G finite group
$G' = \langle [x, y] : x, y \in G \rangle$ is the *subgroup* generated by commutators

Not every $g \in G'$ is a commutator $[x, y]$.

Group H of order 96, $|H'| = 32$ and contains 29 commutators.
Commutators

G finite group

$G' = \langle [x, y] : x, y \in G \rangle$ is the *subgroup* generated by commutators

Not every $g \in G'$ is a commutator $[x, y]$.

Group H of order 96, $|H'| = 32$ and contains 29 commutators.
Commutators

G finite group
$G' = \langle [x, y] : x, y \in G \rangle$ is the *subgroup* generated by commutators

Not every $g \in G'$ is a commutator $[x, y]$.

Group H of order 96, $|H'| = 32$ and contains 29 commutators.
But every element g of G' is a product of commutators.
But every element g of G' is a **product** of commutators.

Problem

Can we bound the length of such a product independently of g?
But every element g of G' is a **product** of commutators.

Problem

Can we bound the length of such a product independently of g?

Theorem (Nikolov & Segal, 2007)

There exists a function f such that if G is a d-generator finite group, then every element of G' is a product of $f(d)$ commutators.
But every element g of G' is a product of commutators.

Problem

Can we bound the length of such a product independently of g?

Theorem (Nikolov & Segal, 2007)

There exists a function f such that if G is a d-generator finite group, then every element of G' is a product of $f(d)$ commutators.

Special interest: G finite simple group.
Every element of a finite simple group is a commutator.
Every element of a finite simple group is a commutator.

Ore proved it for A_n: case by case, every relevant combination of cycles dealt with in turn.
The LOST result

Liebeck, O’B, Shalev, Tiep (JEMS, 2010)

Theorem

If G *is a finite non-abelian simple group, then every* $g \in G$ *is a commutator.*
The LOST result

Liebeck, O’B, Shalev, Tiep (JEMS, 2010)

Theorem

If G is a finite non-abelian simple group, then every $g \in G$ is a commutator.

In fact: every element of every quasisimple classical group is a commutator.
Not true for arbitrary quasi-simple groups: no element of order 12 in $3A_6$ is a commutator.
Not true for arbitrary quasi-simple groups: no element of order 12 in $3A_6$ is a commutator.

Theorem

The only quasisimple groups with non-central elements which are not commutators are covers of A_6, A_7, $L_3(4)$ and $U_4(3)$.

Corollary

Every element of every finite quasisimple group is a product of two commutators.
Overview of the lecture

- A broader context
- The basic approach
- A sketch of the proof
- Related questions
Waring type problems

Shalev et al.: program to express group elements as short products of values of fixed word w.

Let $w = w(x_1, \ldots, x_d)$ be element of free group F_d on x_1, \ldots, x_d. Consider word map $w: G_d \rightarrow G$:

\[
\begin{align*}
G_d & \rightarrow \rightarrow \rightarrow \\
(g_1, \ldots, g_d) & \mapsto w(g_1, \ldots, g_d)
\end{align*}
\]

Set of all group elements $w(g_1, \ldots, g_d)$ is $W(G)$. How large is $W(G)$? Jones (1974) showed it's non-trivial for all $w \neq 1$ if G is large enough.

Can we express $g \in G$ as short product of elements of $W(G)$?

Waring: express every integer as a sum of $f(k)$ k-th powers.
Shalev et al.: program to express group elements as short products of values of fixed word \(w \).

Let \(w = w(x_1, \ldots, x_d) \) be element of free group \(F_d \) on \(x_1, \ldots, x_d \).

Consider word map

\[
W_G : G^d \to G
\]

\[
(g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d)
\]

Set of all group elements \(w(g_1, \ldots, g_d) \) is \(W(G) \).
Shalev et al.: program to express group elements as short products of values of fixed word w.

Let $w = w(x_1, \ldots, x_d)$ be element of free group F_d on x_1, \ldots, x_d. Consider word map

$$w_G : G^d \rightarrow G$$

$$(g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d)$$

Set of all group elements $w(g_1, \ldots, g_d)$ is $W(G)$.

How large is $W(G)$? Jones (1974) showed it’s non-trivial for all $w \neq 1$ if G is large enough.
Shalev et al.: program to express group elements as short products of values of fixed word w. Let $w = w(x_1, \ldots, x_d)$ be element of free group F_d on x_1, \ldots, x_d. Consider word map

$$w_G : G^d \rightarrow G$$

$$(g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d)$$

Set of all group elements $w(g_1, \ldots, g_d)$ is $W(G)$. How large is $W(G)$? Jones (1974) showed it’s non-trivial for all $w \neq 1$ if G is large enough. Can we express $g \in G$ as short product of elements of $W(G)$?
Waring type problems

Shalev et al.: program to express group elements as short products of values of fixed word \(w \).

Let \(w = w(x_1, \ldots, x_d) \) be element of free group \(F_d \) on \(x_1, \ldots, x_d \). Consider word map

\[
 w_G : G^d \mapsto G \\
 (g_1, \ldots, g_d) \mapsto w(g_1, \ldots, g_d)
\]

Set of all group elements \(w(g_1, \ldots, g_d) \) is \(W(G) \).

How large is \(W(G) \)? Jones (1974) showed it’s non-trivial for all \(w \neq 1 \) if \(G \) is large enough.

Can we express \(g \in G \) as short product of elements of \(W(G) \)?

Waring: express every integer as a sum of \(f(k) \) \(k \)-th powers.
Other much studied words: x_1^k in Burnside-type problems, $x^p y^p$ where p is prime.
Other much studied words: x_1^k in Burnside-type problems, $x^p y^p$ where p is prime.

Theorem (Shalev, 2009)

For each $w \neq 1$, there exists $N = N_w$ depending only on w such that if G is a finite simple group of order at least N then $W(G)^3 = G$.
Covering numbers

G finite simple group, $C \neq \{1\}$ is a conjugacy class.
G finite simple group, $C \neq \{1\}$ is a conjugacy class.

Then there exists $k \in \mathbb{P}$ such that $C^k = G$.
G finite simple group, $C \neq \{1\}$ is a conjugacy class.

Then there exists $k \in \mathbb{P}$ such that $C^k = G$.

Minimal such k over all classes C is covering number $c(G)$ of G.
G finite simple group, $C \neq \{1\}$ is a conjugacy class.

Then there exists $k \in \mathbb{P}$ such that $C^k = G$.

Minimal such k over all classes C is covering number $c(G)$ of G.

Ellers, Gordeev & Herzog (1999); Lawther & Liebeck (1998)

Theorem

- $c(A_n) = \lceil (n - 1)/2 \rceil$
- $c(G_r(q)) \leq mr$ for some absolute constant m.
Covering numbers

G finite simple group, $C \neq \{1\}$ is a conjugacy class.
Then there exists $k \in \mathbb{P}$ such that $C^k = G$.
Minimal such k over all classes C is covering number $c(G)$ of G.
Ellers, Gordeev & Herzog (1999); Lawther & Liebeck (1998)

Theorem

- $c(A_n) = \lceil (n - 1)/2 \rceil$
- $c(G_r(q)) \leq mr$ for some absolute constant m.

Theorem (Liebeck & Shalev, 2001)

$c(C, G) \leq m \log |G|/\log |C|$
Thompson’s conjecture (1985)

Every finite non-abelian simple group G contains a conjugacy class C with $C^2 = G$.
Every finite non-abelian simple group G contains a conjugacy class C with $C^2 = G$.

Lemma

Thompson implies Ore.
Every finite non-abelian simple group G contains a conjugacy class C with $C^2 = G$.

Lemma

Thompson implies Ore.

Proof.

Let $C = x^G$. Now $1 \in G = C^2$ so $x^{-1} \in C$ and $G = (x^{-1})^G x^G$. Hence every element of G is a commutator.
Related probabilistic work

Shalev (2009): if \(g \) is a random element of finite simple group \(G \), then the probability that \(g \) is a commutator tends to 1 as \(|G| \to \infty \).

Garion & Shalev (2009): For finite simple group \(G \), the map \(\alpha : G \times G \to G \) defined by \(\alpha(x, y) = [x, y] \) is almost equidistributed, so almost all elements are commutators.

Applications to the product replacement algorithm.

Theorem (Shalev, 2009) There exists an absolute constant \(c \) such that every finite simple group \(G \) of order at least \(c \) has a conjugacy class \(C \) such that \(C^2 = G \). If \(x \in G \) is random, then probability that \((xG)^3 = G \) tends to 1 as \(|G| \to \infty \).
Shalev (2009): if g is a random element of finite simple group G, then the probability that g is a commutator tends to 1 as $|G| \rightarrow \infty$.

If $G = G_q(r)$, a Lie type simple group of rank r over field of size q, then probability is at least $1 - cq^{-2r}$ where c is absolute constant.
Related probabilistic work

Shalev (2009): if g is a random element of finite simple group G, then the probability that g is a commutator tends to 1 as $|G| \to \infty$.

If $G = G_q(r)$, a Lie type simple group of rank r over field of size q, then probability is at least $1 - cq^{-2r}$ where c is absolute constant.

Garion & Shalev (2009): For finite simple group G, the map $\alpha : G \times G \to G$ defined by $\alpha(x, y) = [x, y]$ is almost equidistributed, so almost all elements are commutators.
Related probabilistic work

Shalev (2009): if g is a random element of finite simple group G, then the probability that g is a commutator tends to 1 as $|G| \to \infty$.

If $G = G_q(r)$, a Lie type simple group of rank r over field of size q, then probability is at least $1 - cq^{-2r}$ where c is absolute constant.

Garion & Shalev (2009): For finite simple group G, the map $\alpha : G \times G \to G$ defined by $\alpha(x, y) = [x, y]$ is almost equidistributed, so almost all elements are commutators.

Applications to the product replacement algorithm.

Theorem (Shalev, 2009)

There exists an absolute constant c such that every finite simple group G of order at least c has a conjugacy class C such that $C^2 = G$. If $x \in G$ is random, then probability that $(x^G)^3 = G$ tends to 1 as $|G| \to \infty$.

Eamonn O'Brien
The Ore Conjecture
Theorem (Frobenius, 1896)

Let G be a finite group, let g be a fixed element of G, and for $1 \leq i \leq t$ let C_i be a conjugacy class in G with representative x_i. The number of solutions to the equation $\prod_{i=1}^{t} y_i = g$ with $y_i \in C_i$ is equal to

$$\frac{|C_1| \cdots |C_t|}{|G|} \sum_{\chi \in \text{Irr}(G)} \frac{\chi(x_1) \cdots \chi(x_t)\chi(g^{-1})}{\chi(1)^{t-1}},$$

where $\text{Irr}(G)$ is the set of ordinary irreducible characters of G.

Hence $g \in C^2$ if and only if

$$\sum_{\chi \in \text{Irr}(G)} \frac{\chi(C^2)\chi(g^{-1})}{\chi(1)} \neq 0$$
The Ore criterion

Theorem (Frobenius, 1896)

For fixed \(g \in G \),

\[
\#\{(x, y) \in G \times G \mid g = [x, y]\} = |G| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)}
\]
The Ore criterion

Theorem (Frobenius, 1896)

For fixed $g \in G$,

$$\# \{(x, y) \in G \times G \mid g = [x, y]\} = |G| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)}$$

To show $g \in G$ is commutator, suffices to show that
Theorem (Frobenius, 1896)

For fixed $g \in G$,

$$\#\{(x, y) \in G \times G \mid g = [x, y]\} = |G| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)}$$

To show $g \in G$ is commutator, suffices to show that

$$\sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0$$
The Ore criterion

Theorem (Frobenius, 1896)

For fixed $g \in G,$

$$\# \{(x, y) \in G \times G \mid g = [x, y]\} = |G| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)}$$

To show $g \in G$ is commutator, suffices to show that

$$\sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0$$

Or

$$\left| \sum_{\chi(1) > 1} \frac{\chi(g)}{\chi(1)} \right| < 1$$
The key step

\[\sum_{\chi \in \text{Irr}(G)} |\chi(g)|^2 = |C_G(g)| \]
The key step

\[\sum_{\chi \in \text{Irr}(G)} |\chi(g)|^2 = |C_G(g)| \]

Partition elements of \(G \) by centraliser size
The key step

\[\sum_{\chi \in \text{Irr}(G)} |\chi(g)|^2 = |C_G(g)| \]

Partition elements of G by centraliser size

If G a finite simple group and $g \in G$ has small centraliser then main contribution to

\[|G| \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \]

comes from the trivial character $\chi = 1$.

Eamonn O'Brien

The Ore Conjecture
If $g \in G$ has small centraliser, then

$$\#\{(x, y) \in G \times G \mid g = [x, y]\} = |G|(1 + o(1))$$

where $o(1) \rightarrow 0$ as $|G| \rightarrow \infty$ and g is a commutator when G is large enough.

So elements with small centralisers are commutators. Almost all elements of G have small centralisers.
If $g \in G$ has small centraliser, then

$$\#\{(x, y) \in G \times G \mid g = [x, y]\} = |G|(1 + o(1))$$

where $o(1) \to 0$ as $|G| \to \infty$ and g is a commutator when G is large enough.

So elements with small centralisers are commutators.
If $g \in G$ has small centraliser, then

$$\#\{(x, y) \in G \times G \mid g = [x, y]\} = |G|(1 + o(1))$$

where $o(1) \rightarrow 0$ as $|G| \rightarrow \infty$ and g is a commutator when G is large enough.

So elements with small centralisers are commutators.

Almost all elements of G have small centralisers.
• Ore (1951): conjectured and proved Ore for A_n.
• Hsü (1965): Thompson for A_n.
• R.C. Thompson (1962-63): Ore for $PSL_n(q)$. Use structure of G to write $g = [x, y]$ based on various kinds of factorisations. Use similarity of matrices.
• Gow (1988): $PSp_n(q), q \equiv 1 \mod 4$.
• Bonten (1993): G Lie type, rank r. There exists a constant q_0 such that every element of $G_r(q)$ is a commutator for $q > q_0$. Exploited Frobenius and character ratios to obtain result for exceptionals of rank at most 4.

• Gow (2000): If C is a class of regular semisimple real elements in simple group of Lie type, then $C^2 = G$.

Theorem (Ellers & Gordeev, 1998) If Chevellay group G has two regular semisimple elements h_1 and h_2 in a maximal split torus, then $G \setminus Z(G) \subset C_1 C_2$. Ore follows if G has regular semisimple element h in maximal split torus; Thompson if h is real. Ore and Thompson hold for finite simple groups if $q \geq 8$.

Eamonn O’Brien The Ore Conjecture
• Bonten (1993): G Lie type, rank r. There exists a constant q_0 such that every element of $G_r(q)$ is a commutator for $q > q_0$. Exploited Frobenius and character ratios to obtain result for exceptionals of rank at most 4.

• Gow (2000): If C is a class of regular semisimple real elements in simple group of Lie type, then $C^2 = G$.

Theorem (Ellers & Gordeev, 1998)

*If Chevellay group G has two regular semisimple elements h_1 and h_2 in a maximal split torus, then $G \setminus Z(G) \subseteq C_1 C_2$.***
• Bonten (1993): G Lie type, rank r. There exists a constant q_0 such that every element of $G_r(q)$ is a commutator for $q > q_0$. Exploited Frobenius and character ratios to obtain result for exceptionals of rank at most 4.

• Gow (2000): If C is a class of regular semisimple real elements in simple group of Lie type, then $C^2 = G$.

Theorem (Ellers & Gordeev, 1998)

If Chevallay group G has two regular semisimple elements h_1 and h_2 in a maximal split torus, then $G \setminus Z(G) \subset C_1 C_2$.

Ore follows if G has regular semisimple element h in maximal split torus; Thompson if h is real.
• Bonten (1993): G Lie type, rank r. There exists a constant q_0 such that every element of $G_r(q)$ is a commutator for $q > q_0$. Exploited Frobenius and character ratios to obtain result for exceptionals of rank at most 4.

• Gow (2000): If C is a class of regular semisimple real elements in simple group of Lie type, then $C^2 = G$.

Theorem (Ellers & Gordeev, 1998)

If Chevellay group G has two regular semisimple elements h_1 and h_2 in a maximal split torus, then $G \setminus Z(G) \subset C_1 C_2$.

Ore follows if G has regular semisimple element h in maximal split torus; Thompson if h is real.

Ore and Thompson hold for finite simple groups if $q \geq 8$.

Eamonn O'Brien | The Ore Conjecture
To show $g \in G$ is commutator, suffices to show that

$$\sum_{\chi \in \text{Irr}(G)} \chi(g) \chi(1) \neq 0 \quad \text{or} \quad |\sum_{\chi \in \text{Irr}(G)} \chi(g) \chi(1)| < 1.$$
To show \(g \in G \) is commutator, suffices to show that

\[
\sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0
\]
To show $g \in G$ is commutator, suffices to show that

$$\sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0$$

or

$$\left| \sum_{\chi(1) > 1} \frac{\chi(g)}{\chi(1)} \right| < 1$$

Key: partition elements by centraliser size.
Use existing knowledge of chars, Deligne-Lusztig theory, and the theory of dual pairs and Weil characters of classical groups to construct \textit{explicitly} irreducible characters of relatively small degrees, and to derive information on their character values.
$|C_G(g)|$ is small

Use existing knowledge of chars, Deligne-Lusztig theory, and the theory of dual pairs and Weil characters of classical groups to construct \textit{explicitly} irreducible characters of relatively small degrees, and to derive information on their character values.

Show $|\chi(g)|/\chi(1)$ is small for $\chi \neq 1$, so main contribution to $\sum_{\chi \in \text{Irr}(G)} \chi(g)/\chi(1)$ comes from $\chi = 1$.

Hence deduce that sum is positive, and so elements with small centralisers are commutators.
Use existing knowledge of chars, Deligne-Lusztig theory, and the theory of dual pairs and Weil characters of classical groups to construct \textit{explicitly} irreducible characters of relatively small degrees, and to derive information on their character values.

Show \(|\chi(g)\)/\(\chi(1)\) is small for \(\chi \neq 1\), so main contribution to \(\sum_{\chi \in \text{Irr}(G)} \chi(g)/\chi(1)\) comes from \(\chi = 1\).

Hence deduce that sum is positive, and so elements with small centralisers are commutators.
$|C_G(g)|$ is large.

Reduce problem to groups of smaller rank and use induction. Usually such $g \in G$ has decomposition into Jordan blocks, and so lies in direct product of smaller classical groups.
$|C_G(g)|$ is large

Reduce problem to groups of *smaller rank* and use induction.
Reduce problem to groups of *smaller rank* and use induction.

Usually such $g \in G$ has decomposition into Jordan blocks, and so lies in direct product of smaller classical groups.
Let $G = Cl(V) = Sp(V), SU(V)$ or $\Omega(V)$.

Definition

$x \in G$ is *breakable* if there is a proper, nonzero, non-degenerate subspace W of V such that $x = (x_1, x_2) \in Cl(W) \times Cl(W^\perp)$, and one of the following holds:

- both factors $Cl(W)$ and $Cl(W^\perp)$ are perfect groups;
- $Cl(W)$ is perfect, and x_2 is a commutator in $Cl(W^\perp)$.

Otherwise, x is *unbreakable*.
Lemma

Suppose that whenever W is a non-degenerate subspace of V such that $\text{Cl}(W)$ is a perfect group, every unbreakable element of $\text{Cl}(W)$ is a commutator in $\text{Cl}(W)$. Then every element of the perfect group G is a commutator.
Lemma

Suppose that whenever W is a non-degenerate subspace of V such that $\text{Cl}(W)$ is a perfect group, every unbreakable element of $\text{Cl}(W)$ is a commutator in $\text{Cl}(W)$. Then every element of the perfect group G is a commutator.

Proof.

The proof goes by induction on $\dim V$.
Lemma

Suppose that whenever W is a non-degenerate subspace of V such that $\text{Cl}(W)$ is a perfect group, every unbreakable element of $\text{Cl}(W)$ is a commutator in $\text{Cl}(W)$. Then every element of the perfect group G is a commutator.

Proof.

The proof goes by induction on $\text{dim} \ V$.

The inductive hypothesis holds for all perfect subgroups of G of the form $\text{Cl}(X)$ with X a non-degenerate subspace of V.
Lemma

Suppose that whenever W *is a non-degenerate subspace of* V *such that* $Cl(W)$ *is a perfect group, every unbreakable element of* $Cl(W)$ *is a commutator in* $Cl(W)$. *Then every element of the perfect group* G *is a commutator.*

Proof.

The proof goes by induction on $\dim V$.

The inductive hypothesis holds for all perfect subgroups of G of the form $Cl(X)$ with X a non-degenerate subspace of V.

If $x \in G$ is unbreakable, then it is a commutator by hypothesis.
Lemma

Suppose that whenever W is a non-degenerate subspace of V such that $Cl(W)$ is a perfect group, every unbreakable element of $Cl(W)$ is a commutator in $Cl(W)$. Then every element of the perfect group G is a commutator.

Proof.

The proof goes by induction on $\dim V$.

The inductive hypothesis holds for all perfect subgroups of G of the form $Cl(X)$ with X a non-degenerate subspace of V.

If $x \in G$ is unbreakable, then it is a commutator by hypothesis.

Otherwise x is breakable, so $x = (x_1, x_2) \in Cl(W) \times Cl(W^\perp)$ satisfies (1) or (2).
Lemma

Suppose that whenever W is a non-degenerate subspace of V such that $\text{Cl}(W)$ is a perfect group, every unbreakable element of $\text{Cl}(W)$ is a commutator in $\text{Cl}(W)$. Then every element of the perfect group G is a commutator.

Proof.

The proof goes by induction on $\dim V$.

The inductive hypothesis holds for all perfect subgroups of G of the form $\text{Cl}(X)$ with X a non-degenerate subspace of V.

If $x \in G$ is unbreakable, then it is a commutator by hypothesis.

Otherwise x is breakable, so $x = (x_1, x_2) \in \text{Cl}(W) \times \text{Cl}(W^\perp)$ satisfies (1) or (2).

In either case, by induction x_1, x_2 are commutators in $\text{Cl}(W), \text{Cl}(W^\perp)$ respectively, and so x is a commutator, as required.
Difficulties with reduction

Some blocks may lie in a group which is not perfect, such as $\text{Sp}_2(2), \text{Sp}_2(3), \text{Sp}_4(2), \Omega^+_4(2)$; or in orthogonal case blocks may have determinant -1.

Unitary groups: Jordan blocks can have many different determinants. e.g. 8 possible values for $\text{PSU}_n(7)$.

Instead solve certain equations in unitary groups, and establish certain properties of unitary matrices in small dimensions.
Difficulties with reduction

- Some blocks may lie in a group which is not perfect, such as $Sp_2(2)$, $Sp_2(3)$, $Sp_4(2)$, $\Omega^+_4(2)$; or in orthogonal case blocks may have determinant -1.

Unitary groups: Jordan blocks can have many different determinants. E.g. 8 possible values for $PSU_n(7)$. Instead solve certain equations in unitary groups, and establish certain properties of unitary matrices in small dimensions.
Difficulties with reduction

- Some blocks may lie in a group which is not perfect, such as $Sp_2(2)$, $Sp_2(3)$, $Sp_4(2)$, $\Omega_4^+(2)$; or in orthogonal case blocks may have determinant -1.

- Unitary groups: Jordan blocks can have many different determinants. e.g. 8 possible values for $PSU_n(7)$.

Eamonn O’Brien The Ore Conjecture
Difficulties with reduction

- Some blocks may lie in a group which is not perfect, such as $Sp_2(2)$, $Sp_2(3)$, $Sp_4(2)$, $\Omega_4^+(2)$; or in orthogonal case blocks may have determinant -1.

- Unitary groups: Jordan blocks can have many different determinants. e.g. 8 possible values for $PSU_n(7)$.

Instead solve certain equations in unitary groups, and establish certain properties of unitary matrices in small dimensions.
Enough to prove that unbreakable $g \in G = Cl(V)$ is commutator.

- If g unbreakable, then $|C_G(g)|$ is small.
Enough to prove that unbreakable $g \in G = Cl(V)$ is commutator.

- If g unbreakable, then $|C_G(g)|$ is small.
- For unbreakable g and $n > n_0$, prove that g is a commutator.
Enough to prove that unbreakable $g \in G = Cl(V)$ is commutator.

- If g unbreakable, then $|C_G(g)|$ is small.
- For unbreakable g and $n > n_0$, prove that g is a commutator.
- Induction base: prove Ore for $Cl_n(q)$ for $n \leq n_0$.
Lemma

Assume \(n \geq 7 \), and let \(x \) be an unbreakable element of \(G = \text{Sp}(V) = \text{Sp}_{2n}(2) \). Then \(|C_G(x)| < 2^{2n+15} \).

Based on detailed analysis of Jordan forms of elements.
Lemma

Assume \(n \geq 7 \), and let \(x \) be an unbreakable element of \(G = \text{Sp}(V) = \text{Sp}_{2n}(2) \). Then \(|C_G(x)| < 2^{2n+15} \).

Based on detailed analysis of Jordan forms of elements.

Let \(k(G) \) be number of conjugacy classes of \(G \).

Theorem (Fulman & Guralnick, 2009)

\(k(\text{Sp}_{2n}(q)) \leq 12q^n \) if \(q \) is odd, and \(k(\text{Sp}_{2n}(q)) \leq 17q^n \) if \(q \) is even.
Theorem (Guralnick & Tiep, 2004)

Let $G = \text{Sp}_{2n}(q)$ with q even, $n \geq 4$. There is a collection \mathcal{W} of $q + 3$ irreducible characters of G, such that

- $\chi(1) \geq \frac{(q^n-1)(q^n-q)}{2(q+1)}$ if $\chi \in \mathcal{W}$,
- $\chi(1) \geq \frac{1}{2}(q^{2n} - 1)(q^{n-1} - 1)(q^{n-1} - q^2)/(q^4 - 1)$ for $1 \neq \chi \in \text{Irr}(G)\backslash \mathcal{W}$.

Partition sum of non-trivial char values for unbreakable $g \in G$ as

$$S_1(g) = \sum_{\chi \in \mathcal{W}} \frac{\chi(g)}{\chi(1)}, \quad S_2(g) = \sum_{1 \neq \chi \in \text{Irr}(G)\backslash \mathcal{W}} \frac{\chi(g)}{\chi(1)},$$

and show $|S_1(g)| + |S_2(g)| < 1$.

Eamonn O'Brien
The Ore Conjecture
Some facts

- \(\sum_{\chi \in \text{Irr}(G)} |\chi(g)| \leq k(G)^{1/2}|C_G(g)|^{1/2} \)
Some facts

- \[\sum_{\chi \in \text{Irr}(G)} |\chi(g)| \leq k(G)^{1/2} |C_G(g)|^{1/2} \]

- If \(\chi_1, \ldots, \chi_k \in \text{Irr}(G) \) are distinct characters of degree \(\geq N \), then

\[
\sum_{\chi \in \text{Irr}(G), \chi(1) \geq N} \frac{|\chi(g)|}{\chi(1)} \leq \frac{k(G)^{1/2} |C_G(g)|^{1/2}}{N}.
\]
We can readily bound $S_2(x)$.

Lemma

*Suppose $n \geq 7$. If $|C_G(x)| < 2^{2n+15}$, then $|S_2(x)| < 0.6$.***
We can readily bound $S_2(x)$.

Lemma

Suppose $n \geq 7$. If $|C_G(x)| < 2^{2n+15}$, then $|S_2(x)| < 0.6$.

Proof.

$S_2(x)$ is sum over at most $k(G)$ characters, each of degree at least

$$\frac{1}{30}(2^{2n} - 1)(2^{n-1} - 1)(2^{n-1} - 4).$$
We can readily bound $S_2(x)$.

Lemma

*Suppose $n \geq 7$. If $|C_G(x)| < 2^{2n+15}$, then $|S_2(x)| < 0.6$.***

Proof.

$S_2(x)$ is sum over at most $k(G)$ characters, each of degree at least

$$\frac{1}{30}(2^{2n} - 1)(2^{n-1} - 1)(2^{n-1} - 4).$$

Deduce that

$$|S_2(x)| < \frac{30\sqrt{17} \cdot 2^{n/2} |C_G(x)|^{1/2}}{(2^{2n} - 1)(2^{n-1} - 1)(2^{n-1} - 4)}.$$
We can readily bound $S_2(x)$.

Lemma

Suppose $n \geq 7$. If $|C_G(x)| < 2^{2n+15}$, then $|S_2(x)| < 0.6$.

Proof.

$S_2(x)$ is sum over at most $k(G)$ characters, each of degree at least

$$\frac{1}{30}(2^{2n} - 1)(2^{n-1} - 1)(2^{n-1} - 4).$$

Deduce that

$$|S_2(x)| < \frac{30\sqrt{17} \cdot 2^n/2|C_G(x)|^{1/2}}{(2^{2n} - 1)(2^{n-1} - 1)(2^{n-1} - 4)}.$$

This is less than 0.6 when $|C_G(x)| < 2^{2n+15}$ and $n \geq 7$. □
Suppose $n \geq 7$. If $|C_G(x)| < 2^{2n+15}$, then $|S_1(x)| < 0.2$.

Bound for S_1 based on a detailed analysis of the characters in \mathcal{W}, taken from Guralnick & Tiep (2004).
Some very hard base cases where Ore must be verified directly: e.g. $Sp(12, q)$, $\Omega_{11}(3)$, $SU_6(7)$
The induction base

Some very hard base cases where Ore must be verified directly: e.g. $Sp(12, q)$, $\Omega_{11}(3)$, $SU_6(7)$

In most cases, directly verified the conjecture by constructing character table using Unger algorithm as implemented in Magma.
Some very hard base cases where Ore must be verified directly:
e.g. $Sp(12, q)$, $\Omega_{11}(3)$, $SU_6(7)$

In most cases, directly verified the conjecture by constructing character table using Unger algorithm as implemented in Magma.

Variations needed for $Sp_{16}(2)$.
Some very hard base cases where Ore must be verified directly: e.g. $Sp(12, q), \Omega_{11}(3), SU_6(7)$

In most cases, directly verified the conjecture by constructing character table using Unger algorithm as implemented in Magma.

Variations needed for $Sp_{16}(2)$.

For unitary groups: certain equations solved explicitly by finding elements which satisfy these.
Some very hard base cases where Ore must be verified directly:
e.g. $Sp(12, q), \Omega_{11}(3), SU_6(7)$

In most cases, directly verified the conjecture by constructing
character table using Unger algorithm as implemented in Magma.

Variations needed for $Sp_{16}(2)$.

For unitary groups: certain equations solved explicitly by finding
elements which satisfy these.

About 3 years of CPU time.
Every element is a commutator:
Every element is a commutator:

Goto (1949): in a connected compact semisimple group.
The infinite context

Every element is a commutator:

Goto (1949): in a connected compact semisimple group.

Pasiencier & Wang (1962): in a semisimple algebraic group over \mathbb{C}.

Eamonn O'Brien The Ore Conjecture
Every element is a commutator:

Goto (1949): in a connected compact semisimple group.

Pasiencier & Wang (1962): in a semisimple algebraic group over \mathbb{C}.

Ree (1964): in a connected semisimple algebraic group defined over an algebraically closed field.
A related question

Problem

Can every element of a finite simple group be obtained as a commutator of a generating pair?

No! Only 44 of the elements of A_5 can be obtained in this way; 146 elements of $PSL(2,7)$.

McCullough & Wanderley: true for $PSL(2,q)$ for $q \geq 11$.

Garrion & Shalev (2009): “almost every” element is obtained as commutator of a generating pair.
Can every element of a finite simple group be obtained as a commutator of a generating pair?

No! Only 44 of the elements of A_5 can be obtained in this way; 146 elements of $PSL(2, 7)$.

McCullough & Wanderley: true for $PSL(2, q)$ for $q \geq 11$.

Garrion & Shalev (2009): “almost every” element is obtained as commutator of a generating pair.
A related question

Problem

Can every element of a finite simple group be obtained as a commutator of a generating pair?

No! Only 44 of the elements of A_5 can be obtained in this way; 146 elements of $PSL(2, 7)$.

McCullough & Wanderley: true for $PSL(2, q)$ for $q \geq 11$.
Problem

Can every element of a finite simple group be obtained as a commutator of a generating pair?

No! Only 44 of the elements of A_5 can be obtained in this way; 146 elements of $PSL(2, 7)$.

McCullough & Wanderley: true for $PSL(2, q)$ for $q \geq 11$.

Garrion & Shalev (2009): “almost every” element is obtained as commutator of a generating pair.