} + \dots + x_{m-1}),$$

$$\Phi(A^{(n-1)(m-1)}x_1) = \Phi(x_{m-n+2} + x_{m-n+3} + \dots + x_m).$$

Remains to show

(1) When *n* even, *m* odd: $\forall K \in \mathcal{P}(m, n), \gamma(K) \le (n-1)(m-1).$

Loewy and I couldn't prove it for a couple of years.

(2) For m even or m and n both odd (resp., for m odd and n even), $\exists K \in \mathcal{P}(m, n)$ and K-primitive matrix A s.t. $D_K(A)$ is given by Fig. 1 and $x_{m-n+2} + x_{m-n+3} + \cdots + x_m \in \partial K$ (resp., $x_{m-n+1} + x_{m-n+2} + \cdots + x_{m-1} \in \partial K$).

To prove (2) when m is even or m, n are both odd: As $c \to 0^+$, $h(t) := t^m - ct - (1 - c) \to t^m - 1$. In the proof of Lemma 3, take $r_j e^{\pm i\theta_j} \approx e^{\pm \frac{2\pi j}{m}i}$. Then $K \approx K_0, x_j \approx y_j, j = 1, \dots, m$, where $K_0 =$

$$y_{j} = \begin{bmatrix} \cos(j-1)\frac{2\pi}{m} \\ \sin(j-1)\frac{2\pi}{m} \\ \cos(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{(n-1)\pi}{m} \\ \sin(j-1)\frac{(n-1)\pi}{m} \\ \sin(j-1)\frac{(n-1)\pi}{m} \end{bmatrix} \text{ or } \begin{bmatrix} \cos(j-1)\frac{2\pi}{m} \\ \sin(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{4\pi}{m} \\ \sin(j-1)\frac{(n-2)\pi}{m} \\ \sin(j-1)\frac{(n-2)\pi}{m} \\ (-1)^{j-1} \\ 1 \end{bmatrix},$$

depending n odd, or n, m both even. Reduces to showing that $\sum_{j=1}^{n-1} y_j \in \partial K_0$ and generates a simplicial face.

When m is odd and n is even, still use the K in the proof of Lemma 3, but letting $c \to 1^-$ instead.

The problem is reduced to showing that $\det Q_p$ $(p = n, \ldots, m)$ are nonzero and have the same sign, where

$$Q_p := \left[\begin{array}{cccc} y_1 & y_2 & \cdots & y_{n-1} & y_p \end{array}
ight].$$

After hard work we succeeded in finding a proof. It involves certain generalized Vandermonde matrices, the complete symmetric polynomials, the Jacobi-Trudi determiant, and a nontrivial result about polynomials with nonnegative ceofficients.

We (Loewy and I) published two papers and was about to submit the third paper:

Maximal exponents of polyhedral cones (I), J.
 Math. Anal. Appl. 365 (2010), 570-583.

2. Maximal exponents of polyhedral cones (II), Linear Algebra Appl. 432 (2010), 2861-2878. The conclusion of a story is often changed by the happening of another story.

S. Sergeev $\xrightarrow{\text{Dec.2009,visit}}$ H. Schneider \longrightarrow V.S. Grinberg (1989 paper) \longrightarrow M.A. Perles (1964 Ph.D. thesis):

V.S. Grinberg, Wielandt-type bounds for primitive matrices of partially ordered sets, Mat. Zametki 45 (1989), 30-35 (Russian); translation in Math. Notes 45 (1989), 450-454.

M.A. Perles, *Critical Exponents of Convex Bodies*, Ph.D. thesis, 1964, 169 pages (in Hebrew).

M.A. Perles, Critical exponents of convex sets, in: Proceedings of the Colloquium in Convexity (Copenhagen, 1965), (1967), 221-228. (1) and (2) are done in Perles' Ph.D. thesis, unpublished.

• Perles' proof of (2):

He makes use of the following

Lemma 4. (Scott, 1879) Let p be a given positive integer. For any $\theta \in \mathbb{R}$, denote by $x(\theta)$ the vector

 $(\cos\theta,\sin\theta,\cos 2\theta,\sin 2\theta,\cdots,\cos p\theta,\sin p\theta)^T$

of \mathbb{R}^{2p} . For any $\theta_0, \theta_1, \dots, \theta_{2p} \in \mathbb{R}$, we have: $\begin{vmatrix} x(\theta_0) & x(\theta_1) & \cdots & x(\theta_{2p}) \\ 1 & 1 & \cdots & 1 \end{vmatrix} = 4^{p^2} \prod_{0 \le i < j \le 2p} \sin \frac{1}{2} (\theta_j - \theta_i).$ • Perles' proof of (1): If $D_K(A)$ is given by Figure 1 and $\gamma(A) = (n-1)(m-1) + 1$, then:

$$\operatorname{sgn}|\mathbf{A}|\operatorname{sgn} \left| x_{m} \ x_{1} \ \cdots \ x_{n-1} \right|$$

$$= \operatorname{sgn} \left| Ax_{m} \ Ax_{1} \ \cdots \ Ax_{n-1} \right|$$

$$= \operatorname{sgn} \left| (1-c)x_{1} + cx_{2} \ x_{2} \ \cdots \ x_{n} \right|$$

$$= \operatorname{sgn} \left| x_{1} \ x_{2} \ \cdots \ x_{n} \right|$$

$$= (-1)^{n-1} \operatorname{sgn} \left| x_{n} \ x_{1} \ \cdots \ x_{n-1} \right| \neq 0.$$

We obtain $sgn(|A|) = (-1)^{n-1}$. Similarly, we have

$$(\operatorname{sgn}(|\mathbf{A}|))^{\mathrm{m}}\operatorname{sgn}(\left|x_{m-n+2}\cdots x_{m} x_{1}\right|) = \operatorname{sgn}\left|x_{m-n+2}\cdots x_{m} \alpha x_{1} + \beta x_{2}\right|,$$

and hence $(\text{sgn}(|\mathbf{A}|))^{m} = 1$. But $\text{sgn}(|\mathbf{A}|) = (-1)^{n-1}$, so $(-1)^{(n-1)m} = 1$ or $(n-1)m \equiv 0 \pmod{2}$. • Exp-maximal cones and exp-maximal primitive matrices

- **Theorem 5.** (a) For every positive integer $m \geq 5$, up to linear isomorphism, K_{θ} are precisely all the exp-maximal cones in $\mathcal{P}(m, 3)$, uncountably infinitely many of them.
 - (b) When $m \ge 6$, we have:
 - (1) For each $\theta \in (\frac{2\pi}{m}, \frac{2\pi}{m-1})$, there is (up to multiples) only one exp-maximal K_{θ} -primitive matrix.
 - (2) The automorphism group of K_{θ} consists of scalar matrices only.
 - (3) For any $\theta_1, \theta_2 \in (\frac{2\pi}{m}, \frac{2\pi}{m-1}), \theta_1 \neq \theta_2$, the cones $K_{\theta_1}, K_{\theta_2}$ are not linearly isomorphic.

(c) When m = 5,

- (i) The automorphism group of K_θ consists of the identity matrix and an involution P, different from the identity matrix, together with their positive multiples.
- (ii) For each $\theta \in (\frac{2\pi}{5}, \frac{\pi}{2})$, there are (up to multiples) precisely two exp-maximal K_{θ} -primitive, namely, K_{θ} and $P^{-1}A_{\theta}P$.
- (iii) For any $\theta_1, \theta_2 \in (\frac{2\pi}{m}, \frac{2\pi}{m-1}), \theta_1 \neq \theta_2$, the cones $K_{\theta_1}, K_{\theta_2}$ are not linearly isomorphic.

To show that when $m \ge 6$, (up to multiples) expmaximal K_{θ} -primitive matrix is unique:

$$A_{\theta}x_j = x_{j+1} \text{ for } j = 1, \dots m - 1.$$

Suppose B is another exp-maximal K_{θ} -primitive matrix. Then there exists $p, 1 \leq p \leq m$ such that $Bx_j = \lambda_j x_{j+1}$ for $j = p, p+1, \ldots, p+m-2$, where $\lambda_j > 0$ (or ...).

Hence Bx_j is a positive multiple of $A_{\theta}x_j$ for m-2or at least $4 x_j$'s (as $m \ge 6$). As the underlying space is 3-dimensional, B is a positive multiple of A_{θ} .