
logo

Algorithms for matrix groups

Eamonn O’Brien

University of Auckland

December 2010

Eamonn O’Brien Algorithms for matrix groups

logo

Overview

G = 〈X 〉 ≤ GL(d ,R) where R is a ring; usually finite field GF(q)

Goal: efficient algorithms, for their study, which are both
theoretically and practically effective.

Eamonn O’Brien Algorithms for matrix groups

logo

Overview

G = 〈X 〉 ≤ GL(d ,R) where R is a ring; usually finite field GF(q)

Goal: efficient algorithms, for their study, which are both
theoretically and practically effective.

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.

Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups

Eamonn O’Brien Algorithms for matrix groups

logo

Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements?

Perhaps for d ≥ 100.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem I: Order of a matrix

Let g ∈ GL(d , q).
Find n ≥ 1 such that gn = 1.

GL(d , q) has elements of order qd − 1 (Singer cycles)

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem I: Order of a matrix

Let g ∈ GL(d , q).
Find n ≥ 1 such that gn = 1.

GL(d , q) has elements of order qd − 1 (Singer cycles)

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem I: Order of a matrix

Let g ∈ GL(d , q).
Find n ≥ 1 such that gn = 1.

GL(d , q) has elements of order qd − 1 (Singer cycles)

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem I: Order of a matrix

Let g ∈ GL(d , q).
Find n ≥ 1 such that gn = 1.

GL(d , q) has elements of order qd − 1 (Singer cycles)

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.

Eamonn O’Brien Algorithms for matrix groups

logo

Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .

Eamonn O’Brien Algorithms for matrix groups

logo

Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .

Eamonn O’Brien Algorithms for matrix groups

logo

Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .

Eamonn O’Brien Algorithms for matrix groups

logo

Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .

Eamonn O’Brien Algorithms for matrix groups

logo

Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;

and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.

Eamonn O’Brien Algorithms for matrix groups

logo

So cost is O(d3 log q log t) field operations if we can factorise E .

If we don’t complete the factorisation, then obtain pseudo-order
[order × some large primes] of g suffices for most theoretical and
practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.

Eamonn O’Brien Algorithms for matrix groups

logo

So cost is O(d3 log q log t) field operations if we can factorise E .

If we don’t complete the factorisation, then obtain pseudo-order
[order × some large primes] of g

suffices for most theoretical and
practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.

Eamonn O’Brien Algorithms for matrix groups

logo

So cost is O(d3 log q log t) field operations if we can factorise E .

If we don’t complete the factorisation, then obtain pseudo-order
[order × some large primes] of g suffices for most theoretical and
practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.

Eamonn O’Brien Algorithms for matrix groups

logo

So cost is O(d3 log q log t) field operations if we can factorise E .

If we don’t complete the factorisation, then obtain pseudo-order
[order × some large primes] of g suffices for most theoretical and
practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.

Eamonn O’Brien Algorithms for matrix groups

logo

Variation on this theme

Task: Determine if g has even order.

If we just know E , then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, we write E = 2mb where b is odd.

Now we compute h = gb, and determine (by powering) its order
which divides 2m.

Eamonn O’Brien Algorithms for matrix groups

logo

Variation on this theme

Task: Determine if g has even order.

If we just know E , then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, we write E = 2mb where b is odd.

Now we compute h = gb, and determine (by powering) its order
which divides 2m.

Eamonn O’Brien Algorithms for matrix groups

logo

Variation on this theme

Task: Determine if g has even order.

If we just know E , then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, we write E = 2mb where b is odd.

Now we compute h = gb, and determine (by powering) its order
which divides 2m.

Eamonn O’Brien Algorithms for matrix groups

logo

Variation on this theme

Task: Determine if g has even order.

If we just know E , then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, we write E = 2mb where b is odd.

Now we compute h = gb, and determine (by powering) its order
which divides 2m.

Eamonn O’Brien Algorithms for matrix groups

logo

Randomness

|GL(d , q)| = O(qd2
)

Many algorithms are randomised: use random search in G to find
elements having prescribed property P.

Example

� Characteristic polynomial having factor of degree > d/2.

� Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of
proportion of elements of finite simple groups satisfying P.

Eamonn O’Brien Algorithms for matrix groups

logo

Randomness

|GL(d , q)| = O(qd2
)

Many algorithms are randomised: use random search in G to find
elements having prescribed property P.

Example

� Characteristic polynomial having factor of degree > d/2.

� Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of
proportion of elements of finite simple groups satisfying P.

Eamonn O’Brien Algorithms for matrix groups

logo

Randomness

|GL(d , q)| = O(qd2
)

Many algorithms are randomised: use random search in G to find
elements having prescribed property P.

Example

� Characteristic polynomial having factor of degree > d/2.

� Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of
proportion of elements of finite simple groups satisfying P.

Eamonn O’Brien Algorithms for matrix groups

logo

Assume we determine a lower bound, say 1/k , for proportion of
elements in G satisfying Property P.

To find element satisfying P by random search with a probability
of failure less than given ε ∈ (0, 1): choose a sample of uniformly
distributed random elements in G of size at least d− loge(ε)ek.

Eamonn O’Brien Algorithms for matrix groups

logo

Assume we determine a lower bound, say 1/k , for proportion of
elements in G satisfying Property P.

To find element satisfying P by random search with a probability
of failure less than given ε ∈ (0, 1): choose a sample of uniformly
distributed random elements in G of size at least d− loge(ε)ek.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.

Eamonn O’Brien Algorithms for matrix groups

logo

Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).

Eamonn O’Brien Algorithms for matrix groups

logo

Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).

Eamonn O’Brien Algorithms for matrix groups

logo

Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).

Eamonn O’Brien Algorithms for matrix groups

logo

Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).

Eamonn O’Brien Algorithms for matrix groups

logo

Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.

Eamonn O’Brien Algorithms for matrix groups

logo

Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.

Eamonn O’Brien Algorithms for matrix groups

logo

Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.

Eamonn O’Brien Algorithms for matrix groups

logo

Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.

Eamonn O’Brien Algorithms for matrix groups

logo

Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.

Eamonn O’Brien Algorithms for matrix groups

logo

Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.

Eamonn O’Brien Algorithms for matrix groups

logo

Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.

Eamonn O’Brien Algorithms for matrix groups

logo

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on Ω = {1, . . . , n}

Gε = {g ∈ G | εg = ε}.

Base: sequence of points B = [ε1, ε2, . . . , εk] where Gε1,ε2,...,εk = 1.

This determines chain of stabilisers

G = G (0) ≥ G (1) ≥ · · · ≥ G (k−1) ≥ G (k) = 1,

where G (i) = Gε1,ε2,...,εi .
S strong generating set: G (i) =

〈
S ∩ G (i)

〉
Example

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = [1, 3]
G > G1 > G1,3 = 1
S = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}

Eamonn O’Brien Algorithms for matrix groups

logo

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on Ω = {1, . . . , n}

Gε = {g ∈ G | εg = ε}.

Base: sequence of points B = [ε1, ε2, . . . , εk] where Gε1,ε2,...,εk = 1.

This determines chain of stabilisers

G = G (0) ≥ G (1) ≥ · · · ≥ G (k−1) ≥ G (k) = 1,

where G (i) = Gε1,ε2,...,εi .
S strong generating set: G (i) =

〈
S ∩ G (i)

〉
Example

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = [1, 3]
G > G1 > G1,3 = 1
S = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}

Eamonn O’Brien Algorithms for matrix groups

logo

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on Ω = {1, . . . , n}

Gε = {g ∈ G | εg = ε}.

Base: sequence of points B = [ε1, ε2, . . . , εk] where Gε1,ε2,...,εk = 1.

This determines chain of stabilisers

G = G (0) ≥ G (1) ≥ · · · ≥ G (k−1) ≥ G (k) = 1,

where G (i) = Gε1,ε2,...,εi .
S strong generating set: G (i) =

〈
S ∩ G (i)

〉
Example

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = [1, 3]
G > G1 > G1,3 = 1
S = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups

logo

Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.

Eamonn O’Brien Algorithms for matrix groups

logo

Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.

Eamonn O’Brien Algorithms for matrix groups

logo

Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.

Eamonn O’Brien Algorithms for matrix groups

logo

Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.

Eamonn O’Brien Algorithms for matrix groups

logo

Geometry following Aschbacher

Aschbacher (1984)

G maximal subgroup of GL(d , q), let V be underlying vector space

� G preserves some natural linear structure associated with the
action of G on V , and has normal subgroup related to this
structure,

� or G is almost simple modulo scalars: T ≤ G/Z ≤ Aut(T)
where T is simple.

Eamonn O’Brien Algorithms for matrix groups

logo

Geometry following Aschbacher

Aschbacher (1984)

G maximal subgroup of GL(d , q), let V be underlying vector space

� G preserves some natural linear structure associated with the
action of G on V , and has normal subgroup related to this
structure,

� or G is almost simple modulo scalars: T ≤ G/Z ≤ Aut(T)
where T is simple.

Eamonn O’Brien Algorithms for matrix groups

logo

Geometry following Aschbacher

Aschbacher (1984)

G maximal subgroup of GL(d , q), let V be underlying vector space

� G preserves some natural linear structure associated with the
action of G on V , and has normal subgroup related to this
structure,

� or G is almost simple modulo scalars: T ≤ G/Z ≤ Aut(T)
where T is simple.

Eamonn O’Brien Algorithms for matrix groups

logo

Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.

Eamonn O’Brien Algorithms for matrix groups

logo

Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.

Eamonn O’Brien Algorithms for matrix groups

logo

Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.

Eamonn O’Brien Algorithms for matrix groups

logo

Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.

Eamonn O’Brien Algorithms for matrix groups

logo

Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.

Eamonn O’Brien Algorithms for matrix groups

