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Jacobsthal’s identity

Theorem (Fermat)
An odd prime p is a sum of two integer squares if and only if p ≡ 1
mod 4.

Theorem (Jacobsthal)
Let p be a prime congruent to 1 modulo 4 and n be a quadratic
nonresidue modulo p. Set

A =
1
2

p−1∑
x=0

(
x3 − x

p

)
, B =

1
2

p−1∑
x=0

(
x3 − nx

p

)
.

Then A,B ∈ Z and satisfies p = A2 + B2.
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Legendre symbols

Definition
Let p be an odd prime. An integer a relatively prime to p is a quadratic
residue (resp. quadratic nonresidue) modulo p if the congruence
equation

x2 ≡ a mod p

is solvable (resp. unsolvable) in integers.

Definition

Let p be an odd prime. Then the Legendre symbol
(
·
p

)
is defined by

(
a
p

)
=


0, if p|a,
1, if a is a quadratic residue modulo p,
−1, if a is a quadratic nonresidue modulo p.
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Properties of Legendre symbols

Definition
If f (x) ∈ Z[x ], then we call

Jf (p) :=

p−1∑
x=0

(
f (x)

p

)
a Jacobsthal sum.

Proposition
We have

•
(

ab
p

)
=

(
a
p

)(
b
p

)
,

•
(

a
p

)
≡ a(p−1)/2 mod p.
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Gauss’ proof of the Jacobsthal identity

• Set S(n) =

p−1∑
x=0

(
x3 − nx

p

)
.

• Pairing the term x = a with the term x = p − a, we find S(n) is
always even.

• Replacing x by rx , we find S(r2n) =

(
r
p

)
S(n).

• Let g be a primitive root modulo p. The above shows

S(g) = −S(g3) = S(g5) = −S(g7) = . . . ,

S(g2) = −S(g4) = S(g6) = −S(g8) = . . . .
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Gauss’ proof of the Jacobsthal identity, continued

• Let S(g) = 2A and S(g2) = 2B. Then

2(p − 1)(A2 + B2) =

p−1∑
n,x ,y=0

(
x3 − nx

p

)(
y3 − ny

p

)

=

p−1∑
x ,y=0

(
xy
p

) p−1∑
n=0

(
(x2 − n)(y2 − n)

p

)
.

• Using
p−1∑
z=0

(
z(z + r)

p

)
=

{
p − 1, if r ≡ 0 mod p,
−1, if r 6≡ 0 mod p,

we find

2(p − 1)(A2 + B2) = p
p−1∑

x ,y=0

δx2,y2 = 2(p − 1)p.
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Arithmetic-geometric approach

Idea.

Consider the elliptic curve En : y2 = x3 − nx . We have

#En(Fp) = 1 +

p−1∑
x=0

(
1 +

(
x3 − nx

p

))
= p + 1 +

p−1∑
x=0

(
x3 − nx

p

)
.

Thus,

L(En/Q, s)−1 =
∏

p

1 +

p−1∑
x=0

(
x3 − nx

p

)
p−s + p1−2s

 .

Since E1 and En are isomorphic over Q( 4
√

n), the two L-functions
L(E1/Q, s) and L(En/Q, s) must be related in some way, which give
information about the Jacobsthal sums.
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Tate modules and Galois representations

Let ` be a prime. Let E be an elliptic curve over a number field K and
E [`n] be the subgroup of `n-torsion points.

Consider the Tate module

T`(E) = lim
←−

E [`n].

The absolute Galois group GK = Gal(Q/K ) acts on T`(E), yielding a
Galois representation

ρE ,` : GK → GL(2,Q`).

Then L(ρE ,`, s) = L(E/K , s).
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A lemma

Lemma (Clifford)

(Under suitable conditions on G and ρ) Assume that H � G and G/H is
cyclic of finite order.

Assume that ρ1 : G→ GL(V1) and ρ2 : G→ GL(V2) are irreducible
representations over an algebraically closed of characteristic not
dividing |G/H| such that ρ1

∣∣
H and ρ2

∣∣
H have a common isomorphic

irreducible subrepresentations of H.

Then
ρ1 ' ρ2 ⊗ χ

for some representation of G of degree 1 that is lifted from that of G/H.
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Arithmetic-geometric approach

Let En : y2 = x3 − nx . It is isomorphic to E1 over Q( 4
√

n), which is not
abelian over Q.

Extend the base field to K = Q(i). Then L = Q( 4
√

n, i) is cyclic over Q.
Let GK = Gal(Q/K ) and GL = Gal(Q/L).

The elliptic curves En have CM by Z[i], so

ρEn,`

∣∣
GK

= πn ⊕ πn,

where πn are representations of GK of degree 1.
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Arithmetic-geometric approach

E1/K and En/K are isomorphic over L, so

π1
∣∣
GL
' πn

∣∣
GL
.

By the lemma above,
πn = π1 ⊗ χ

for some linear character χ on GK with GL ⊂ kerχ, i.e., a character on
GK/GL ' Gal(L/K ).
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Arithmetic-geometric approach

A character on GK with GL ⊂ kerχ has the following description. The
Galois group Gal(L/K ) is generated by

σ : 4
√

n 7−→ i 4
√

n.

For each prime p of K not dividing 2n, the Frobenius Frobp is the
element σj ∈ Gal(L/K ) such that

σj( 4
√

n) ≡ ( 4
√

n)Np mod p,

where Np denotes the norm of p.

Then there exists k ∈ {1,3} such that χ satisfies

χ(Frobp) = i jk

for all p.
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Proof of Jacobsthal’s identity

Now for a prime p ≡ 1 mod 4, a prime of K lying over p has norm p.

If n is a quadratic nonresidue modulo p, then

n(p−1)/2 ≡ −1 mod p,

which implies that
( 4
√

n)Np ≡ ±i 4
√

n mod p.

That is,
χ(Frobp) = ±i .
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Proof of Jacobsthal’s identity

It is well-known that

L(E1/Q, s) =
∏

p≡1 mod 4

1
1− 2εpapp−s + p1−2s

∏
p≡3 mod 4

1
1 + p1−2s ,

where for p ≡ 1 mod 4, ap and bp are positive integers with ap odd
and bp even such that p = a2

p + b2
p, and

εp =

(
−1
ap

)
(−1)bp/2.

Thus, for a prime p of K = Q(i) lying over p ≡ 1 mod 4,

π1(p) = ±ap ± bpi

Then
πn(p) = π1(p)χ(p) = ±bp ± api
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Proof of Jacobsthal’s identity

Therefore, the p-factor of L(En, s) is

(1± 2bpp−s + p1−2s)−1.

That is,
p−1∑
x=0

(
x3 − nx

p

)
= ±2bp,

which gives us the Jacobsthal identity.
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Cubic analogue of the Jacobsthal identity

Theorem (Chan-Long-Y)

Let p ≡ 1 mod 6. Assume that n is an integer such that x3 ≡ n
mod p is not solvable in integers. Set

A =

p−1∑
x=0

(
x3 − 1

p

)
, B =

p−1∑
x=0

(
x3 − n

p

)
.

Then
A2 + AB + B2 = 3p.
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Question

Let −d be the discriminant of an imaginary quadratic number field
such that Q(

√
−d) has class number 1.

Let

f (x , y) =

{
x2 + (d/4)y2, if d ≡ 0 mod 4,
x2 + xy + ((1 + d)/4)y2, if d ≡ 3 mod 4.

Then whether p = f (x , y) is solvable depends only on
(
−d
p

)
.

Question. When
(
−d
p

)
= 1, can we express the integers A and B in

p = f (A,B) in terms of Jacobsthal sums in a uniform way?
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Jacobsthal identity for Q(
√
−2), Part I

Theorem (Hashimoto-Long-Y)
Assume that p ≡ 1 mod 8 and n is a quadratic nonresidue modulo p.
Set

A =
1
2

p−1∑
x=0

(
x3 + 4x2 + 2x

p

)
, B =

1
4

p−1∑
x=0

(
x5 + nx

p

)
.

Then A and B are integers satisfying p = A2 + 2B2.
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Jacobsthal identity for Q(
√
−d), Part II

Theorem (Hashimoto-Long-Y)

Assume that p ≡ 3 mod 8. Set

A =
1
2

p−1∑
x=0

(
x3 + 4x2 + 2x

p

)
,

B =
1
4

1 +

p−1∑
x=0

(
x6 + 4x5 + 10x4 − 20x2 − 16x − 8

p

) .

Then A and B are integers satisfying p = A2 + 2B2.
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The elliptic curve y2 = x3 + 4x2 + 2x

Lemma

The elliptic curve y2 = x3 + 4x2 + 2x has CM by Z[
√
−2] and its

L-function is∏
p≡1,3 mod 8

1
1− 2εpapp−s + p1−2s

∏
p≡5,7 mod 8

1
1 + p1−2s ,

where ap and bp are positive integers such that p = a2
p + 2b2

p and

εp =

2(−1)bp/2
(
−2
ap

)
, if p ≡ 1 mod 8,

−2
(
−2
ap

)
, if p ≡ 3 mod 8.
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The hyperelliptic curve y2 = x5 + x

Lemma

For C : y2 = x5 + x , we have

L(C/Q, s) = L(E1/Q, s)L(E2/Q, s), (1)

where E1 : y2 = x3 + 4x2 + 2x , E2 : y2 = x3 − 4x2 + 2x .

Proof.
There are 2-to-1 coverings

(x , y) 7−→ (X ,Y ) =

(
(x ± 1)2

x
,
y(x ± 1)

x2

)
from C to E1 and E2. Considering the associated Galois
representations, we get (1).
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L-function of y2 = x5 + x

Corollary

For C : y2 = x5 + x , let

1
(1− αp,1p−s) . . . (1− αp,4p−s)

be the p-factor of L(C/Q, s).
• If p ≡ 1 mod 8, then

αp,j =

(
−2
a

)
(−1)b/2(a± b

√
−2),

each with multiplicity 2, where a and b are the positive integers
such that p = a2 + 2b2.
• If p ≡ 3 mod 8, then αp,j = ±a± b

√
−2, where a and b are

integers such that p = a2 + 2b2.
• If p ≡ 5,7 mod 8, then αp,j = ±i

√
p, each with multiplicity 2.Yifan Yang (NCTU) Jacobsthal identity for Q(
√
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The curve y2 = x6 + 4x5 + 10x4 − 20x2 − 16x − 8

Lemma

The hyperelliptic curve X1 : y2 = x6 + 4x5 + 10x4 − 20x2 − 16x − 8 is
isomorphic to X2 : y2 = x5 + x over a field of degree 16 over Q, which
is cyclic of degree 4 over Q(ζ8).

Proof.
Setting

x =

√
2(x1 + 1)

x1 − 1
, y =

y1

(x1 − 1)3 ,

we get y2
1 = 128(2 +

√
2)x1(x4

1 + 3− 2
√

2).

The proof of the theorem follows the argument in the case of the
classical Jacobsthal identity (although more complicated).
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How do we find the curves?

Assume p ≡ 1,3 mod 8 and p = a2 + 2b2 = (a + b
√
−2)(a− b

√
−2).

If C : y2 = f (x) is a curve such that the p-factor of L(C/Q, s) is

1
(1± (a + b

√
−2)p−s)(1± (a− b

√
−2)p−s)

,

then
p−1∑
x=0

(
f (x)

p

)
= ±2a.

Thus, we are looking at elliptic curves with CM by Z[
√
−2].
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How do we find the curves?

To get b, we observe that

(a + b
√
−2)(ζ8 + ζ3

8 ) + (a− b
√
−2)(ζ5

8 + ζ7
8 ) = −4b.

Thus, we are looking for curves y2 = f (x) whose L-function has
p-factor

1
(1± ζ8(a + b

√
−2)p−s) . . . (1± ζ7

8 (a− b
√
−2)p−s)

,

i.e., a hyperelliptic curve of genus 2.

To find such a curve, we shall find “its L-function” first.
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Hecke characters

Let K be a number field. For each place v , let Kv be the completion of
K with respect to | · |v and Ov be the valuation ring of Kv when v is a
finite place.

Let

IK =

{
(xv ) ∈

∏
v

K ∗v : xv ∈ O∗v for all but finitely many v

}

be the idele group of K , equipped with the product topology.

Definition
A Hecke character (Grössencharakter) χ is a continuous group
homomorphism from the idele class group IK/K ∗ to C∗.
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Hecke L-functions and their functional equations

Definition
Let χ be a Hecke character. Write χ =

∏
v χv . The Hecke L-function is

defined by

L(s, χ) =
∏

v finite, χv (O∗v )=1

1
1− χv (πv )Nv−s ,

where πv is any uniformizer of Kv and Nv is the norm of the prime
ideal corresponding to v .
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Hecke L-functions and their functional equations

Proposition
Let K be an imaginary quadratic number field. Suppose that k is the
positive integer such that |χ(x)| = |x |k−1 for all x ∈ IK/K ∗. Setting

Λ(s, χ) =

(
2π√
dK dχ

)−s

Γ(s)L(s, χ),

we have
Λ(s, χ) = εΛ(k − s, χ)

for some root of unity ε, where dK is the discriminant of K and dχ is the
norm of the modulus of χ.

Remark
We get CM modular forms from Hecke characters on imaginary
quadratic number field.
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Finding curves

• Let K = Q(
√
−2). We construct Hecke characters χ1 and χ2 of

modulus 8 so that χ takes value ζ j
8(a + b

√
−2).

• We then look for a hyperelliptic curve whose L-function coincide
with L(s, χ1)L(s, χ2). Specifically, we look for such a curve among
hyperelliptic curves with an automorphism defined over Q(

√
−2).

• In practice, we consider curves

y2 = x6 + mx5 + nx4 − 2nx2 − 4mx − 8,

which has an automorphism

(x , y) 7−→
(

2
x
,

√
−8y
x3

)
,

and search for m and n such that the L-function is L(s, χ1)L(s, χ2).
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Problem

Problem. For each imaginary quadratic number field K with class
number 1, find an analogous identity.

Yifan Yang (NCTU) Jacobsthal identity for Q(
√
−2) 5 November 2010 30 / 30


