Jacobsthal identity for $\mathbb{Q}(\sqrt{-2})$

Yifan Yang (with Ki-Ichiro Hashimoto and Ling Long)

National Chiao Tung University, Taiwan

5 November 2010, NCKU Colloquium

Jacobsthal's identity

Theorem (Fermat)
An odd prime p is a sum of two integer squares if and only if $p \equiv 1$ mod 4.

Theorem (Jacobsthal)

Jacobsthal's identity

Theorem (Fermat)
An odd prime p is a sum of two integer squares if and only if $p \equiv 1$ mod 4.

Theorem (Jacobsthal)
Let p be a prime congruent to 1 modulo 4 and n be a quadratic nonresidue modulo p. Set

$$
A=\frac{1}{2} \sum_{x=0}^{p-1}\left(\frac{x^{3}-x}{p}\right), \quad B=\frac{1}{2} \sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) .
$$

Then $A, B \in \mathbb{Z}$ and satisfies $p=A^{2}+B^{2}$.

Legendre symbols

Definition

Let p be an odd prime. An integer a relatively prime to p is a quadratic residue (resp. quadratic nonresidue) modulo p if the congruence equation

$$
x^{2} \equiv a \bmod p
$$

is solvable (resp. unsolvable) in integers.

Legendre symbols

Definition

Let p be an odd prime. An integer a relatively prime to p is a quadratic residue (resp. quadratic nonresidue) modulo p if the congruence equation

$$
x^{2} \equiv a \bmod p
$$

is solvable (resp. unsolvable) in integers.
Definition
Let p be an odd prime. Then the Legendre symbol $(\dot{\bar{p}})$ is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}0, & \text { if } p \mid a \\ 1, & \text { if } a \text { is a quadratic residue modulo } p \\ -1, & \text { if } a \text { is a quadratic nonresidue modulo } p\end{cases}
$$

Properties of Legendre symbols

Definition

If $f(x) \in \mathbb{Z}[x]$, then we call

$$
J_{f}(p):=\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right)
$$

a Jacobsthal sum.

Proposition
We have

Properties of Legendre symbols

Definition
If $f(x) \in \mathbb{Z}[x]$, then we call

$$
J_{f}(p):=\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right)
$$

a Jacobsthal sum.
Proposition
We have

- $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$,

Properties of Legendre symbols

Definition
If $f(x) \in \mathbb{Z}[x]$, then we call

$$
J_{f}(p):=\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right)
$$

a Jacobsthal sum.
Proposition
We have

- $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$,
- $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p$.

Gauss' proof of the Jacobsthal identity

- Set $S(n)=\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)$.

Gauss' proof of the Jacobsthal identity

- Set $S(n)=\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)$.
- Pairing the term $x=$ a with the term $x=p-a$, we find $S(n)$ is always even.

Gauss' proof of the Jacobsthal identity

- Set $S(n)=\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)$.
- Pairing the term $x=a$ with the term $x=p-a$, we find $S(n)$ is always even.
- Replacing x by $r x$, we find $S\left(r^{2} n\right)=\left(\frac{r}{p}\right) S(n)$.

Gauss' proof of the Jacobsthal identity

- Set $S(n)=\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)$.
- Pairing the term $x=a$ with the term $x=p-a$, we find $S(n)$ is always even.
- Replacing x by $r x$, we find $S\left(r^{2} n\right)=\left(\frac{r}{p}\right) S(n)$.
- Let g be a primitive root modulo p. The above shows

$$
\begin{aligned}
& S(g)=-S\left(g^{3}\right)=S\left(g^{5}\right)=-S\left(g^{7}\right)=\ldots \\
& S\left(g^{2}\right)=-S\left(g^{4}\right)=S\left(g^{6}\right)=-S\left(g^{8}\right)=\ldots
\end{aligned}
$$

Gauss' proof of the Jacobsthal identity, continued

- Let $S(g)=2 A$ and $S\left(g^{2}\right)=2 B$. Then

$$
\begin{aligned}
2(p-1)\left(A^{2}+B^{2}\right) & =\sum_{n, x, y=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)\left(\frac{y^{3}-n y}{p}\right) \\
& =\sum_{x, y=0}^{p-1}\left(\frac{x y}{p}\right) \sum_{n=0}^{p-1}\left(\frac{\left(x^{2}-n\right)\left(y^{2}-n\right)}{p}\right)
\end{aligned}
$$

Gauss' proof of the Jacobsthal identity, continued

- Let $S(g)=2 A$ and $S\left(g^{2}\right)=2 B$. Then

$$
\begin{aligned}
2(p-1)\left(A^{2}+B^{2}\right) & =\sum_{n, x, y=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)\left(\frac{y^{3}-n y}{p}\right) \\
& =\sum_{x, y=0}^{p-1}\left(\frac{x y}{p}\right) \sum_{n=0}^{p-1}\left(\frac{\left(x^{2}-n\right)\left(y^{2}-n\right)}{p}\right) .
\end{aligned}
$$

- Using

$$
\sum_{z=0}^{p-1}\left(\frac{z(z+r)}{p}\right)= \begin{cases}p-1, & \text { if } r \equiv 0 \quad \bmod p \\ -1, & \text { if } r \not \equiv 0 \quad \bmod p\end{cases}
$$

we find

$$
2(p-1)\left(A^{2}+B^{2}\right)=p \sum_{x, y=0}^{p-1} \delta_{x^{2}, y^{2}}=2(p-1) p
$$

Arithmetic-geometric approach

Idea.
Consider the elliptic curve $E_{n}: y^{2}=x^{3}-n x$. We have

$$
\# E_{n}\left(\mathbb{F}_{p}\right)=1+\sum_{x=0}^{p-1}\left(1+\left(\frac{x^{3}-n x}{p}\right)\right)=p+1+\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) .
$$

Thus,

Since E_{1} and E_{n} are isomorphic over $\mathbb{Q}(\sqrt[4]{n})$, the two L-functions $L\left(E_{1} / \mathbb{Q}, s\right)$ and $L\left(E_{n} / \mathbb{Q}, s\right)$ must be related in some way, which give information about the Jacobsthal sums.

Arithmetic-geometric approach

Idea.
Consider the elliptic curve $E_{n}: y^{2}=x^{3}-n x$. We have

$$
\# E_{n}\left(\mathbb{F}_{p}\right)=1+\sum_{x=0}^{p-1}\left(1+\left(\frac{x^{3}-n x}{p}\right)\right)=p+1+\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) .
$$

Thus,

$$
L\left(E_{n} / \mathbb{Q}, s\right)^{-1}=\prod_{p}\left(1+\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) p^{-s}+p^{1-2 s}\right) .
$$

Since E_{1} and E_{n} are isomorphic over $\mathbb{Q}(\sqrt[4]{n})$, the two L-functions $L\left(E_{1} / \mathbb{Q}, s\right)$ and $L\left(E_{n} / \mathbb{Q}, s\right)$ must be related in some way, which give information about the Jacobsthal sums.

Arithmetic-geometric approach

Idea.
Consider the elliptic curve $E_{n}: y^{2}=x^{3}-n x$. We have

$$
\# E_{n}\left(\mathbb{F}_{p}\right)=1+\sum_{x=0}^{p-1}\left(1+\left(\frac{x^{3}-n x}{p}\right)\right)=p+1+\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) .
$$

Thus,

$$
L\left(E_{n} / \mathbb{Q}, s\right)^{-1}=\prod_{p}\left(1+\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right) p^{-s}+p^{1-2 s}\right) .
$$

Since E_{1} and E_{n} are isomorphic over $\mathbb{Q}(\sqrt[4]{n})$, the two L-functions $L\left(E_{1} / \mathbb{Q}, s\right)$ and $L\left(E_{n} / \mathbb{Q}, s\right)$ must be related in some way, which give information about the Jacobsthal sums.

Tate modules and Galois representations

Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E\left[\ell^{n}\right]$ be the subgroup of ℓ^{n}-torsion points.

Consider the Tate module

$$
T_{\ell}(E)=\lim E\left[\ell^{n}\right] .
$$

The absolute Galois group $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ acts on $T_{\ell}(E)$, yielding a Galois representation

$$
\rho_{E, \ell}: G_{K} \rightarrow \mathrm{GL}\left(2, \mathbb{Q}_{\ell}\right) .
$$

Then $L\left(\rho_{E, \ell}, s\right)=L(E / K, s)$.

Tate modules and Galois representations

Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E\left[\ell^{n}\right]$ be the subgroup of ℓ^{n}-torsion points.

Consider the Tate module

$$
T_{\ell}(E)=\underset{\leftrightarrows}{\lim E\left[\ell^{n}\right] . ~}
$$

The absolute Galois group $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ acts on $T_{\ell}(E)$, yielding a Galois representation

$$
\rho_{E, \ell}: G_{K} \rightarrow \mathrm{GL}\left(2, \mathbb{Q}_{\ell}\right) .
$$

Then $L\left(\rho_{E, \ell}, s\right)=L(E / K, s)$.

Tate modules and Galois representations

Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E\left[\ell^{n}\right]$ be the subgroup of ℓ^{n}-torsion points.

Consider the Tate module

$$
T_{\ell}(E)=\lim E\left[\ell^{n}\right] .
$$

The absolute Galois group $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ acts on $T_{\ell}(E)$, yielding a Galois representation

$$
\rho_{E, \ell}: G_{K} \rightarrow \mathrm{GL}\left(2, \mathbb{Q}_{\ell}\right)
$$

Then $L\left(\rho_{E, \ell}, s\right)=L(E / K, s)$.

Tate modules and Galois representations

Let ℓ be a prime. Let E be an elliptic curve over a number field K and $E\left[\ell^{n}\right]$ be the subgroup of ℓ^{n}-torsion points.

Consider the Tate module

$$
T_{\ell}(E)=\underset{\leftrightarrows}{\lim E\left[\ell^{n}\right] .}
$$

The absolute Galois group $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ acts on $T_{\ell}(E)$, yielding a Galois representation

$$
\rho_{E, \ell}: G_{K} \rightarrow \mathrm{GL}\left(2, \mathbb{Q}_{\ell}\right)
$$

Then $L\left(\rho_{E, \ell}, s\right)=L(E / K, s)$.

A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G / H is cyclic of finite order.
Assume that $\rho_{1}: G \rightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: G \rightarrow \mathrm{GL}\left(V_{2}\right)$ are irreducible representations over an algebraically closed of characteristic not dividing $|G / H|$ such that $\left.\rho_{1}\right|_{H}$ and $\left.\rho_{2}\right|_{H}$ have a common isomorphic irreducible subrepresentations of H.

Then
$\rho_{1} \simeq \rho_{2} \otimes \chi$
for some representation of G of degree 1 that is lifted from that of G / H.

A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G / H is cyclic of finite order.
Assume that $\rho_{1}: G \rightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: G \rightarrow \mathrm{GL}\left(V_{2}\right)$ are irreducible representations over an algebraically closed of characteristic not dividing $|G / H|$ such that $\left.\rho_{1}\right|_{H}$ and $\left.\rho_{2}\right|_{H}$ have a common isomorphic irreducible subrepresentations of H.

Then
for some representation of G of degree 1 that is lifted from that of G / H.

A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that $H \triangleleft G$ and G / H is cyclic of finite order.
Assume that $\rho_{1}: G \rightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: G \rightarrow \mathrm{GL}\left(V_{2}\right)$ are irreducible representations over an algebraically closed of characteristic not dividing $|G / H|$ such that $\left.\rho_{1}\right|_{H}$ and $\left.\rho_{2}\right|_{H}$ have a common isomorphic irreducible subrepresentations of H.

Then

$$
\rho_{1} \simeq \rho_{2} \otimes \chi
$$

for some representation of G of degree 1 that is lifted from that of G / H.

Arithmetic-geometric approach

Let $E_{n}: y^{2}=x^{3}-n x$. It is isomorphic to E_{1} over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K=\mathbb{Q}(i)$. Then $L=\mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ and $G_{L}=\operatorname{Gal}(\overline{\mathbb{Q}} / L)$.

The ellintic curves E_{n} have $C M$ by $\mathbb{T}_{[i]}$, so

$$
\left.\rho_{E_{n}, \ell}\right|_{G_{K}}=\pi_{n} \oplus \bar{\pi}_{n},
$$

where π_{n} are representations of G_{K} of degree 1 .

Arithmetic-geometric approach

Let $E_{n}: y^{2}=x^{3}-n x$. It is isomorphic to E_{1} over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K=\mathbb{Q}(i)$. Then $L=\mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ and $G_{L}=\operatorname{Gal}(\overline{\mathbb{Q}} / L)$.

The elliptic curves E_{n} have $C M$ by $\mathbb{Z}[i]$, so

$$
\left.\rho_{E_{n}, \ell}\right|_{G_{K}}=\pi_{n} \oplus \bar{\pi}_{n},
$$

where π_{n} are representations of G_{K} of degree 1.

Arithmetic-geometric approach

Let $E_{n}: y^{2}=x^{3}-n x$. It is isomorphic to E_{1} over $\mathbb{Q}(\sqrt[4]{n})$, which is not abelian over \mathbb{Q}.

Extend the base field to $K=\mathbb{Q}(i)$. Then $L=\mathbb{Q}(\sqrt[4]{n}, i)$ is cyclic over \mathbb{Q}. Let $G_{K}=\operatorname{Gal}(\overline{\mathbb{Q}} / K)$ and $G_{L}=\operatorname{Gal}(\overline{\mathbb{Q}} / L)$.
The elliptic curves E_{n} have $C M$ by $\mathbb{Z}[i]$, so

$$
\left.\rho_{E_{n}, \ell}\right|_{G_{K}}=\pi_{n} \oplus \bar{\pi}_{n},
$$

where π_{n} are representations of G_{K} of degree 1 .

Arithmetic-geometric approach

E_{1} / K and E_{n} / K are isomorphic over L, so

$$
\left.\left.\pi_{1}\right|_{G_{L}} \simeq \pi_{n}\right|_{G_{L}} .
$$

By the lemma above,
for some linear character χ on G_{K} with $G_{L} \subset$ ker χ, i.e., a character on $G_{K} / G_{L} \simeq \operatorname{Gal}(L / K)$.

Arithmetic-geometric approach

E_{1} / K and E_{n} / K are isomorphic over L, so

$$
\left.\left.\pi_{1}\right|_{G_{L}} \simeq \pi_{n}\right|_{G_{L}} .
$$

By the lemma above,

$$
\pi_{n}=\pi_{1} \otimes \chi
$$

for some linear character χ on G_{K} with $G_{L} \subset \operatorname{ker} \chi$, i.e., a character on $G_{K} / G_{L} \simeq \operatorname{Gal}(L / K)$.

Arithmetic-geometric approach

A character on G_{K} with $G_{L} \subset \operatorname{ker} \chi$ has the following description. The Galois group $\operatorname{Gal}(L / K)$ is generated by

$$
\sigma: \sqrt[4]{n} \longmapsto i \sqrt[4]{n} .
$$

For each prime p of K not dividing $2 n$, the Frobenius Frob $_{p}$ is the element $\sigma^{j} \in \operatorname{Gal}(L / K)$ such that

$$
\sigma^{j}(\sqrt[1]{n}) \equiv(\sqrt[4]{n})^{N p} \quad \bmod p,
$$

where $N \mathfrak{p}$ denotes the norm of \mathfrak{p}.
Then there exists $k \in\{1,3\}$ such that χ satisfies
$\chi\left(\right.$ Frob $\left._{\mathfrak{p}}\right)=j^{j k}$

Arithmetic-geometric approach

A character on G_{K} with $G_{L} \subset \operatorname{ker} \chi$ has the following description. The Galois group $\operatorname{Gal}(L / K)$ is generated by

$$
\sigma: \sqrt[4]{n} \longmapsto i \sqrt[4]{n}
$$

For each prime \mathfrak{p} of K not dividing $2 n$, the Frobenius Frob $_{\mathfrak{p}}$ is the element $\sigma^{j} \in \operatorname{Gal}(L / K)$ such that

$$
\sigma^{j}(\sqrt[4]{n}) \equiv(\sqrt[4]{n})^{N \mathfrak{p}} \quad \bmod \mathfrak{p}
$$

where $N \mathfrak{p}$ denotes the norm of \mathfrak{p}.
Then there exists $k \in\{1,3\}$ such that χ satisfies $\chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=i^{j k}$

Arithmetic-geometric approach

A character on G_{K} with $G_{L} \subset \operatorname{ker} \chi$ has the following description. The Galois group $\operatorname{Gal}(L / K)$ is generated by

$$
\sigma: \sqrt[4]{n} \longmapsto i \sqrt[4]{n}
$$

For each prime \mathfrak{p} of K not dividing $2 n$, the Frobenius $\operatorname{Frob}_{\mathfrak{p}}$ is the element $\sigma^{j} \in \operatorname{Gal}(L / K)$ such that

$$
\sigma^{j}(\sqrt[4]{n}) \equiv(\sqrt[4]{n})^{N \mathfrak{p}} \quad \bmod \mathfrak{p}
$$

where $N \mathfrak{p}$ denotes the norm of \mathfrak{p}.
Then there exists $k \in\{1,3\}$ such that χ satisfies

$$
\chi\left(\text { Frob }_{\mathfrak{p}}\right)=j^{j k}
$$

for all \mathfrak{p}.

Proof of Jacobsthal's identity

Now for a prime $p \equiv 1 \bmod 4$, a prime of K lying over p has norm p. If n is a quadratic nonresidue modulo p, then

$$
n^{(p-1) / 2} \equiv-1 \quad \bmod p
$$

which implies that

$$
(\sqrt[4]{n})^{N \mathfrak{p}} \equiv \pm i \sqrt[4]{n} \bmod \mathfrak{p}
$$

That is,
$\chi\left(\right.$ Frob $\left._{\mathfrak{p}}\right)= \pm i$.

Proof of Jacobsthal's identity

Now for a prime $p \equiv 1 \bmod 4$, a prime of K lying over p has norm p. If n is a quadratic nonresidue modulo p, then

$$
n^{(p-1) / 2} \equiv-1 \quad \bmod p,
$$

which implies that

$$
(\sqrt[4]{n})^{N \mathfrak{p}} \equiv \pm i \sqrt[4]{n} \bmod \mathfrak{p}
$$

That is,
$\chi\left(\right.$ Frob $\left._{\mathfrak{p}}\right)= \pm i$.

Proof of Jacobsthal's identity

Now for a prime $p \equiv 1 \bmod 4$, a prime of K lying over p has norm p. If n is a quadratic nonresidue modulo p, then

$$
n^{(p-1) / 2} \equiv-1 \quad \bmod p,
$$

which implies that

$$
(\sqrt[4]{n})^{N \mathfrak{p}} \equiv \pm i \sqrt[4]{n} \bmod \mathfrak{p}
$$

That is,

$$
\chi\left(\text { Frob }_{\mathfrak{p}}\right)= \pm i .
$$

Proof of Jacobsthal's identity

It is well-known that

$$
L\left(E_{1} / \mathbb{Q}, s\right)=\prod_{p \equiv 1} \frac{1}{\bmod 4} \frac{1}{1-2 \epsilon_{p} a_{p} p^{-s}+p^{1-2 s}} \prod_{p \equiv 3} \frac{1}{\bmod 4} \frac{1+p^{1-2 s}}{},
$$

where for $p \equiv 1 \bmod 4, a_{p}$ and b_{p} are positive integers with a_{p} odd and b_{p} even such that $p=a_{p}^{2}+b_{p}^{2}$, and

$$
\epsilon_{p}=\left(\frac{-1}{a_{p}}\right)(-1)^{b_{p} / 2}
$$

Thus, for a prime \mathfrak{p} of $K=\mathbb{Q}(i)$ lying over $p \equiv 1 \bmod 4$,

$$
\pi_{1}(\mathfrak{p})= \pm a_{p} \pm b_{p} i
$$

Then

$$
\pi_{n}(\mathfrak{p})=\pi_{1}(\mathfrak{p}) \chi(\mathfrak{p})= \pm b_{p} \pm a_{p} i
$$

Proof of Jacobsthal's identity

It is well-known that

$$
L\left(E_{1} / \mathbb{Q}, s\right)=\prod_{p \equiv 1} \frac{1}{\bmod 4} \frac{1}{1-2 \epsilon_{p} a_{p} p^{-s}+p^{1-2 s}} \prod_{p \equiv 3} \frac{1}{\bmod 4} \frac{1+p^{1-2 s}}{}
$$

where for $p \equiv 1 \bmod 4, a_{p}$ and b_{p} are positive integers with a_{p} odd and b_{p} even such that $p=a_{p}^{2}+b_{p}^{2}$, and

$$
\epsilon_{p}=\left(\frac{-1}{a_{p}}\right)(-1)^{b_{p} / 2}
$$

Thus, for a prime \mathfrak{p} of $K=\mathbb{Q}(i)$ lying over $p \equiv 1 \bmod 4$,

$$
\pi_{1}(\mathfrak{p})= \pm a_{p} \pm b_{p} i
$$

Then
$\pi_{n}(\mathfrak{p})=\pi_{1}(\mathfrak{p}) \chi(\mathfrak{p})= \pm b_{p} \pm a_{p} i$

Proof of Jacobsthal's identity

It is well-known that

$$
L\left(E_{1} / \mathbb{Q}, s\right)=\prod_{p \equiv 1} \frac{1}{\bmod 4} \frac{1}{1-2 \epsilon_{p} a_{p} p^{-s}+p^{1-2 s}} \prod_{p \equiv 3} \frac{1}{\bmod 4} \frac{1+p^{1-2 s}}{}
$$

where for $p \equiv 1 \bmod 4, a_{p}$ and b_{p} are positive integers with a_{p} odd and b_{p} even such that $p=a_{p}^{2}+b_{p}^{2}$, and

$$
\epsilon_{p}=\left(\frac{-1}{a_{p}}\right)(-1)^{b_{p} / 2}
$$

Thus, for a prime \mathfrak{p} of $K=\mathbb{Q}(i)$ lying over $p \equiv 1 \bmod 4$,

$$
\pi_{1}(\mathfrak{p})= \pm a_{p} \pm b_{p} i
$$

Then

$$
\pi_{n}(\mathfrak{p})=\pi_{1}(\mathfrak{p}) \chi(\mathfrak{p})= \pm b_{p} \pm a_{p} i
$$

Proof of Jacobsthal's identity

Therefore, the p-factor of $L\left(E_{n}, s\right)$ is

$$
\left(1 \pm 2 b_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

That is,

which gives us the Jacobsthal identity.

Proof of Jacobsthal's identity

Therefore, the p-factor of $L\left(E_{n}, s\right)$ is

$$
\left(1 \pm 2 b_{p} p^{-s}+p^{1-2 s}\right)^{-1}
$$

That is,

$$
\sum_{x=0}^{p-1}\left(\frac{x^{3}-n x}{p}\right)= \pm 2 b_{p}
$$

which gives us the Jacobsthal identity.

Cubic analogue of the Jacobsthal identity

Theorem (Chan-Long-Y)
Let $p \equiv 1 \bmod 6$. Assume that n is an integer such that $x^{3} \equiv n$ $\bmod p$ is not solvable in integers. Set

Then

$$
A^{2}+A B+B^{2}=3 p
$$

Cubic analogue of the Jacobsthal identity

Theorem (Chan-Long-Y)
Let $p \equiv 1 \bmod 6$. Assume that n is an integer such that $x^{3} \equiv n$ $\bmod p$ is not solvable in integers. Set

$$
A=\sum_{x=0}^{p-1}\left(\frac{x^{3}-1}{p}\right), \quad B=\sum_{x=0}^{p-1}\left(\frac{x^{3}-n}{p}\right) .
$$

Then

$$
A^{2}+A B+B^{2}=3 p
$$

Question

Let $-d$ be the discriminant of an imaginary quadratic number field such that $\mathbb{Q}(\sqrt{-d})$ has class number 1 .

Let

$$
f(x, y)= \begin{cases}x^{2}+(d / 4) y^{2}, & \text { if } d \equiv 0 \quad \bmod 4 \\ x^{2}+x y+((1+d) / 4) y^{2}, & \text { if } d \equiv 3 \bmod 4\end{cases}
$$

Then whether $p=f(x, y)$ is solvable depends only on $\left(\frac{-d}{p}\right)$.
Question. When $\left(\frac{-d}{p}\right)=1$, can we express the integers A and B in $p=f(A, B)$ in terms of Jacobsthal sums in a uniform way?

Question

Let $-d$ be the discriminant of an imaginary quadratic number field such that $\mathbb{Q}(\sqrt{-d})$ has class number 1 .

Let

$$
f(x, y)= \begin{cases}x^{2}+(d / 4) y^{2}, & \text { if } d \equiv 0 \bmod 4 \\ x^{2}+x y+((1+d) / 4) y^{2}, & \text { if } d \equiv 3 \bmod 4\end{cases}
$$

Then whether $p=f(x, y)$ is solvable depends only on $\left(\frac{-d}{p}\right)$.
Question. When $\left(\frac{-d}{p}\right)=1$, can we express the integers A and B in
$p=f(A, B)$ in terms of Jacobsthal sums in a uniform way?

Question

Let $-d$ be the discriminant of an imaginary quadratic number field such that $\mathbb{Q}(\sqrt{-d})$ has class number 1 .

Let

$$
f(x, y)= \begin{cases}x^{2}+(d / 4) y^{2}, & \text { if } d \equiv 0 \quad \bmod 4 \\ x^{2}+x y+((1+d) / 4) y^{2}, & \text { if } d \equiv 3 \bmod 4\end{cases}
$$

Then whether $p=f(x, y)$ is solvable depends only on $\left(\frac{-d}{p}\right)$.
Question. When $\left(\frac{-d}{p}\right)=1$, can we express the integers A and B in $p=f(A, B)$ in terms of Jacobsthal sums in a uniform way?

Jacobsthal identity for $\mathbb{Q}(\sqrt{-2})$, Part I

Theorem (Hashimoto-Long-Y)
Assume that $p \equiv 1 \bmod 8$ and n is a quadratic nonresidue modulo p. Set

$$
A=\frac{1}{2} \sum_{x=0}^{p-1}\left(\frac{x^{3}+4 x^{2}+2 x}{p}\right), \quad B=\frac{1}{4} \sum_{x=0}^{p-1}\left(\frac{x^{5}+n x}{p}\right) .
$$

Then A and B are integers satisfying $p=A^{2}+2 B^{2}$.

Jacobsthal identity for $\mathbb{Q}(\sqrt{-d})$, Part II

Theorem (Hashimoto-Long-Y)
Assume that $p \equiv 3 \bmod 8$. Set

$$
\begin{gathered}
A=\frac{1}{2} \sum_{x=0}^{p-1}\left(\frac{x^{3}+4 x^{2}+2 x}{p}\right) \\
B=\frac{1}{4}\left(1+\sum_{x=0}^{p-1}\left(\frac{x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8}{p}\right)\right)
\end{gathered}
$$

Then A and B are integers satisfying $p=A^{2}+2 B^{2}$.

The elliptic curve $y^{2}=x^{3}+4 x^{2}+2 x$

Lemma

The elliptic curve $y^{2}=x^{3}+4 x^{2}+2 x$ has CM by $\mathbb{Z}[\sqrt{-2}]$ and its L-function is

$$
\prod_{p \equiv 1,3} \frac{1}{\bmod 8} \frac{1}{1-2 \epsilon_{p} a_{p} p^{-s}+p^{1-2 s}} \prod_{p \equiv 5,7} \frac{1}{1+p^{1-2 s}},
$$

where a_{p} and b_{p} are positive integers such that $p=a_{p}^{2}+2 b_{p}^{2}$ and

$$
\epsilon_{p}= \begin{cases}2(-1)^{b_{p} / 2}\left(\frac{-2}{a_{p}}\right), & \text { if } p \equiv 1 \bmod 8, \\ -2\left(\frac{-2}{a_{p}}\right), & \text { if } p \equiv 3 \bmod 8 .\end{cases}
$$

The hyperelliptic curve $y^{2}=x^{5}+x$

Lemma
For $C: y^{2}=x^{5}+x$, we have

$$
\begin{equation*}
L(C / \mathbb{Q}, s)=L\left(E_{1} / \mathbb{Q}, s\right) L\left(E_{2} / \mathbb{Q}, s\right) \tag{1}
\end{equation*}
$$

where $E_{1}: y^{2}=x^{3}+4 x^{2}+2 x, E_{2}: y^{2}=x^{3}-4 x^{2}+2 x$.

The hyperelliptic curve $y^{2}=x^{5}+x$

Lemma
For $C: y^{2}=x^{5}+x$, we have

$$
\begin{equation*}
L(C / \mathbb{Q}, s)=L\left(E_{1} / \mathbb{Q}, s\right) L\left(E_{2} / \mathbb{Q}, s\right) \tag{1}
\end{equation*}
$$

where $E_{1}: y^{2}=x^{3}+4 x^{2}+2 x, E_{2}: y^{2}=x^{3}-4 x^{2}+2 x$.

Proof.

There are 2-to-1 coverings

$$
(x, y) \longmapsto(X, Y)=\left(\frac{(x \pm 1)^{2}}{x}, \frac{y(x \pm 1)}{x^{2}}\right)
$$

from C to E_{1} and E_{2}. Considering the associated Galois representations, we get (1).

L-function of $y^{2}=x^{5}+x$

Corollary

For $C: y^{2}=x^{5}+x$, let

$$
\frac{1}{\left(1-\alpha_{p, 1} p^{-s}\right) \ldots\left(1-\alpha_{p, 4} p^{-s}\right)}
$$

be the p-factor of $L(C / \mathbb{Q}, s)$.

L-function of $y^{2}=x^{5}+x$

Corollary
For $C: y^{2}=x^{5}+x$, let

$$
\frac{1}{\left(1-\alpha_{p, 1} p^{-s}\right) \ldots\left(1-\alpha_{p, 4} p^{-s}\right)}
$$

be the p-factor of $L(C / \mathbb{Q}, s)$.

- If $p \equiv 1 \bmod 8$, then

$$
\alpha_{p, j}=\left(\frac{-2}{a}\right)(-1)^{b / 2}(a \pm b \sqrt{-2}),
$$

each with multiplicity 2 , where a and b are the positive integers such that $p=a^{2}+2 b^{2}$.

- If $p \equiv 3 \bmod 8$, then $\alpha_{p, j}= \pm a \pm b \sqrt{-2}$, where a and b are integers such that $p=a^{2}+2 b^{2}$.

The curve $y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$

Lemma
The hyperelliptic curve $X_{1}: y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$ is isomorphic to $X_{2}: y^{2}=x^{5}+x$ over a field of degree 16 over \mathbb{Q}, which is cyclic of degree 4 over $\mathbb{Q}\left(\zeta_{8}\right)$.

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).

The curve $y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$

Lemma

The hyperelliptic curve $X_{1}: y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$ is isomorphic to $X_{2}: y^{2}=x^{5}+x$ over a field of degree 16 over \mathbb{Q}, which is cyclic of degree 4 over $\mathbb{Q}\left(\zeta_{8}\right)$.

Proof.
Setting

$$
x=\frac{\sqrt{2}\left(x_{1}+1\right)}{x_{1}-1}, \quad y=\frac{y_{1}}{\left(x_{1}-1\right)^{3}},
$$

we get $y_{1}^{2}=128(2+\sqrt{2}) x_{1}\left(x_{1}^{4}+3-2 \sqrt{2}\right)$. \square

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).

The curve $y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$

Lemma

The hyperelliptic curve $X_{1}: y^{2}=x^{6}+4 x^{5}+10 x^{4}-20 x^{2}-16 x-8$ is isomorphic to $X_{2}: y^{2}=x^{5}+x$ over a field of degree 16 over \mathbb{Q}, which is cyclic of degree 4 over $\mathbb{Q}\left(\zeta_{8}\right)$.

Proof.
Setting

$$
x=\frac{\sqrt{2}\left(x_{1}+1\right)}{x_{1}-1}, \quad y=\frac{y_{1}}{\left(x_{1}-1\right)^{3}}
$$

we get $y_{1}^{2}=128(2+\sqrt{2}) x_{1}\left(x_{1}^{4}+3-2 \sqrt{2}\right)$.

The proof of the theorem follows the argument in the case of the classical Jacobsthal identity (although more complicated).

How do we find the curves?

Assume $p \equiv 1,3 \bmod 8$ and $p=a^{2}+2 b^{2}=(a+b \sqrt{-2})(a-b \sqrt{-2})$. If $C: y^{2}=f(x)$ is a curve such that the p-factor of $L(C / \mathbb{Q}, s)$ is

$$
\overline{\left(1 \pm(a+b \sqrt{-2}) p^{-s}\right)\left(1 \pm(a-b \sqrt{-2}) p^{-s}\right)},
$$

then

Thus, we are looking at elliptic curves with CM by $\mathbb{Z}[\sqrt{-2}]$.

How do we find the curves?

Assume $p \equiv 1,3 \bmod 8$ and $p=a^{2}+2 b^{2}=(a+b \sqrt{-2})(a-b \sqrt{-2})$. If $C: y^{2}=f(x)$ is a curve such that the p-factor of $L(C / \mathbb{Q}, s)$ is

$$
\frac{1}{\left(1 \pm(a+b \sqrt{-2}) p^{-s}\right)\left(1 \pm(a-b \sqrt{-2}) p^{-s}\right)}
$$

then

$$
\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right)= \pm 2 a
$$

Thus, we are looking at elliptic curves with CM by $\mathbb{Z}[\sqrt{-2}]$.

How do we find the curves?

Assume $p \equiv 1,3 \bmod 8$ and $p=a^{2}+2 b^{2}=(a+b \sqrt{-2})(a-b \sqrt{-2})$. If $C: y^{2}=f(x)$ is a curve such that the p-factor of $L(C / \mathbb{Q}, s)$ is

$$
\frac{1}{\left(1 \pm(a+b \sqrt{-2}) p^{-s}\right)\left(1 \pm(a-b \sqrt{-2}) p^{-s}\right)},
$$

then

$$
\sum_{x=0}^{p-1}\left(\frac{f(x)}{p}\right)= \pm 2 a .
$$

Thus, we are looking at elliptic curves with $C M$ by $\mathbb{Z}[\sqrt{-2}]$.

How do we find the curves?

To get b, we observe that

$$
(a+b \sqrt{-2})\left(\zeta_{8}+\zeta_{8}^{3}\right)+(a-b \sqrt{-2})\left(\zeta_{8}^{5}+\zeta_{8}^{7}\right)=-4 b .
$$

Thus, we are looking for curves $y^{2}=f(x)$ whose L-function has p-factor

i.e., a hyperelliptic curve of genus 2 .

To find such a curve, we shall find "its L-function" first.

How do we find the curves?

To get b, we observe that

$$
(a+b \sqrt{-2})\left(\zeta_{8}+\zeta_{8}^{3}\right)+(a-b \sqrt{-2})\left(\zeta_{8}^{5}+\zeta_{8}^{7}\right)=-4 b
$$

Thus, we are looking for curves $y^{2}=f(x)$ whose L-function has p-factor

$$
\frac{1}{\left(1 \pm \zeta_{8}(a+b \sqrt{-2}) p^{-s}\right) \ldots\left(1 \pm \zeta_{8}^{7}(a-b \sqrt{-2}) p^{-s}\right)}
$$

i.e., a hyperelliptic curve of genus 2 .

To find such a curve, we shall find "its L-function" first.

How do we find the curves?

To get b, we observe that

$$
(a+b \sqrt{-2})\left(\zeta_{8}+\zeta_{8}^{3}\right)+(a-b \sqrt{-2})\left(\zeta_{8}^{5}+\zeta_{8}^{7}\right)=-4 b
$$

Thus, we are looking for curves $y^{2}=f(x)$ whose L-function has p-factor

$$
\frac{1}{\left(1 \pm \zeta_{8}(a+b \sqrt{-2}) p^{-s}\right) \ldots\left(1 \pm \zeta_{8}^{7}(a-b \sqrt{-2}) p^{-s}\right)}
$$

i.e., a hyperelliptic curve of genus 2 .

To find such a curve, we shall find "its L-function" first.

Hecke characters

Let K be a number field. For each place v, let K_{v} be the completion of K with respect to $|\cdot|_{v}$ and \mathcal{O}_{v} be the valuation ring of K_{v} when v is a finite place.

Let

be the idele group of K, equipped with the product topology.

Definition

Hecke characters

Let K be a number field. For each place v, let K_{v} be the completion of K with respect to $|\cdot|_{v}$ and \mathcal{O}_{v} be the valuation ring of K_{v} when v is a finite place.

Let

$$
\mathbb{I}_{K}=\left\{\left(x_{v}\right) \in \prod_{v} K_{v}^{*}: x_{v} \in \mathcal{O}_{v}^{*} \text { for all but finitely many } v\right\}
$$

be the idele group of K, equipped with the product topology.

Definition

Hecke characters

Let K be a number field. For each place v, let K_{v} be the completion of K with respect to $|\cdot|_{v}$ and \mathcal{O}_{v} be the valuation ring of K_{v} when v is a finite place.

Let

$$
\mathbb{I}_{K}=\left\{\left(x_{v}\right) \in \prod_{v} K_{v}^{*}: x_{v} \in \mathcal{O}_{v}^{*} \text { for all but finitely many } v\right\}
$$

be the idele group of K, equipped with the product topology.

Definition

A Hecke character (Grössencharakter) χ is a continuous group homomorphism from the idele class group \mathbb{I}_{K} / K^{*} to \mathbb{C}^{*}.

Hecke L-functions and their functional equations

Definition
Let χ be a Hecke character. Write $\chi=\prod_{v} \chi_{v}$. The Hecke L-function is defined by

$$
L(s, \chi)=\prod_{v \text { finite, } \chi_{v}\left(\mathcal{O}_{v}^{*}\right)=1} \frac{1}{1-\chi_{v}\left(\pi_{v}\right) N v^{-s}},
$$

where π_{v} is any uniformizer of K_{v} and $N v$ is the norm of the prime ideal corresponding to v.

Hecke L-functions and their functional equations

Proposition

Let K be an imaginary quadratic number field. Suppose that k is the positive integer such that $|\chi(x)|=|x|^{k-1}$ for all $x \in \mathbb{I}_{K} / K^{*}$. Setting

$$
\Lambda(s, \chi)=\left(\frac{2 \pi}{\sqrt{d_{K} d_{\chi}}}\right)^{-s} \Gamma(s) L(s, \chi)
$$

we have

$$
\Lambda(s, \chi)=\epsilon \Lambda(k-s, \bar{\chi})
$$

for some root of unity ϵ, where d_{K} is the discriminant of K and d_{χ} is the norm of the modulus of χ.

Hecke L-functions and their functional equations

Proposition

Let K be an imaginary quadratic number field. Suppose that k is the positive integer such that $|\chi(x)|=|x|^{k-1}$ for all $x \in \mathbb{I}_{K} / K^{*}$. Setting

$$
\Lambda(s, \chi)=\left(\frac{2 \pi}{\sqrt{d_{K} d_{\chi}}}\right)^{-s} \Gamma(s) L(s, \chi)
$$

we have

$$
\Lambda(s, \chi)=\epsilon \Lambda(k-s, \bar{\chi})
$$

for some root of unity ϵ, where d_{K} is the discriminant of K and d_{χ} is the norm of the modulus of χ.

Remark
We get CM modular forms from Hecke characters on imaginary quadratic number field.

Finding curves

- Let $K=\mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_{1} and χ_{2} of modulus 8 so that χ takes value $\zeta_{8}^{j}(a+b \sqrt{-2})$.

Finding curves

- Let $K=\mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_{1} and χ_{2} of modulus 8 so that χ takes value $\zeta_{8}^{j}(a+b \sqrt{-2})$.
- We then look for a hyperelliptic curve whose L-function coincide with $L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right)$. Specifically, we look for such a curve among hyperelliptic curves with an automorphism defined over $\mathbb{Q}(\sqrt{-2})$.

Finding curves

- Let $K=\mathbb{Q}(\sqrt{-2})$. We construct Hecke characters χ_{1} and χ_{2} of modulus 8 so that χ takes value $\zeta_{8}^{j}(a+b \sqrt{-2})$.
- We then look for a hyperelliptic curve whose L-function coincide with $L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right)$. Specifically, we look for such a curve among hyperelliptic curves with an automorphism defined over $\mathbb{Q}(\sqrt{-2})$.
- In practice, we consider curves

$$
y^{2}=x^{6}+m x^{5}+n x^{4}-2 n x^{2}-4 m x-8
$$

which has an automorphism

$$
(x, y) \longmapsto\left(\frac{2}{x}, \frac{\sqrt{-8} y}{x^{3}}\right)
$$

and search for m and n such that the L-function is $L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right)$.

Problem

Problem. For each imaginary quadratic number field K with class number 1, find an analogous identity.

