Jacobsthal identity for $\mathbb{Q}(\sqrt{-2})$

Yifan Yang (with Ki-Ichiro Hashimoto and Ling Long)

National Chiao Tung University, Taiwan

5 November 2010, NCKU Colloquium
Jacobsthal’s identity

Theorem (Fermat)

An odd prime \(p \) is a sum of two integer squares if and only if \(p \equiv 1 \pmod{4} \).

Theorem (Jacobsthal)

Let \(p \) be a prime congruent to 1 modulo 4 and \(n \) be a quadratic nonresidue modulo \(p \). Set

\[
A = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 - x}{p} \right), \quad B = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right).
\]

Then \(A, B \in \mathbb{Z} \) and satisfies \(p = A^2 + B^2 \).
Jacobsthal’s identity

Theorem (Fermat)
An odd prime \(p \) is a sum of two integer squares if and only if \(p \equiv 1 \) mod 4.

Theorem (Jacobsthal)
Let \(p \) be a prime congruent to 1 modulo 4 and \(n \) be a quadratic nonresidue modulo \(p \). Set

\[
A = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 - x}{p} \right), \quad B = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right).
\]

Then \(A, B \in \mathbb{Z} \) and satisfies \(p = A^2 + B^2 \).
Legendre symbols

Definition
Let p be an odd prime. An integer a relatively prime to p is a **quadratic residue** (resp. **quadratic nonresidue**) modulo p if the congruence equation

$$x^2 \equiv a \mod p$$

is solvable (resp. unsolvable) in integers.

Definition
Let p be an odd prime. Then the Legendre symbol $(\frac{a}{p})$ is defined by

$$
\left(\frac{a}{p} \right) = \begin{cases}
0, & \text{if } p | a, \\
1, & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1, & \text{if } a \text{ is a quadratic nonresidue modulo } p.
\end{cases}
$$
Legendre symbols

Definition
Let p be an odd prime. An integer a relatively prime to p is a quadratic residue (resp. quadratic nonresidue) modulo p if the congruence equation

$$x^2 \equiv a \mod p$$

is solvable (resp. unsolvable) in integers.

Definition
Let p be an odd prime. Then the Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$\left(\frac{a}{p}\right) = \begin{cases}
0, & \text{if } p|a, \\
1, & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1, & \text{if } a \text{ is a quadratic nonresidue modulo } p.
\end{cases}$$
Properties of Legendre symbols

Definition
If \(f(x) \in \mathbb{Z}[x] \), then we call
\[
J_f(p) := \sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right)
\]
a Jacobsthal sum.

Proposition
We have
\[
\begin{align*}
\text{• } & \left(\frac{a}{p} \right) \cdot \left(\frac{b}{p} \right) = \left(\frac{ab}{p} \right) \\
\text{• } & \left(\frac{a}{p} \right) = a^{\frac{p-1}{2}} \text{ mod } p
\end{align*}
\]
Properties of Legendre symbols

Definition
If \(f(x) \in \mathbb{Z}[x] \), then we call
\[
J_f(p) := \sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right)
\]
a Jacobsthal sum.

Proposition
We have
\[
\begin{align*}
\left(\frac{ab}{p} \right) &= \left(\frac{a}{p} \right) \left(\frac{b}{p} \right), \\
\left(\frac{a}{p} \right) &\equiv a^{(p-1)/2} \pmod{p}.
\end{align*}
\]
Properties of Legendre symbols

Definition
If $f(x) \in \mathbb{Z}[x]$, then we call

$$J_f(p) := \sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right)$$

a Jacobsthal sum.

Proposition
We have

- $\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right)$,
- $\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \mod p$.
Gauss’ proof of the Jacobsthal identity

- Set \(S(n) = \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) \).
- Pairing the term \(x = a \) with the term \(x = p - a \), we find \(S(n) \) is always even.
- Replacing \(x \) by \(rx \), we find \(S(r^2 n) = \left(\frac{r}{p} \right) S(n) \).
- Let \(g \) be a primitive root modulo \(p \). The above shows
 \[
 S(g) = -S(g^3) = S(g^5) = -S(g^7) = \ldots,
 \]
 \[
 S(g^2) = -S(g^4) = S(g^6) = -S(g^8) = \ldots.
 \]
Gauss’ proof of the Jacobsthal identity

- Set $S(n) = \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right)$.

- Pairing the term $x = a$ with the term $x = p - a$, we find $S(n)$ is always even.

- Replacing x by rx, we find $S(r^2n) = \left(\frac{r}{p}\right) S(n)$.

- Let g be a primitive root modulo p. The above shows

 $S(g) = -S(g^3) = S(g^5) = -S(g^7) = \ldots$,

 $S(g^2) = -S(g^4) = S(g^6) = -S(g^8) = \ldots$.

Gauss’ proof of the Jacobsthal identity

- Set \(S(n) = \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) \).
- Pairing the term \(x = a \) with the term \(x = p - a \), we find \(S(n) \) is always even.
- Replacing \(x \) by \(rx \), we find \(S(r^2 n) = \left(\frac{r}{p} \right) S(n) \).
- Let \(g \) be a primitive root modulo \(p \). The above shows
 \[
 S(g) = -S(g^3) = S(g^5) = -S(g^7) = \ldots,
 \]
 \[
 S(g^2) = -S(g^4) = S(g^6) = -S(g^8) = \ldots.
 \]
Gauss’ proof of the Jacobsthal identity

- Set $S(n) = \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right)$.

- Pairing the term $x = a$ with the term $x = p - a$, we find $S(n)$ is always even.

- Replacing x by rx, we find $S(r^2n) = \left(\frac{r}{p} \right) S(n)$.

- Let g be a primitive root modulo p. The above shows

 \[
 S(g) = -S(g^3) = S(g^5) = -S(g^7) = ..., \\
 S(g^2) = -S(g^4) = S(g^6) = -S(g^8) =
 \]
Let \(S(g) = 2A \) and \(S(g^2) = 2B \). Then

\[
2(p - 1)(A^2 + B^2) = \sum_{n,x,y=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) \left(\frac{y^3 - ny}{p} \right)
\]

\[
= \sum_{x,y=0}^{p-1} \left(\frac{xy}{p} \right) \sum_{n=0}^{p-1} \left(\frac{(x^2 - n)(y^2 - n)}{p} \right).
\]

Using

\[
\sum_{z=0}^{p-1} \left(\frac{z(z + r)}{p} \right) = \begin{cases}
 p - 1, & \text{if } r \equiv 0 \mod p, \\
 -1, & \text{if } r \not\equiv 0 \mod p,
\end{cases}
\]

we find

\[
2(p - 1)(A^2 + B^2) = p \sum_{x,y=0}^{p-1} \delta_{x^2,y^2} = 2(p - 1)p.
\]
Gauss’ proof of the Jacobsthal identity, continued

- Let \(S(g) = 2A \) and \(S(g^2) = 2B \). Then

\[
2(p - 1)(A^2 + B^2) = \sum_{n,x,y=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) \left(\frac{y^3 - ny}{p} \right)
\]

\[
= \sum_{x,y=0}^{p-1} \left(\frac{xy}{p} \right) \sum_{n=0}^{p-1} \left(\frac{(x^2 - n)(y^2 - n)}{p} \right).
\]

- Using

\[
\sum_{z=0}^{p-1} \left(\frac{z(z + r)}{p} \right) = \begin{cases}
p - 1, & \text{if } r \equiv 0 \mod p,
-1, & \text{if } r \not\equiv 0 \mod p,
\end{cases}
\]

we find

\[
2(p - 1)(A^2 + B^2) = p \sum_{x,y=0}^{p-1} \delta_{x^2,y^2} = 2(p - 1)p.
\]
Arithmetic-geometric approach

Idea.

Consider the elliptic curve $E_n : y^2 = x^3 - nx$. We have

$$\# E_n(\mathbb{F}_p) = 1 + \sum_{x=0}^{p-1} \left(1 + \left(\frac{x^3 - nx}{p} \right) \right) = p + 1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right).$$

Thus,

$$L(E_n/\mathbb{Q}, s)^{-1} = \prod_p \left(1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) p^{-s} + p^{1-2s} \right).$$

Since E_1 and E_n are isomorphic over $\mathbb{Q}(\sqrt{n})$, the two L-functions $L(E_1/\mathbb{Q}, s)$ and $L(E_n/\mathbb{Q}, s)$ must be related in some way, which give information about the Jacobsthal sums.
Arithmetic-geometric approach

Idea.

Consider the elliptic curve $E_n : y^2 = x^3 - nx$. We have

$$\#E_n(\mathbb{F}_p) = 1 + \sum_{x=0}^{p-1} \left(1 + \left(\frac{x^3 - nx}{p} \right) \right) = p + 1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right).$$

Thus,

$$L(E_n/\mathbb{Q}, s)^{-1} = \prod_p \left(1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) p^{-s} + p^{1-2s} \right).$$

Since E_1 and E_n are isomorphic over $\mathbb{Q}(\sqrt{n})$, the two L-functions $L(E_1/\mathbb{Q}, s)$ and $L(E_n/\mathbb{Q}, s)$ must be related in some way, which give information about the Jacobsthal sums.
Idea.

Consider the elliptic curve $E_n : y^2 = x^3 - nx$. We have

$$\#E_n(\mathbb{F}_p) = 1 + \sum_{x=0}^{p-1} \left(1 + \left(\frac{x^3 - nx}{p} \right) \right) = p + 1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right).$$

Thus,

$$L(E_n/\mathbb{Q}, s)^{-1} = \prod_p \left(1 + \sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) p^{-s} + p^{1-2s} \right).$$

Since E_1 and E_n are isomorphic over $\mathbb{Q}(\sqrt[n]{4})$, the two L-functions $L(E_1/\mathbb{Q}, s)$ and $L(E_n/\mathbb{Q}, s)$ must be related in some way, which give information about the Jacobsthal sums.
Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E[\ell^n]$ be the subgroup of ℓ^n-torsion points.

Consider the Tate module

$$T_\ell(E) = \lim_{\leftarrow} E[\ell^n].$$

The absolute Galois group $G_K = \text{Gal}(\overline{Q}/K)$ acts on $T_\ell(E)$, yielding a Galois representation

$$\rho_{E,\ell} : G_K \rightarrow \text{GL}(2, \mathbb{Q}_\ell).$$

Then $L(\rho_{E,\ell}, s) = L(E/K, s)$.
Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E[\ell^n]$ be the subgroup of ℓ^n-torsion points.

Consider the Tate module

$$T_\ell(E) = \lim_{\leftarrow} E[\ell^n].$$

The absolute Galois group $G_K = \text{Gal}(\overline{Q}/K)$ acts on $T_\ell(E)$, yielding a Galois representation

$$\rho_{E,\ell} : G_K \to \text{GL}(2, \mathbb{Q}_\ell).$$

Then $L(\rho_{E,\ell}, s) = L(E/K, s)$.
Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E[\ell^n]$ be the subgroup of ℓ^n-torsion points.

Consider the Tate module

$$T_{\ell}(E) = \lim_{\leftarrow} E[\ell^n].$$

The absolute Galois group $G_K = \text{Gal}(\overline{Q}/K)$ acts on $T_{\ell}(E)$, yielding a Galois representation

$$\rho_{E,\ell} : G_K \rightarrow \text{GL}(2, \mathbb{Q}_\ell).$$

Then $L(\rho_{E,\ell}, s) = L(E/K, s)$.

Yifan Yang (NCTU)
Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E[\ell^n]$ be the subgroup of ℓ^n-torsion points.

Consider the Tate module

$$T_\ell(E) = \lim_{\leftarrow} E[\ell^n].$$

The absolute Galois group $G_K = \text{Gal}(\overline{Q}/K)$ acts on $T_\ell(E)$, yielding a Galois representation

$$\rho_{E,\ell} : G_K \to \text{GL}(2, \mathbb{Q}_\ell).$$

Then $L(\rho_{E,\ell}, s) = L(E/K, s)$.
A lemma

Lemma (Clifford)
(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G/H is cyclic of finite order.

Assume that $\rho_1 : G \to \text{GL}(V_1)$ and $\rho_2 : G \to \text{GL}(V_2)$ are irreducible representations over an algebraically closed field of characteristic not dividing $|G/H|$ such that $\rho_1|_H$ and $\rho_2|_H$ have a common isomorphic irreducible subrepresentations of H.

Then

$$\rho_1 \cong \rho_2 \otimes \chi$$

for some representation of G of degree 1 that is lifted from that of G/H.
A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G/H is cyclic of finite order.

Assume that $\rho_1 : G \to \text{GL}(V_1)$ and $\rho_2 : G \to \text{GL}(V_2)$ are irreducible representations over an algebraically closed field of characteristic not dividing $|G/H|$ such that $\rho_1|_H$ and $\rho_2|_H$ have a common isomorphic irreducible subrepresentations of H.

Then

$$\rho_1 \cong \rho_2 \otimes \chi$$

for some representation of G of degree 1 that is lifted from that of G/H.
A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G/H is cyclic of finite order.

Assume that $\rho_1 : G \to \text{GL}(V_1)$ and $\rho_2 : G \to \text{GL}(V_2)$ are irreducible representations over an algebraically closed field of characteristic not dividing $|G/H|$ such that $\rho_1|_H$ and $\rho_2|_H$ have a common isomorphic irreducible subrepresentations of H.

Then

$$\rho_1 \simeq \rho_2 \otimes \chi$$

for some representation of G of degree 1 that is lifted from that of G/H.
Arithmetic-geometric approach

Let $E_n : y^2 = x^3 - nx$. It is isomorphic to E_1 over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K = \mathbb{Q}(i)$. Then $L = \mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_K = \text{Gal}(\overline{\mathbb{Q}}/K)$ and $G_L = \text{Gal}(\overline{\mathbb{Q}}/L)$.

The elliptic curves E_n have CM by $\mathbb{Z}[i]$, so

$$\rho_{E_n, \ell}\big|_{G_K} = \pi_n \oplus \overline{\pi}_n,$$

where π_n are representations of G_K of degree 1.
Let $E_n : y^2 = x^3 - nx$. It is isomorphic to E_1 over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K = \mathbb{Q}(i)$. Then $L = \mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_K = \text{Gal}(\overline{\mathbb{Q}}/K)$ and $G_L = \text{Gal}(\overline{\mathbb{Q}}/L)$.

The elliptic curves E_n have CM by $\mathbb{Z}[i]$, so

$$\rho_{E_n, \ell} \big|_{G_K} = \pi_n \oplus \overline{\pi}_n,$$

where π_n are representations of G_K of degree 1.
Let $E_n : y^2 = x^3 - nx$. It is isomorphic to E_1 over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K = \mathbb{Q}(i)$. Then $L = \mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_K = \text{Gal}(\overline{\mathbb{Q}}/K)$ and $G_L = \text{Gal}(\overline{\mathbb{Q}}/L)$.

The elliptic curves E_n have CM by $\mathbb{Z}[i]$, so

$$\rho_{E_n,\ell} \big|_{G_K} = \pi_n \oplus \overline{\pi}_n,$$

where π_n are representations of G_K of degree 1.
Arithmetic-geometric approach

E_1/K and E_n/K are isomorphic over L, so

$$\pi_1 |_{G_L} \cong \pi_n |_{G_L}.$$

By the lemma above,

$$\pi_n = \pi_1 \otimes \chi$$

for some linear character χ on G_K with $G_L \subset \ker \chi$, i.e., a character on $G_K/G_L \cong \text{Gal}(L/K)$.

Yifan Yang (NCTU)
Arithmetic-geometric approach

E_1/K and E_n/K are isomorphic over L, so

$$\pi_1\big|_{G_L} \simeq \pi_n\big|_{G_L}.$$

By the lemma above,

$$\pi_n = \pi_1 \otimes \chi$$

for some linear character χ on G_K with $G_L \subseteq \ker \chi$, i.e., a character on $G_K/G_L \simeq \text{Gal}(L/K)$.

Yifan Yang (NCTU)
A character on G_K with $G_L \subset \ker \chi$ has the following description. The Galois group $\text{Gal}(L/K)$ is generated by

$$\sigma : \sqrt[4]{n} \mapsto i\sqrt[4]{n}.$$

For each prime p of K not dividing $2n$, the Frobenius Frob_p is the element $\sigma^j \in \text{Gal}(L/K)$ such that

$$\sigma^j(\sqrt[4]{n}) \equiv (\sqrt[4]{n})^{N_p} \mod p,$$

where N_p denotes the norm of p.

Then there exists $k \in \{1, 3\}$ such that χ satisfies

$$\chi(\text{Frob}_p) = i^{jk}$$

for all p.
A character on G_K with $G_L \subset \ker \chi$ has the following description. The Galois group $\text{Gal}(L/K)$ is generated by

$$\sigma : \sqrt[4]{n} \mapsto i\sqrt[4]{n}.$$

For each prime p of K not dividing $2n$, the Frobenius Frob_p is the element $\sigma^j \in \text{Gal}(L/K)$ such that

$$\sigma^j(\sqrt[4]{n}) \equiv (\sqrt[4]{n})^{N_p} \mod p,$$

where N_p denotes the norm of p.

Then there exists $k \in \{1, 3\}$ such that χ satisfies

$$\chi(\text{Frob}_p) = ij^k$$

for all p.

A character on G_K with $G_L \subset \ker \chi$ has the following description. The Galois group $\text{Gal}(L/K)$ is generated by

$$\sigma : \sqrt[4]{n} \longleftrightarrow i\sqrt[4]{n}.$$

For each prime p of K not dividing $2n$, the Frobenius Frob_p is the element $\sigma^j \in \text{Gal}(L/K)$ such that

$$\sigma^j(\sqrt[4]{n}) \equiv (\sqrt[4]{n})^{N_p} \mod p,$$

where N_p denotes the norm of p.

Then there exists $k \in \{1, 3\}$ such that χ satisfies

$$\chi(\text{Frob}_p) = i^{jk}$$

for all p.

Yifan Yang (NCTU) Jacobsthal identity for $\mathbb{Q}(\sqrt{-2})$ 5 November 2010 12 / 30
Proof of Jacobsthal’s identity

Now for a prime \(p \equiv 1 \pmod{4} \), a prime of \(K \) lying over \(p \) has norm \(p \).

If \(n \) is a quadratic nonresidue modulo \(p \), then

\[
(\sqrt[p]{n})^{(p-1)/2} \equiv -1 \mod p,
\]

which implies that

\[
(\sqrt[p]{n})^{N_p} \equiv \pm i \sqrt[p]{n} \mod p.
\]

That is,

\[
\chi(\text{Frob}_p) = \pm i.
\]
Proof of Jacobsthal’s identity

Now for a prime $p \equiv 1 \mod 4$, a prime of K lying over p has norm p.

If n is a quadratic nonresidue modulo p, then

$$n^{(p-1)/2} \equiv -1 \mod p,$$

which implies that

$$(\sqrt[4]{n})^{Np} \equiv \pm i\sqrt[4]{n} \mod p.$$

That is,

$$\chi(\text{Frob}_p) = \pm i.$$
Proof of Jacobsthal’s identity

Now for a prime \(p \equiv 1 \mod 4 \), a prime of \(K \) lying over \(p \) has norm \(p \).

If \(n \) is a quadratic nonresidue modulo \(p \), then

\[
 n^{(p-1)/2} \equiv -1 \mod p,
\]

which implies that

\[
 (\sqrt[4]{n})^{N_p} \equiv \pm i \sqrt[4]{n} \mod p.
\]

That is,

\[
 \chi(\text{Frob}_p) = \pm i.
\]
Proof of Jacobsthal’s identity

It is well-known that

\[
L(E_1/\mathbb{Q}, s) = \prod_{p \equiv 1 \mod 4} \frac{1}{1 - 2\epsilon_p a_p p^{-s} + p^{1-2s}} \prod_{p \equiv 3 \mod 4} \frac{1}{1 + p^{1-2s}},
\]

where for \(p \equiv 1 \mod 4 \), \(a_p \) and \(b_p \) are positive integers with \(a_p \) odd and \(b_p \) even such that \(p = a_p^2 + b_p^2 \), and

\[
\epsilon_p = \left(\frac{-1}{a_p} \right) (-1)^{b_p/2}.
\]

Thus, for a prime \(p \) of \(K = \mathbb{Q}(i) \) lying over \(p \equiv 1 \mod 4 \),

\[
\pi_1(p) = \pm a_p \pm b_p i
\]

Then

\[
\pi_n(p) = \pi_1(p) \chi(p) = \pm b_p \pm a_p i
\]
Proof of Jacobsthal’s identity

It is well-known that

\[
L(E_1/\mathbb{Q}, s) = \prod_{\substack{\rho \equiv 1 \mod 4}} \frac{1}{1 - 2\epsilon_\rho a_\rho \rho^{-s} + \rho^{1-2s}} \prod_{\substack{\rho \equiv 3 \mod 4}} \frac{1}{1 + \rho^{1-2s}},
\]

where for \(\rho \equiv 1 \mod 4 \), \(a_\rho \) and \(b_\rho \) are positive integers with \(a_\rho \) odd and \(b_\rho \) even such that \(\rho = a_\rho^2 + b_\rho^2 \), and

\[
\epsilon_\rho = \left(\frac{-1}{a_\rho} \right) (-1)^{b_\rho/2}.
\]

Thus, for a prime \(\rho \) of \(K = \mathbb{Q}(i) \) lying over \(\rho \equiv 1 \mod 4 \),

\[
\pi_1(\rho) = \pm a_\rho \pm b_\rho i
\]

Then

\[
\pi_n(\rho) = \pi_1(\rho) \chi(\rho) = \pm b_\rho \pm a_\rho i
\]
Proof of Jacobsthal’s identity

It is well-known that

\[L(E_1/\mathbb{Q}, s) = \prod_{p \equiv 1 \pmod{4}} \frac{1}{1 - 2\epsilon_p a_p p^{-s} + p^{1-2s}} \prod_{p \equiv 3 \pmod{4}} \frac{1}{1 + p^{1-2s}}, \]

where for \(p \equiv 1 \pmod{4} \), \(a_p \) and \(b_p \) are positive integers with \(a_p \) odd and \(b_p \) even such that \(p = a_p^2 + b_p^2 \), and

\[\epsilon_p = \left(\frac{-1}{a_p} \right) (-1)^{b_p/2}. \]

Thus, for a prime \(p \) of \(K = \mathbb{Q}(i) \) lying over \(p \equiv 1 \pmod{4} \),

\[\pi_1(p) = \pm a_p \pm b_p i \]

Then

\[\pi_n(p) = \pi_1(p) \chi(p) = \pm b_p \pm a_p i \]
Proof of Jacobsthal’s identity

Therefore, the p-factor of $L(E_n, s)$ is

$$(1 \pm 2b_p p^{-s} + p^{1-2s})^{-1}.$$

That is,

$$\sum_{x=0}^{p^{-1}} \left(\frac{x^3 - nx}{p} \right) = \pm 2b_p,$$

which gives us the Jacobsthal identity.
Proof of Jacobsthal’s identity

Therefore, the p-factor of $L(E_n, s)$ is

$$(1 \pm 2b_p p^{-s} + p^{1-2s})^{-1}.$$

That is,

$$\sum_{x=0}^{p-1} \left(\frac{x^3 - nx}{p} \right) = \pm 2b_p,$$

which gives us the Jacobsthal identity.
Cubic analogue of the Jacobsthal identity

Theorem (Chan-Long-Y)

Let $p \equiv 1 \mod 6$. Assume that n is an integer such that $x^3 \equiv n \mod p$ is not solvable in integers. Set

$$A = \sum_{x=0}^{p-1} \left(\frac{x^3 - 1}{p} \right), \quad B = \sum_{x=0}^{p-1} \left(\frac{x^3 - n}{p} \right).$$

Then

Cubic analogue of the Jacobsthal identity

Theorem (Chan-Long-Y)

Let $p \equiv 1 \mod 6$. Assume that n is an integer such that $x^3 \equiv n \mod p$ is not solvable in integers. Set

$$A = \sum_{x=0}^{p-1} \left(\frac{x^3 - 1}{p} \right), \quad B = \sum_{x=0}^{p-1} \left(\frac{x^3 - n}{p} \right).$$

Then

Let $-d$ be the discriminant of an imaginary quadratic number field such that $\mathbb{Q}(\sqrt{-d})$ has class number 1.

Let
\[
f(x, y) = \begin{cases}
 x^2 + (d/4)y^2, & \text{if } d \equiv 0 \mod 4, \\
 x^2 + xy + ((1 + d)/4)y^2, & \text{if } d \equiv 3 \mod 4.
\end{cases}
\]

Then whether $p = f(x, y)$ is solvable depends only on $\left(\frac{-d}{p} \right)$.

Question. When $\left(\frac{-d}{p} \right) = 1$, can we express the integers A and B in $p = f(A, B)$ in terms of Jacobsthal sums in a uniform way?
Let \(-d\) be the discriminant of an imaginary quadratic number field such that \(\mathbb{Q}(\sqrt{-d})\) has class number 1.

Let
\[
f(x, y) = \begin{cases}
 x^2 + (d/4)y^2, & \text{if } d \equiv 0 \mod 4, \\
 x^2 + xy + ((1 + d)/4)y^2, & \text{if } d \equiv 3 \mod 4.
\end{cases}
\]

Then whether \(p = f(x, y)\) is solvable depends only on \((-d/p)\).

Question. When \((-d/p) = 1\), can we express the integers \(A\) and \(B\) in \(p = f(A, B)\) in terms of Jacobsthal sums in a uniform way?
Let $-d$ be the discriminant of an imaginary quadratic number field such that $\mathbb{Q}(\sqrt{-d})$ has class number 1.

Let
\[
f(x, y) = \begin{cases}
 x^2 + (d/4)y^2, & \text{if } d \equiv 0 \mod 4, \\
 x^2 + xy + ((1 + d)/4)y^2, & \text{if } d \equiv 3 \mod 4.
\end{cases}
\]

Then whether $p = f(x, y)$ is solvable depends only on $\left(\frac{-d}{p}\right)$.

Question. When $\left(\frac{-d}{p}\right) = 1$, can we express the integers A and B in $p = f(A, B)$ in terms of Jacobsthal sums in a uniform way?
Theorem (Hashimoto-Long-Y)

Assume that \(p \equiv 1 \mod 8 \) and \(n \) is a quadratic nonresidue modulo \(p \). Set

\[
A = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 + 4x^2 + 2x}{p} \right), \quad B = \frac{1}{4} \sum_{x=0}^{p-1} \left(\frac{x^5 + nx}{p} \right).
\]

Then \(A \) and \(B \) are integers satisfying \(p = A^2 + 2B^2 \).
Theorem (Hashimoto-Long-Y)

Assume that \(p \equiv 3 \mod 8 \). Set

\[
A = \frac{1}{2} \sum_{x=0}^{p-1} \left(\frac{x^3 + 4x^2 + 2x}{p} \right),
\]

\[
B = \frac{1}{4} \left(1 + \sum_{x=0}^{p-1} \left(\frac{x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8}{p} \right) \right).
\]

Then \(A \) and \(B \) are integers satisfying \(p = A^2 + 2B^2 \).
The elliptic curve $y^2 = x^3 + 4x^2 + 2x$

Lemma

The elliptic curve $y^2 = x^3 + 4x^2 + 2x$ has CM by $\mathbb{Z}[\sqrt{-2}]$ and its L-function is

$$
\prod_{p \equiv 1, 3 \mod 8} \frac{1}{1 - 2\epsilon_p a_p p^{-s} + p^{1-2s}} \prod_{p \equiv 5, 7 \mod 8} \frac{1}{1 + p^{1-2s}},
$$

where a_p and b_p are positive integers such that $p = a_p^2 + 2b_p^2$ and

$$
\epsilon_p = \begin{cases}
2(-1)^{b_p/2} \left(\frac{-2}{a_p} \right), & \text{if } p \equiv 1 \mod 8, \\
-2 \left(\frac{-2}{a_p} \right), & \text{if } p \equiv 3 \mod 8.
\end{cases}
$$
The hyperelliptic curve $y^2 = x^5 + x$

Lemma

For $C : y^2 = x^5 + x$, we have

$$L(C/\mathbb{Q}, s) = L(E_1/\mathbb{Q}, s)L(E_2/\mathbb{Q}, s),$$

where $E_1 : y^2 = x^3 + 4x^2 + 2x$, $E_2 : y^2 = x^3 - 4x^2 + 2x$.

Proof.

There are 2-to-1 coverings

$$(x, y) \rightarrow (X, Y) = \left(\frac{(x \pm 1)^2}{x}, \frac{y(x \pm 1)}{x^2} \right)$$

from C to E_1 and E_2. Considering the associated Galois representations, we get (1).
The hyperelliptic curve \(y^2 = x^5 + x \)

Lemma

For \(C : y^2 = x^5 + x \), we have

\[
L(C/\mathbb{Q}, s) = L(E_1/\mathbb{Q}, s)L(E_2/\mathbb{Q}, s),
\]

(1)

where \(E_1 : y^2 = x^3 + 4x^2 + 2x \), \(E_2 : y^2 = x^3 - 4x^2 + 2x \).

Proof.

There are 2-to-1 coverings

\[
(x, y) \mapsto (X, Y) = \left(\frac{(x \pm 1)^2}{x}, \frac{y(x \pm 1)}{x^2} \right)
\]

from \(C \) to \(E_1 \) and \(E_2 \). Considering the associated Galois representations, we get (1).
Corollary
For $C : y^2 = x^5 + x$, let

$$1 \over (1 - \alpha_{p,1}p^{-s}) \cdots (1 - \alpha_{p,4}p^{-s})$$

be the p-factor of $L(C/\mathbb{Q}, s)$.

- If $p \equiv 1 \mod 8$, then
 $$\alpha_{p,j} = \left(-2 \over a \right) (-1)^{b/2}(a \pm b\sqrt{-2}),$$
 each with multiplicity 2, where a and b are the positive integers such that $p = a^2 + 2b^2$.

- If $p \equiv 3 \mod 8$, then $\alpha_{p,j} = \pm a \pm b\sqrt{-2}$, where a and b are integers such that $p = a^2 + 2b^2$.
Corollary

For \(C : y^2 = x^5 + x \), let

\[
\frac{1}{(1 - \alpha_{p,1}p^{-s}) \cdots (1 - \alpha_{p,4}p^{-s})}
\]

be the \(p \)-factor of \(L(C/\mathbb{Q}, s) \).

- If \(p \equiv 1 \mod 8 \), then
 \[
 \alpha_{p,j} = \left(\frac{-2}{a} \right) (-1)^{b/2}(a \pm b\sqrt{-2}),
 \]
 each with multiplicity 2, where \(a \) and \(b \) are the positive integers such that \(p = a^2 + 2b^2 \).

- If \(p \equiv 3 \mod 8 \), then \(\alpha_{p,j} = \pm a \pm b\sqrt{-2} \), where \(a \) and \(b \) are integers such that \(p = a^2 + 2b^2 \).
The curve $y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8$

Lemma

The hyperelliptic curve $X_1 : y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8$ is isomorphic to $X_2 : y^2 = x^5 + x$ over a field of degree 16 over \mathbb{Q}, which is cyclic of degree 4 over $\mathbb{Q}(\zeta_8)$.

Proof.

Setting

$$x = \frac{\sqrt{2}(x_1 + 1)}{x_1 - 1}, \quad y = \frac{y_1}{(x_1 - 1)^3},$$

we get $y_1^2 = 128(2 + \sqrt{2})x_1(x_1^4 + 3 - 2\sqrt{2})$.

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).
The curve \(y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8 \)

Lemma

The hyperelliptic curve \(X_1 : y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8 \) is isomorphic to \(X_2 : y^2 = x^5 + x \) over a field of degree 16 over \(\mathbb{Q} \), which is cyclic of degree 4 over \(\mathbb{Q}(\zeta_8) \).

Proof.

Setting
\[
 x = \frac{\sqrt{2}(x_1 + 1)}{x_1 - 1}, \quad y = \frac{y_1}{(x_1 - 1)^3},
\]
we get \(y_1^2 = 128(2 + \sqrt{2})x_1(x_1^4 + 3 - 2\sqrt{2}) \).

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).
The curve $y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8$

Lemma

The hyperelliptic curve $X_1 : y^2 = x^6 + 4x^5 + 10x^4 - 20x^2 - 16x - 8$ is isomorphic to $X_2 : y^2 = x^5 + x$ over a field of degree 16 over \mathbb{Q}, which is cyclic of degree 4 over $\mathbb{Q}(\zeta_8)$.

Proof.

Setting

$$x = \frac{\sqrt{2}(x_1 + 1)}{x_1 - 1}, \quad y = \frac{y_1}{(x_1 - 1)^3},$$

we get $y_1^2 = 128(2 + \sqrt{2})x_1(x_1^4 + 3 - 2\sqrt{2})$.

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).
How do we find the curves?

Assume $p \equiv 1, 3 \mod 8$ and $p = a^2 + 2b^2 = (a + b\sqrt{-2})(a - b\sqrt{-2})$.

If $C : y^2 = f(x)$ is a curve such that the p-factor of $L(C/\mathbb{Q}, s)$ is

$$
\frac{1}{(1 \pm (a + b\sqrt{-2})p^{-s})(1 \pm (a - b\sqrt{-2})p^{-s})},
$$

then

$$
\sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) = \pm 2a.
$$

Thus, we are looking at elliptic curves with CM by $\mathbb{Z}[\sqrt{-2}]$.
How do we find the curves?

Assume $p \equiv 1, 3 \pmod{8}$ and $p = a^2 + 2b^2 = (a + b\sqrt{-2})(a - b\sqrt{-2})$.

If $C : y^2 = f(x)$ is a curve such that the p-factor of $L(C/\mathbb{Q}, s)$ is

$$
\frac{1}{(1 \pm (a + b\sqrt{-2})p^{-s})(1 \pm (a - b\sqrt{-2})p^{-s})},
$$

then

$$
\sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) = \pm 2a.
$$

Thus, we are looking at elliptic curves with CM by $\mathbb{Z}[\sqrt{-2}]$.

How do we find the curves?

Assume $p \equiv 1, 3 \mod 8$ and $p = a^2 + 2b^2 = (a + b\sqrt{-2})(a - b\sqrt{-2})$. If $C : y^2 = f(x)$ is a curve such that the p-factor of $L(C/\mathbb{Q}, s)$ is

$$\frac{1}{(1 \pm (a + b\sqrt{-2})p^{-s})(1 \pm (a - b\sqrt{-2})p^{-s})},$$

then

$$\sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) = \pm 2a.$$

Thus, we are looking at elliptic curves with CM by $\mathbb{Z}[\sqrt{-2}]$.
How do we find the curves?

To get b, we observe that

$$(a + b\sqrt{-2})(\zeta_8 + \zeta_8^3) + (a - b\sqrt{-2})(\zeta_8^5 + \zeta_8^7) = -4b.$$

Thus, we are looking for curves $y^2 = f(x)$ whose L-function has p-factor

$$\frac{1}{(1 \pm \zeta_8(a + b\sqrt{-2})p^{-s}) \ldots (1 \pm \zeta_8^7(a - b\sqrt{-2})p^{-s})},$$

i.e., a hyperelliptic curve of genus 2.

To find such a curve, we shall find “its L-function” first.
How do we find the curves?

To get \(b \), we observe that

\[
(a + b\sqrt{-2})(\zeta_8 + \zeta_8^3) + (a - b\sqrt{-2})(\zeta_8^5 + \zeta_8^7) = -4b.
\]

Thus, we are looking for curves \(y^2 = f(x) \) whose \(L \)-function has \(p \)-factor

\[
\frac{1}{(1 \pm \zeta_8(a + b\sqrt{-2})p^{-s}) \cdots (1 \pm \zeta_8^7(a - b\sqrt{-2})p^{-s})},
\]

i.e., a hyperelliptic curve of genus 2.

To find such a curve, we shall find “its \(L \)-function” first.
How do we find the curves?

To get b, we observe that

$$(a + b\sqrt{-2})(\zeta_8 + \zeta_8^3) + (a - b\sqrt{-2})(\zeta_8^5 + \zeta_8^7) = -4b.$$

Thus, we are looking for curves $y^2 = f(x)$ whose L-function has p-factor

$$\frac{1}{(1 \pm \zeta_8(a + b\sqrt{-2})p^{-s}) \cdots (1 \pm \zeta_8^7(a - b\sqrt{-2})p^{-s})},$$

i.e., a hyperelliptic curve of genus 2.

To find such a curve, we shall find “its L-function” first.
Hecke characters

Let K be a number field. For each place v, let K_v be the completion of K with respect to $|\cdot|_v$ and \mathcal{O}_v be the valuation ring of K_v when v is a finite place.

Let

$$\mathbb{I}_K = \left\{ (x_v) \in \prod_v K_v^* : x_v \in \mathcal{O}_v^* \text{ for all but finitely many } v \right\}$$

be the idele group of K, equipped with the product topology.

Definition

A Hecke character (Grössencharakter) χ is a continuous group homomorphism from the idele class group \mathbb{I}_K/K^* to \mathbb{C}^*.
Hecke characters

Let K be a number field. For each place v, let K_v be the completion of K with respect to $|\cdot|_v$ and \mathcal{O}_v be the valuation ring of K_v when v is a finite place.

Let

$$\mathbb{I}_K = \left\{ (x_v) \in \prod_v K_v^* : x_v \in \mathcal{O}_v^* \text{ for all but finitely many } v \right\}$$

be the idele group of K, equipped with the product topology.

Definition

A Hecke character (Grössencharakter) χ is a continuous group homomorphism from the idele class group \mathbb{I}_K/K^* to \mathbb{C}^*.
Hecke characters

Let K be a number field. For each place ν, let K_ν be the completion of K with respect to $| \cdot |_\nu$ and \mathcal{O}_ν be the valuation ring of K_ν when ν is a finite place.

Let

$$\mathbb{I}_K = \left\{ (x_\nu) \in \prod_\nu K_\nu^* : x_\nu \in \mathcal{O}_\nu^* \text{ for all but finitely many } \nu \right\}$$

be the idele group of K, equipped with the product topology.

Definition

A Hecke character (Grössencharakter) χ is a continuous group homomorphism from the idele class group \mathbb{I}_K/K^* to \mathbb{C}^*.
Hecke L-functions and their functional equations

Definition

Let χ be a Hecke character. Write $\chi = \prod_v \chi_v$. The Hecke L-function is defined by

$$L(s, \chi) = \prod_{v \text{ finite, } \chi_v(O_v^*)=1} \frac{1}{1 - \chi_v(\pi_v)N_v^{-s}},$$

where π_v is any uniformizer of K_v and N_v is the norm of the prime ideal corresponding to v.
Proposition

Let \(K \) be an imaginary quadratic number field. Suppose that \(k \) is the positive integer such that \(|\chi(x)| = |x|^{k-1} \) for all \(x \in \mathbb{I}_K/K^* \). Setting

\[
\Lambda(s, \chi) = \left(\frac{2\pi}{\sqrt{d_K d_{\chi}}} \right)^{-s} \Gamma(s)L(s, \chi),
\]

we have

\[
\Lambda(s, \chi) = \epsilon \Lambda(k - s, \overline{\chi})
\]

for some root of unity \(\epsilon \), where \(d_K \) is the discriminant of \(K \) and \(d_{\chi} \) is the norm of the modulus of \(\chi \).

Remark

We get CM modular forms from Hecke characters on imaginary quadratic number field.
Proposition

Let K be an imaginary quadratic number field. Suppose that k is the positive integer such that $|\chi(x)| = |x|^{k-1}$ for all $x \in \mathbb{I}_K/K^*$. Setting

$$\Lambda(s, \chi) = \left(\frac{2\pi}{\sqrt{d_K d_\chi}} \right)^{-s} \Gamma(s)L(s, \chi),$$

we have

$$\Lambda(s, \chi) = \epsilon \Lambda(k - s, \overline{\chi})$$

for some root of unity ϵ, where d_K is the discriminant of K and d_χ is the norm of the modulus of χ.

Remark

We get CM modular forms from Hecke characters on imaginary quadratic number field.
Finding curves

- Let $K = \mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_1 and χ_2 of modulus 8 so that χ takes value $\zeta_8^j(a + b\sqrt{-2})$.

- We then look for a hyperelliptic curve whose L-function coincide with $L(s, \chi_1)L(s, \chi_2)$. Specifically, we look for such a curve among hyperelliptic curves with an automorphism defined over $\mathbb{Q}(\sqrt{-2})$.

- In practice, we consider curves
 \[y^2 = x^6 + mx^5 + nx^4 - 2nx^2 - 4mx - 8, \]
 which has an automorphism
 \[(x, y) \mapsto \left(\frac{2}{x}, \frac{\sqrt{-8y}}{x^3} \right), \]
 and search for m and n such that the L-function is $L(s, \chi_1)L(s, \chi_2)$.
Finding curves

- Let $K = \mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_1 and χ_2 of modulus 8 so that χ takes value $\zeta_8^j (a + b\sqrt{-2})$.

- We then look for a hyperelliptic curve whose L-function coincide with $L(s, \chi_1)L(s, \chi_2)$. Specifically, we look for such a curve among hyperelliptic curves with an automorphism defined over $\mathbb{Q}(\sqrt{-2})$.

- In practice, we consider curves

$$y^2 = x^6 + mx^5 + nx^4 - 2nx^2 - 4mx - 8,$$

which has an automorphism

$$(x, y) \mapsto \left(\frac{2}{x}, \frac{\sqrt{-8}y}{x^3}\right),$$

and search for m and n such that the L-function is $L(s, \chi_1)L(s, \chi_2)$.

Yifan Yang (NCTU) Jacobsthal identity for $\mathbb{Q}(\sqrt{-2})$ 5 November 2010 29 / 30
Finding curves

- Let $K = \mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_1 and χ_2 of modulus 8 so that χ takes value $\zeta_8^j (a + b\sqrt{-2})$.
- We then look for a hyperelliptic curve whose L-function coincide with $L(s, \chi_1)L(s, \chi_2)$. Specifically, we look for such a curve among hyperelliptic curves with an automorphism defined over $\mathbb{Q}(\sqrt{-2})$.
- In practice, we consider curves

$$y^2 = x^6 + mx^5 + nx^4 - 2nx^2 - 4mx - 8,$$

which has an automorphism

$$(x, y) \longmapsto \left(\frac{2}{x}, \frac{\sqrt{-8}y}{x^3} \right),$$

and search for m and n such that the L-function is $L(s, \chi_1)L(s, \chi_2)$.
Problem. For each imaginary quadratic number field K with class number 1, find an analogous identity.