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Overview

G = 〈X 〉 ≤ GL(d ,R) where R is a ring; usually finite field GF(q)

Goal: efficient algorithms, for their study, which are both
theoretically and practically effective.
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Why do we care?

� Modular representation theory: Dickson (1910s), applications
to number theory, algebraic groups etc.

� Sporadic simple groups: constructed as irreducible
representations over small fields.
Benson et al. (1982): J4 ≤ GL(112, 2), order 1020.

� Invariant theory: irreducible representations, Kronecker
products, tensor-induced representations.

� Energy levels of systems of identical particles: irreducible
representations of classical groups
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Cost of matrix multiplication

Two d × d matrices A and B
Cost of A× B using conventional algorithm is O(d3).

Strassen: O(d log2(7))

Coppersmith & Winograd (1990): O(d2.37)

Where do we notice improvements? Perhaps for d ≥ 100.
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Membership

Given G ≤ GL(d ,Z), and x ∈ GL(d ,Z): is x ∈ G?

Mihailova (1958): membership problem is undecidable for d ≥ 4.

GF(q) : |GL(d , q)| = O(qd2
)

Membership decidable from exhaustive search.

Even for . . . 1× 1 matrices over GF(q):
membership related to

Discrete log problem
F = GF(q), ω ∈ F primitive.
Given α ∈ F , determine k so that α = ωk .

No polynomial-time algorithm known.
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Challenge Problem I: Order of a matrix

Let g ∈ GL(d , q).
Find n ≥ 1 such that gn = 1.

GL(d , q) has elements of order qd − 1 (Singer cycles)

To find |g |: probably requires factorisation of numbers of form
qi − 1, a hard problem.

Babai & Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for |g |
is known, then the precise value of |g | can be determined in
polynomial time.
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Celler & Leedham-Green (1995): compute order in time
O(d3 log q) subject to factorisation of qi − 1 for 1 ≤ i ≤ d .

• Compute a “good” multiplicative upper bound E for |g |.

Determine and factorise minimal polynomial for g as

m(x) =
t∏

i=1

fi (x)mi

where deg(fi ) = di and β = dlogp max mie.

E = lcm(qdi − 1)× pβ

|g | divides E .
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How can we use E?

If E =
∏t

i=1 pαi
i then we can determine |g | in O(log t log n)

multiplications.

If t = 1, then compute gpj
1 for j = 1, 2, . . . , α1.

Otherwise write E = uv where u, v are coprime and have
approximately same number of distinct prime factors.

Now gu has order k say, dividing v ;
and gk has order ` say, dividing u.

The order of g is k`.
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So cost is O(d3 log q log t) field operations if we can factorise E .

If we don’t complete the factorisation, then obtain pseudo-order
[order × some large primes] of g suffices for most theoretical and
practical purposes.

Implementations in both GAP and Magma use databases of
factorisations of numbers of the form qi − 1, prepared as part of
the Cunningham Project.
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Variation on this theme

Task: Determine if g has even order.

If we just know E , then we can learn in polynomial time the exact
power of 2 (or of any specified prime) which divides |g |.

By repeated division by 2, we write E = 2mb where b is odd.

Now we compute h = gb, and determine (by powering) its order
which divides 2m.
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Randomness

|GL(d , q)| = O(qd2
)

Many algorithms are randomised: use random search in G to find
elements having prescribed property P.

Example

� Characteristic polynomial having factor of degree > d/2.

� Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of
proportion of elements of finite simple groups satisfying P.
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Assume we determine a lower bound, say 1/k , for proportion of
elements in G satisfying Property P.

To find element satisfying P by random search with a probability
of failure less than given ε ∈ (0, 1): choose a sample of uniformly
distributed random elements in G of size at least d− loge(ε)ek.
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Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach
Independent nearly uniformly random distributed elements of finite
group G = 〈X 〉 can be found after a preprocessing stage consisting
of O(log5 |G |) group operations.

Preprocessing proceeds in O(log |G |) phases.

In each phase, random walk of random length between 1 and
O((log |G |)4) performed on Cayley graph of G .

Element found when walk finished is added to generators of G .

Walk is repeated O(log |G |) times.
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Final list S of O(log |G |) elements input to construction phase.

Random element is random subproduct of S :

g ε11 . . . g εmm

where S = {g1, . . . , gm} and εi ∈ {0, 1} (chosen independently).

For G ≤ GL(d , q), log |G | < d2 log q.

Initialisation phase O(d10 log5 q).

Cost per random element is O(log |G |).
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CLMNO (1995): Product replacement algorithm

Input: ordered list of generators [g1, . . . , gm] for G .

Accumulator: r initialised to be identity of G .

Basic step:

� Select at random i , j where 1 ≤ i , j ≤ m.

� Replace gi by either gigj or gjgi .

� Multiply r by gi .

Basic step repeated a number, say t, of times.

Now to obtain random element: execute basic operation once, and
return r as random element.
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Cost: after initialisation, two matrix multiplications.

Markov chain: a discrete random process with a finite number
of states and it satisfies the property that the next state depends
only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G . Then the
algorithm constructs a Markov chain over state space T , and if m
is at least twice the size of a minimal generating set of generators
for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential
rate O((1− δ)t) where t is number of steps taken.
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Mixing time

What can we say about the “mixing time”, t?

Variety of statistical tests applied to test outcome of algorithm.
Practical: excellent.

� Diaconis & Saloff-Coste (1997, 1998):
t = O(δ2(G ,S) ·m), where δ(G ,S) is the maximal diameter
for the Cayley graph of G wrt generating set S .
Comparison of two Markov chains on different but related
state spaces and combinatorics of random paths.

� Pak (2001): Mixing time is polynomial. Multi-commodity flow
technique.

� Lubotzky & Pak (2002):
Does the group of automorphisms of a free group of rank > 3
have Kazhdan’s property (T)? If so, then “graph of states” is
well-behaved, giving excellent mixing time.
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Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on Ω = {1, . . . , n}

Gε = {g ∈ G | εg = ε}.

Base: sequence of points B = [ε1, ε2, . . . , εk ] where Gε1,ε2,...,εk = 1.

This determines chain of stabilisers

G = G (0) ≥ G (1) ≥ · · · ≥ G (k−1) ≥ G (k) = 1,

where G (i) = Gε1,ε2,...,εi .
S strong generating set: G (i) =

〈
S ∩ G (i)

〉
Example

G = 〈(1, 5, 2, 6), (1, 2)(3, 4)(5, 6)〉
B = [1, 3]
G > G1 > G1,3 = 1
S = {(1, 5, 2, 6), (1, 2)(3, 4)(5, 6), (3, 4)}
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Central task: construct basic orbits – orbit Bi of the base point
εi+1 under G (i).

|G (i) : G (i+1)| = #Bi

Schreier’s Lemma gives generating set for each G (i).

Base image Bg = [εg1 , . . . ε
g
k ] uniquely determines g :

if Bg = Bh then Bgh−1
= B, so gh−1 = 1. Hence g can be

represented as |B|-tuple.

Variations underpin both theoretical and practical approaches to
permutation group algorithms.
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Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.

Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits
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Neunhöffer et al. (2000s): use “helper subgroups” to construct
large orbits

Eamonn O’Brien Algorithms for matrix groups



logo

Schreier-Sims for matrix groups

G acts faithfully on V = F d : v · g , for v ∈ V

Compute BSGS for G , viewed as permutation group on the vectors.

Base points: standard basis vectors for V .

Central problem: basic orbits Bi large. Usually |B1| is |G |.

Butler (1979): action of G on one-dimensional subspaces of V .

Murray & O’Brien (1995): heuristic algorithm to select base points.
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Critical for success: index of one stabiliser in its predecessor.

|Sn : Sn−1| = n

“Optimal” subgroup chain for GL(d , q)?

GL(d , q) ≥ qd−1.GL(d − 1, q) ≥ GL(d − 1, q) ≥ . . .

Leading index: qd − 1.

Example

Largest maximal subgroup 211 : M24 ≤ J4 index 173 067 389.
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Geometry following Aschbacher

Aschbacher (1984)

G maximal subgroup of GL(d , q), let V be underlying vector space

� G preserves some natural linear structure associated with the
action of G on V , and has normal subgroup related to this
structure,

� or G is almost simple modulo scalars: T ≤ G/Z ≤ Aut(T )
where T is simple.
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Basic strategy

1 Determine (at least one of) its Aschbacher categories.

2 If N C G exists, recognise N and G/N recursively, ultimately
obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V , preserving r blocks, so V = ⊕r
i=1Vi .

Then φ : G → Sr where r |d and N = ker φ.

CompositionTree: exploits geometry to produce composition
series for G , factors are leaves of tree.
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