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• Prologue

A ≥ 0 (entrywise nonnegative) is primitive if

there exists p ∈ Z+ such that Ap > 0 (positive).

Theorem 1. (Wielandt, 1950) For any n×n prim-

itive A, γ(A) ≤ (n − 1)2 + 1. Equality holds iff

P TAP =

















0 1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

1 0 0 · · · 1

1 0 0 · · · 0

















.

Question (S. Kirkland, 1999) If K is a polyhe-

dral cone in R
n with m extreme rays, and A is K-

primitive, is (m − 1)2 + 1 always an upper bound for

the exponent γ(A) of A (i.e., the least positive integer

k such that Ak(K \ {0}) ⊆ int K) ?
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• Definitions

K: a proper cone in R
n — closed, pointed, full

convex cone; that is, K + K ⊆ K; αK ⊆ K for all

α > 0; K ∩ (−K) = {0}; span K = K; topologi-

cally closed, and with nonempty interior w.r.t. usual

topology.

Polyhedral cone (finitely generated cone)

R
n
+: nonnegative orthant

A polyhedral cone with five extreme rays
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A is K-nonnegative, A ≥K 0: AK ⊆ K.

A is K-primitive: A is K-nonnegative and ∃k s.t.

Ak(K \ {0}) ⊆ int K; exponent of A, denoted by

γ(A), for least such k.

γ(K) = max{γ(A) : A is K-primitive}, known as

exponent of K.

γ(Rn
+) = (n − 1)2 + 1.

P(m, n): set of n-dimensional polyhedral cones with

m extreme rays (3 ≤ n ≤ m).

Question. What is max {γ(K) : K ∈ P(m, n)} ?

In the study of exponents, the general polyhedral

cone case is different from the classical nonnegative

matrix case. It is considerably more difficult.
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• Background research

Work on exponents of polyhedral cones can be con-

sidered as a ramification of the geometric spectral

theory of nonnegative linear operators — Perron-

Frobenius theory of cone-preserving maps.

Joint work with Hans Schneider (and S.-F. Wu): 6

research papers (totally 216 pages), a research-expository

paper (71 pages) and an expository article.

B.S.-Tam and H. Schneider, Matrices leaving a cone

invariant, in Handbook of Linear Algebra, Chapter

26, edited by L. Hogben, Chapman & Hall, 2007.
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B.S.-Tam, A cone-theoretic approach to the spec-

tral theory of positive linear operators: the finite-

dimensional case, Taiwanese J. Math. 5 (2001), 207-

277.

• Equivalent problem:

To determine the maximum value of γ(C) over all

(n − 1)-polytopes C with m extreme points, having

the origin as an interior point, where γ(C) is the max-

imum of the exponents of C-primitive matrices.

When C is a symmetric convex body, not necessarily

a polytope, C can be used to define a norm. Then

γ(C) is equal to the critical exponent of the induced

norm, that is, the smallest positive integer k with the

property that ‖Ak‖ = ‖A‖ = 1 imply ‖A‖l = 1 for

all positive integers l. Much studied by V. Pták.
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• Major result

Main Theorem.

max{γ(K) : K ∈ P(m, n)}

=







(n − 1)(m − 1) + 1 for m even, or m, n both odd

(n − 1)(m − 1) for m odd, n even .

K0 ∈ P(m, n) is an exp-maximal cone:

γ(K0) = max{γ(K) : K ∈ P(m, n)}.

A is exp-maximal K-primitive: γ(A) = γ(K),

(K, exp-maximal cone)

Uniqueness issue: For optimal cones and opti-

mal K-primitive matrices ?

A1 ≥K1 0 and A2 ≥K2 0 are cone-equivalent if

∃ linear isomorphism P s.t. PK2 = K1 and A2 =

P−1A1P .
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• Further definitions.

For an n× n matrix A, the usual digraph G(A)

of A has vertex set {1, . . . , n}; (i, j) is an arc if and

only if aij 6= 0.

For a K-primitive matrix A,

γ(A, x) := max{k : Akx ∈ int K}, local expo-

nent.

Clearly, γ(A) = max{γ(A, x) : x extreme vector of K}.

Φ(x) := face of K generated by x.

DK(A), digraph associated with A:

vertex set consists of extreme rays of K; (Φ(x), Φ(y))

is an arc iff Φ(y) ⊆ Φ(Ax).

When A ≥ 0, DR
n
+
(A) ∼= usual digraph of AT .

9



• Relevance of circuits of DK(A)

∃ a directed walk of length k from Φ(x) to Φ(y)

implies Φ(y) ⊆ Φ(Akx)

If there exists a circuit of length k containing Φ(x)

then we have Φ(x) ⊆ Φ(Akx).

If Φ(x) = Φ(Akx) then Ak is K-reducible, con-

tradicting K-primitivity of A. So we have Φ(x) ⊂

Φ(Akx).

Continuing the argument, we obtain

Φ(x) ⊂ Φ(Akx) ⊂ Φ(A2kx) ⊂ · · ·Φ(Alkx) = K,

implying Alkx ∈ int K.
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• Special digraphs for K-primitive matrices

The longer the shortest circuit in DK(A), the more

likely γ(A) has a larger value.

Lemma 1. Let K ∈ P(m, n) (3 ≤ n ≤ m) and let

A be a K-primitive matrix. Then the length of the

shortest circuit in the digraph (E ,P(A, K)) equals

m − 1 if and only if the digraph (E ,P(A, K)) is

given by Figure 1 or Figure 2.
x1

�
�� @

@R
xm

- x2
- x3

B
BBM �

��
xm−1 x4

@@I · · ·
�

�	

Figure 1.

x1

�
�� @

@R
xm

- x2
- x3

B
BBM �

��
xm−1 x4

@@I · · ·
�

�	

PPPPPPPPq

Figure 2.

DK(A) given by Figure 1 implies: Axi = λixi+1 for

i = 1, . . . ,m− 1 and Axm = a1x1 + a2x2, where λi’s

and a1, a2 > 0.
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• A preliminary result

Theorem 2. Let K ∈ P(m,n).

(i) If A is K-primitive, then γ(A) ≤ (mA−1)(m−

1) + 1, where mA is the degree of the minimal

polynomial of A.

(ii) γ(K) ≤ (n− 1)(m− 1) + 1, equality holds only

if ∃ K-primitive matrix A s.t. DK(A), the

digraph associated with A, is (up to graph iso-

morphism) given by Fig. 1.

(iii) If A is K-primitive and γ(A) = (n−1)(m−1)

then DK(A) is given by Fig. 1 or Fig. 2.

Kirkland’s question: Always γ(A) ≤ (m − 1)2 + 1 ?

Yes !
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• When DK(A) is given by Fig. 1 or Fig. 2:

Minimal cone : n-dim. polyhedral cone with n+1

extreme rays.

Lemma 2. Let K ∈ P(m, n). Let A ≥K 0. Sup-

pose DK(A) given by Fig. 1 or Fig. 2.

(i) If K is non-simplicial then K is indecompos-

able or K is an even-dimensional minimal cone

which is the direct sum of a ray and an inde-

comp. minimal cone with a balanced relation

for its extreme vectors.

(ii) γ(A) = γ(A, x1) or γ(A, x2), depending on

whether DK(A) given by Fig. 1 or Fig. 2.

(iii) A is K-primitive, nonsingular, non-derogatory,

and has a unique annihilating polynomial of

the form tm − at − b, where a, b > 0.
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• The minimal cone case:

Theorem 3. Let n ≥ 3 be a given positive integer.

(i)

max{γ(K) : K ∈ P(n + 1, n)}

=







n2 − n + 1 for odd n

n2 − n for even n.

(ii) Let K ∈ P(n + 1, n).

For odd n, K is exp-max. iff K is indecomp. with

balanced relation for its extreme vectors.

For even n, K is exp-max. iff K is indecomp.

with a balanced relation for extreme vectors, or

K = a ray ⊕ an indecomp. minimal cone with

a balanced relation for extreme vectors.

(iii) Concerning exp-maximal K-primitive matri-

ces.
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• The 3-dimensional case:

Theorem 4. Let m ≥ 3.

(i) max{γ(K) : K ∈ P(m, 3)} = 2m − 1.

(ii) ∀K ∈ P(m, 3), K is exp-maximal iff ∃ K-

primitive A s.t. DK(A) is given by Fig. 1.

(iii) · · ·

x1

�
�� @

@R
xm

- x2 - x3

B
BBM �

��
xm−1 x4

@@I · · ·
�

�	

Figure 1.
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If Φ(xi) and Φ(xi+1) are neighborly extreme rays of

K for i = 1, . . . ,m and A satisfies

Axi = xi+1 for i = 1, . . . , m − 1

and Axm = (1 − c)x1 + cx2, 0 < c < 1,

then DK(A) is given by Figure 1.

Try : x1 = (1, 0, 1)T , x2 = (r cos θ, r sin θ, 1)T , . . .

xm = (rm−1 cos (m − 1)θ, rm−1 sin (m − 1)θ, 1)T

and A = r





cos θ − sin θ

sin θ cos θ



 ⊕ [1].

m = 4:

• • x1

•
x2

•x3 •
x4

<

∨

>

∧

<

∨

∧

Work on the minimal cone case and the 3-dimensional
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case has led us to conjecture the maximum value of

γ(K) as given in our main result.
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Theorem 3 continued:

(iii) ∀θ ∈ (2π
m

, 2π
m−1), let rθ denote the unique positive

real root of the poly. gθ(t) given by :

gθ(t) =
sin(m − 1)θ

sin θ
tm −

sin mθ

sin θ
tm−1 + 1.

Let Kθ be the polyhedral cone in R
3 generated

by the vectors

xj(θ) :=











r
j−1
θ cos(j − 1)θ

r
j−1
θ sin(j − 1)θ

1











, j = 1, . . . ,m.

Also, let Aθ = rθ





cos θ − sin θ

sin θ cos θ



 ⊕ [1]. Then

x1(θ), . . . , xm(θ) are the extreme vectors of Kθ,

Kθ is an exp-maximal polyhedral cone and Aθ is

an exp-maximal Kθ-primitive matrix.
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• The higher-dimensional case :

Lemma 3. For any positive integers m, n, 3 ≤ n ≤

m, there exists K ∈ P(m, n) with a K-primitive

A such that DK(A) given by Fig. 1.

For even m, the desired exp-maximal cone K has

extreme vectors x1, . . . , xm given by:

xj =

































r
j−1
1 cos(j − 1)θ1

r
j−1
1 sin(j − 1)θ1

...

rj−1
p cos(j − 1)θp

rj−1
p sin(j − 1)θp

aj−1

1

































or



























r
j−1
1 cos(j − 1)θ1

r
j−1
1 sin(j − 1)θ1

...

rj−1
p cos(j − 1)θp

rj−1
p sin(j − 1)θp

1



























,
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depending on whether n even or odd. Here 1, a are

real roots and rje
±θj (j = 1, . . . , m−2

2
) are non-real

complex roots of

h(t) = tm − ct − (1 − c),

where c ∈ (0, 1), suitably chosen; also, θ1 ∈ (2π
m

, 2π
m−1).

The desired exp-max. K-primitive matrix A is:

r1





cos θ1 − sin θ1

sin θ1 cos θ1



⊕· · ·⊕rp





cos θp − sin θp

sin θp cos θp



⊕[a]⊕[1]

or

r1





cos θ1 − sin θ1

sin θ1 cos θ1



⊕· · ·⊕rp





cos θp − sin θp

sin θp cos θp



⊕[1],

depending on whether n is even or odd.
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Main Theorem.

max{γ(K) : K ∈ P(m, n)}

=







(n − 1)(m − 1) + 1 for m even, or m, n both odd

(n − 1)(m − 1) for m odd, n even .

Already have

max{γ(K) : K ∈ P(m, n)} ≤ (n− 1)(m− 1) + 1.

By calculation,

Φ(A(n−1)(m−1)−1x1) = Φ(xm−n+1 + · · · + xm−1),

Φ(A(n−1)(m−1)x1) = Φ(xm−n+2+xm−n+3+· · ·+xm).

Remains to show

(1) When n even, m odd: ∀K ∈ P(m, n), γ(K) ≤

(n − 1)(m − 1).

Loewy and I couldn’t prove it for a couple of years.
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(2) For m even or m and n both odd (resp., for

m odd and n even), ∃K ∈ P(m, n) and K-primitive

matrix A s.t. DK(A) is given by Fig. 1 and xm−n+2+

xm−n+3 + · · ·+ xm ∈ ∂K (resp., xm−n+1 + xm−n+2 +

· · · + xm−1 ∈ ∂K).

To prove (2) when m is even or m, n are both odd:

As c → 0+, h(t) := tm − ct − (1 − c) → tm −

1. In the proof of Lemma 3, take rje
±iθj ≈ e±

2πj
m i.

Then K ≈ K0, xj ≈ yj, j = 1, . . . , m, where K0 =
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pos{y1, . . . , ym},

yj =







































cos(j − 1)2π
m

sin(j − 1)2π
m

cos(j − 1)4π
m

sin(j − 1)4π
m

...

cos(j − 1)(n−1)π
m

sin(j − 1)(n−1)π
m

1







































or











































cos(j − 1)2π
m

sin(j − 1)2π
m

cos(j − 1)4π
m

sin(j − 1)4π
m

...

cos(j − 1)(n−2)π
m

sin(j − 1)(n−2)π
m

(−1)j−1

1











































,

depending n odd, or n, m both even. Reduces to

showing that
∑n−1

j=1 yj ∈ ∂K0 and generates a sim-

plicial face.

When m is odd and n is even, still use the K in the

proof of Lemma 3, but letting c → 1− instead.
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The problem is reduced to showing that det Qp (p =

n, . . . , m) are nonzero and have the same sign, where

Qp :=
[

y1 y2 · · · yn−1 yp

]

.

After hard work we succeeded in finding a proof.

It involves certain generalized Vandermonde matri-

ces, the complete symmetric polynomials, the Jacobi-

Trudi determiant, and a nontrivial result about poly-

nomials with nonnegative ceofficients.

We (Loewy and I) published two papers and was

about to submit the third paper:

1. Maximal exponents of polyhedral cones (I), J.

Math. Anal. Appl. 365 (2010), 570-583.

2. Maximal exponents of polyhedral cones (II), Lin-

ear Algebra Appl. 432 (2010), 2861-2878.
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The conclusion of a story is often changed by the

happening of another story.

S. Sergeev
Dec.2009,visit

−→ H. Schneider −→ V.S. Grin-

berg (1989 paper) −→ M.A. Perles (1964 Ph.D. the-

sis):

V.S. Grinberg, Wielandt-type bounds for primitive

matrices of partially ordered sets, Mat. Zametki 45

(1989), 30-35 (Russian); translation in Math. Notes

45 (1989), 450-454.

M.A. Perles, Critical Exponents of Convex Bod-

ies, Ph.D. thesis, 1964, 169 pages (in Hebrew).

M.A. Perles, Critical exponents of convex sets, in:

Proceedings of the Colloquium in Convexity (Copen-

hagen, 1965), (1967), 221-228.
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(1) and (2) are done in Perles’ Ph.D. thesis, unpub-

lished.

• Perles’ proof of (2):

He makes use of the following

Lemma 4. (Scott, 1879) Let p be a given positive

integer. For any θ ∈ R, denote by x(θ) the vector

(cos θ, sin θ, cos 2 θ, sin 2 θ, · · · , cos p θ, sin p θ)T

of R
2p. For any θ0, θ1, . . . , θ2p ∈ R, we have :

∣

∣

∣

∣

∣

∣

x(θ0) x(θ1) · · · x(θ2p)

1 1 · · · 1

∣

∣

∣

∣

∣

∣

= 4p2 ∏

0≤i<j≤2p

sin
1

2
(θj−θi).
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• Perles’ proof of (1): If DK(A) is given by Figure

1 and γ(A) = (n − 1)(m − 1) + 1, then :

sgn|A|sgn
∣

∣

∣xm x1 · · · xn−1

∣

∣

∣

= sgn
∣

∣

∣Axm Ax1 · · · Axn−1

∣

∣

∣

= sgn
∣

∣

∣(1 − c)x1 + cx2 x2 · · · xn

∣

∣

∣

= sgn
∣

∣

∣x1 x2 · · · xn

∣

∣

∣

= (−1)n−1sgn
∣

∣

∣xn x1 · · · xn−1

∣

∣

∣
6= 0.

We obtain sgn(|A|) = (−1)n−1. Similarly, we have

(sgn(|A|))msgn(
∣

∣

∣xm−n+2 · · · xm x1

∣

∣

∣
)

= sgn
∣

∣

∣xm−n+2 · · · xm αx1 + βx2

∣

∣

∣
,

and hence (sgn(|A|))m = 1. But sgn(|A|) = (−1)n−1,

so (−1)(n−1)m = 1 or (n − 1)m ≡ 0 (mod 2).
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• Exp-maximal cones and exp-maximal primitive

matrices

Theorem 5. (a) For every positive integer m ≥

5, up to linear isomorphism, Kθ are precisely

all the exp-maximal cones in P(m, 3), uncount-

ably infinitely many of them.

(b) When m ≥ 6, we have :

(1) For each θ ∈ (2π
m

, 2π
m−1), there is (up to mul-

tiples) only one exp-maximal Kθ-primitive

matrix.

(2) The automorphism group of Kθ consists of

scalar matrices only.

(3) For any θ1, θ2 ∈ (2π
m

, 2π
m−1

), θ1 6= θ2, the cones

Kθ1,Kθ2 are not linearly isomorphic.

(c) When m = 5,
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(i) The automorphism group of Kθ consists of

the identity matrix and an involution P ,

different from the identity matrix, together

with their positive multiples.

(ii) For each θ ∈ (2π
5 , π

2), there are (up to multi-

ples) precisely two exp-maximal Kθ-primitive,

namely, Kθ and P−1AθP .

(iii) For any θ1, θ2 ∈ (2π
m

, 2π
m−1

), θ1 6= θ2, the cones

Kθ1,Kθ2 are not linearly isomorphic.
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To show that when m ≥ 6, (up to multiples) exp-

maximal Kθ-primitive matrix is unique:

Aθxj = xj+1 for j = 1, . . .m − 1.

Suppose B is another exp-maximal Kθ-primitive ma-

trix. Then there exists p, 1 ≤ p ≤ m such that

Bxj = λjxj+1 for j = p, p + 1, . . . , p + m− 2, where

λj > 0 (or ...).

Hence Bxj is a positive multiple of Aθxj for m− 2

or at least 4 xj’s (as m ≥ 6). As the underlying space

is 3-dimensional, B is a positive multiple of Aθ.
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