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Commutators

G finite group
G ′ = 〈[x , y ] : x , y ∈ G 〉 is the subgroup generated by commutators

Not every g ∈ G ′ is a commutator [x , y ].

Group H of order 96, |H ′| = 32 and contains 29 commutators.
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But every element g of G ′ is a product of commutators.

Problem

Can we bound the length of such a product independently of g?

Theorem (Nikolov & Segal, 2007)

There exists a function f such that if G is a d-generator finite
group, then every element of G ′ is a product of f (d) commutators.

Special interest: G finite simple group.
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The Ore Conjecture (1951)

Every element of a finite simple group is a commutator.

Ore proved it for An: case by case, every relevant combination of
cycles dealt with in turn.
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The LOST result

Liebeck, O’B, Shalev, Tiep (JEMS, 2010)

Theorem

If G is a finite non-abelian simple group, then every g ∈ G is a
commutator.

In fact: every element of every quasisimple classical group is a
commutator.
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Not true for arbitrary quasi-simple groups: no element of order 12
in 3A6 is a commutator.

Theorem

The only quasisimple groups with non-central elements which are
not commutators are covers of A6, A7, L3(4) and U4(3).

Corollary

Every element of every finite quasisimple group is a product of two
commutators.
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Overview of the lecture

� A broader context

� The basic approach

� A sketch of the proof

� Related questions
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Waring type problems

Shalev et al.: program to express group elements as short products
of values of fixed word w .

Let w = w(x1, . . . , xd) be element of free group Fd on x1, . . . , xd .
Consider word map

wG : Gd 7−→ G

(g1, . . . , gd) 7−→ w(g1, . . . , gd)

Set of all group elements w(g1, . . . , gd) is W (G ).

How large is W (G )? Jones (1974) showed it’s non-trivial for all
w 6= 1 if G is large enough.

Can we express g ∈ G as short product of elements of W (G )?

Waring: express every integer as a sum of f (k) k-th powers.

Eamonn O’Brien The Ore Conjecture
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Other much studied words: xk
1 in Burnside-type problems, xpyp

where p is prime.

Theorem (Shalev, 2009)

For each w 6= 1, there exists N = Nw depending only on w such
that if G is a finite simple group of order at least N then
W (G )3 = G .
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Covering numbers

G finite simple group, C 6= {1} is a conjugacy class.

Then there exists k ∈ P such that C k = G .

Minimal such k over all classes C is covering number c(G ) of G .

Ellers, Gordeev & Herzog (1999); Lawther & Liebeck (1998)

Theorem

� c(An) = d(n − 1)/2e
� c(Gr (q)) ≤ mr for some absolute constant m.

Theorem (Liebeck & Shalev, 2001)

c(C ,G ) ≤ m log |G |/log |C |
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Thompson’s conjecture (1985)

Every finite non-abelian simple group G contains a conjugacy class
C with C 2 = G .

Lemma

Thompson implies Ore.

Proof.

Let C = xG . Now 1 ∈ G = C 2 so x−1 ∈ C and G = (x−1)G xG .
Hence every element of G is a commutator.

Eamonn O’Brien The Ore Conjecture
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Related probabilistic work

Shalev (2009): if g is a random element of finite simple group G ,
then the probability that g is a commutator tends to 1 as
|G | 7→ ∞.

If G = Gq(r), a Lie type simple group of rank r over field of size q,
then probability is at least 1− cq−2r where c is absolute constant.

Garion & Shalev (2009): For finite simple group G , the map
α : G × G 7−→ G defined by α(x , y) = [x , y ] is almost
equidistributed, so almost all elements are commutators.

Applications to the product replacement algorithm.

Theorem (Shalev, 2009)

There exists an absolute constant c such that every finite simple
group G of order at least c has a conjugacy class C such that
C 2 = G . If x ∈ G is random, then probability that (xG )3 = G
tends to 1 as |G | 7→ ∞.

Eamonn O’Brien The Ore Conjecture
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The Thompson criterion

Theorem (Frobenius, 1896)

Let G be a finite group, let g be a fixed element of G , and for
1 ≤ i ≤ t let Ci be a conjugacy class in G with representative xi .
The number of solutions to the equation

∏t
i=1 yi = g with yi ∈ Ci

is equal to

|C1| · · · |Ct |
|G |

∑
χ∈Irr(G)

χ(x1) · · ·χ(xt)χ(g−1)

χ(1)t−1
,

where Irr(G ) is the set of ordinary irreducible characters of G .

Hence g ∈ C 2 if and only if∑
χ∈Irr(G)

χ(C )2χ(g−1)

χ(1)
6= 0

Eamonn O’Brien The Ore Conjecture
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The Ore criterion

Theorem (Frobenius, 1896)

For fixed g ∈ G ,

#{(x , y) ∈ G × G | g = [x , y ]} = |G |
∑

χ∈Irr(G)

χ(g)

χ(1)

To show g ∈ G is commutator, suffices to show that∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0

Or

|
∑

χ(1)>1

χ(g)

χ(1)
| < 1

Eamonn O’Brien The Ore Conjecture
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The key step

∑
χ∈Irr(G)

|χ(g)|2 = |CG (g)|

Partition elements of G by centraliser size

If G a finite simple group and g ∈ G has small centraliser then
main contribution to

|G |
∑

χ∈Irr(G)

χ(g)

χ(1)

comes from the trivial character χ = 1.
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Shalev’s probabilistic results

If g ∈ G has small centraliser, then

#{(x , y) ∈ G × G | g = [x , y ]} = |G |(1 + o(1))

where o(1) 7→ 0 as |G | 7→ ∞ and g is a commutator when G is
large enough.

So elements with small centralisers are commutators.

Almost all elements of G have small centralisers.
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Earlier work on Thompson / Ore

� Ore (1951): conjectured and proved Ore for An.

� Hsü (1965): Thompson for An.

� R.C. Thompson (1962-63): Ore for PSLn(q). Use structure of
G to write g = [x , y ] based on various kinds of factorisations.
Use similarity of matrices.

� Brenner (1983), Sourour (1986), Lev (1994): Thompson for
PSLn(q).

� Neubüser, Pahlings, Cleuvers (1988): sporadics.

� Gow (1988): PSpn(q), q ≡ 1 mod 4.

Eamonn O’Brien The Ore Conjecture
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� Bonten (1993): G Lie type, rank r . There exists a constant
q0 such that every element of Gr (q) is a commutator for
q > q0. Exploited Frobenius and character ratios to obtain
result for exceptionals of rank at most 4.

� Gow (2000): If C is a class of regular semisimple real
elements in simple group of Lie type, then C 2 = G .

Theorem (Ellers & Gordeev, 1998)

If Chevellay group G has two regular semisimple elements h1 and
h2 in a maximal split torus, then G \ Z (G ) ⊂ C1C2.

Ore follows if G has regular semisimple element h in maximal split
torus; Thompson if h is real.

Ore and Thompson hold for finite simple groups if q ≥ 8.

Eamonn O’Brien The Ore Conjecture
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Sketch of LOST proof

To show g ∈ G is commutator, suffices to show that

∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0

or

|
∑

χ(1)>1

χ(g)

χ(1)
| < 1

Key: partition elements by centraliser size.
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|CG (g)| is small

Use existing knowledge of chars, Deligne-Lusztig theory, and the
theory of dual pairs and Weil characters of classical groups to
construct explicitly irreducible characters of relatively small
degrees, and to derive information on their character values.

Show |χ(g)|/χ(1) is small for χ 6= 1, so main contribution to∑
χ∈ Irr(G) χ(g)/χ(1) comes from χ = 1.

Hence deduce that sum is positive, and so elements with small
centralisers are commutators.
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|CG (g)| is large

Reduce problem to groups of smaller rank and use induction.

Usually such g ∈ G has decomposition into Jordan blocks, and so
lies in direct product of smaller classical groups.
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Breakable elements

Let G = Cl(V ) = Sp(V ), SU(V ) or Ω(V ).

Definition

x ∈ G is breakable if there is a proper, nonzero, non-degenerate
subspace W of V such that x = (x1, x2) ∈ Cl(W )× Cl(W⊥), and
one of the following holds:

� both factors Cl(W ) and Cl(W⊥) are perfect groups;

� Cl(W ) is perfect, and x2 is a commutator in Cl(W⊥).

Otherwise, x is unbreakable.

Eamonn O’Brien The Ore Conjecture



logo

Lemma

Suppose that whenever W is a non-degenerate subspace of V such
that Cl(W ) is a perfect group, every unbreakable element of
Cl(W ) is a commutator in Cl(W ). Then every element of the
perfect group G is a commutator.

Proof.

The proof goes by induction on dim V .

The inductive hypothesis holds for all perfect subgroups of G of
the form Cl(X ) with X a non-degenerate subspace of V .

If x ∈ G is unbreakable, then it is a commutator by hypothesis.

Otherwise x is breakable, so x = (x1, x2) ∈ Cl(W )× Cl(W⊥)
satisfies (1) or (2).

In either case, by induction x1, x2 are commutators in Cl(W ),
Cl(W⊥) respectively, and so x is a commutator, as required.
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Difficulties with reduction

� Some blocks may lie in a group which is not perfect, such as
Sp2(2), Sp2(3), Sp4(2), Ω+

4 (2); or in orthogonal case blocks
may have determinant −1.

� Unitary groups: Jordan blocks can have many different
determinants. e.g. 8 possible values for PSUn(7).

Instead solve certain equations in unitary groups, and establish
certain properties of unitary matrices in small dimensions.
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Proving Ore for unbreakable elements

Enough to prove that unbreakable g ∈ G = Cl(V ) is commutator.

� If g unbreakable, then |CG (g)| is small.

� For unbreakable g and n > n0, prove that g is a commutator.

� Induction base: prove Ore for Cln(q) for n ≤ n0.
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Sp2n(2)

Lemma

Assume n ≥ 7, and let x be an unbreakable element of
G = Sp(V ) = Sp2n(2). Then |CG (x)| < 22n+15.

Based on detailed analysis of Jordan forms of elements.

Let k(G ) be number of conjugacy classes of G .

Theorem (Fulman & Guralnick, 2009)

k(Sp2n(q)) ≤ 12qn if q is odd, and k(Sp2n(q)) ≤ 17qn if q is even.
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Theorem (Guralnick & Tiep, 2004)

Let G = Sp2n(q) with q even, n ≥ 4. There is a collection W of
q + 3 irreducible characters of G , such that

� χ(1) ≥ (qn−1)(qn−q)
2(q+1) if χ ∈ W,

� χ(1) ≥ 1
2(q2n − 1)(qn−1 − 1)(qn−1 − q2)/(q4 − 1) for

1 6= χ ∈ Irr(G)\W.

Partition sum of non-trivial char values for unbreakable g ∈ G as

S1(g) =
∑
χ∈W

χ(g)

χ(1)
, S2(g) =

∑
1 6=χ∈ Irr(G)\W

χ(g)

χ(1)
,

and show |S1(g)|+ |S2(g)| < 1.
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Some facts

�

∑
χ∈ Irr(G) |χ(g)| ≤ k(G )1/2|CG (g)|1/2

� If χ1, . . . , χk ∈ Irr(G) are distinct characters of degree ≥ N,
then ∑

χ∈ Irr(G), χ(1)≥N

|χ(g)|
χ(1)

≤ k(G )1/2|CG (g)|1/2

N
.
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We can readily bound S2(x).

Lemma

Suppose n ≥ 7. If |CG (x)| < 22n+15, then |S2(x)| < 0.6.

Proof.

S2(x) is sum over at most k(G ) characters, each of degree at least

1

30
(22n − 1)(2n−1 − 1)(2n−1 − 4).

Deduce that

|S2(x)| < 30
√

17 · 2n/2|CG (x)|1/2

(22n − 1)(2n−1 − 1)(2n−1 − 4)
.

This is less than 0.6 when |CG (x)| < 22n+15 and n ≥ 7.
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Lemma

Suppose n ≥ 7. If |CG (x)| < 22n+15, then |S1(x)| < 0.2.

Bound for S1 based on a detailed analysis of the characters in W,
taken from Guralnick & Tiep (2004).
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The induction base

Some very hard base cases where Ore must be verified directly:
e.g. Sp(12, q), Ω11(3),SU6(7)

In most cases, directly verified the conjecture by constructing
character table using Unger algorithm as implemented in Magma.

Variations needed for Sp16(2).

For unitary groups: certain equations solved explicitly by finding
elements which satisfy these.

About 3 years of CPU time.
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The infinite context

Every element is a commutator:

Goto (1949): in a connected compact semisimple group.

Pasiencier & Wang (1962): in a semisimple algebraic group over C.

Ree (1964): in a connected semisimple algebraic group defined
over an algebraically closed field.
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A related question

Problem

Can every element of a finite simple group be obtained as a
commutator of a generating pair?

No! Only 44 of the elements of A5 can be obtained in this way;
146 elements of PSL(2, 7).

McCullough & Wanderley: true for PSL(2, q) for q ≥ 11.

Garrion & Shalev (2009): “almost every” element is obtained as
commutator of a generating pair.
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