Algorithms for matrix groups

Eamonn O'Brien
University of Auckland

December 2010

Overview

$G=\langle X\rangle \leq \mathrm{GL}(d, R)$ where R is a ring; usually finite field $\mathrm{GF}(q)$

Overview

$G=\langle X\rangle \leq \mathrm{GL}(d, R)$ where R is a ring; usually finite field $\operatorname{GF}(q)$
Goal: efficient algorithms, for their study, which are both theoretically and practically effective.

Why do we care?

Why do we care?

- Modular representation theory: Dickson (1910s), applications to number theory, algebraic groups etc.

Why do we care?

- Modular representation theory: Dickson (1910s), applications to number theory, algebraic groups etc.
- Sporadic simple groups: constructed as irreducible representations over small fields.

Why do we care?

- Modular representation theory: Dickson (1910s), applications to number theory, algebraic groups etc.
- Sporadic simple groups: constructed as irreducible representations over small fields. Benson et al. (1982): $J_{4} \leq \mathrm{GL}(112,2)$, order 10^{20}.

Why do we care?

- Modular representation theory: Dickson (1910s), applications to number theory, algebraic groups etc.
- Sporadic simple groups: constructed as irreducible representations over small fields. Benson et al. (1982): $J_{4} \leq \operatorname{GL}(112,2)$, order 10^{20}.
- Invariant theory: irreducible representations, Kronecker products, tensor-induced representations.

Why do we care?

- Modular representation theory: Dickson (1910s), applications to number theory, algebraic groups etc.
- Sporadic simple groups: constructed as irreducible representations over small fields. Benson et al. (1982): $J_{4} \leq \mathrm{GL}(112,2)$, order 10^{20}.
- Invariant theory: irreducible representations, Kronecker products, tensor-induced representations.
- Energy levels of systems of identical particles: irreducible representations of classical groups

Cost of matrix multiplication

Two $d \times d$ matrices A and B
Cost of $A \times B$ using conventional algorithm is $O\left(d^{3}\right)$.

Cost of matrix multiplication

Two $d \times d$ matrices A and B
Cost of $A \times B$ using conventional algorithm is $O\left(d^{3}\right)$.
Strassen: $O\left(d^{\log _{2}(7)}\right)$

Cost of matrix multiplication

Two $d \times d$ matrices A and B
Cost of $A \times B$ using conventional algorithm is $O\left(d^{3}\right)$.
Strassen: $O\left(d^{\log _{2}(7)}\right)$
Coppersmith \& Winograd (1990): $O\left(d^{2.37}\right)$

Cost of matrix multiplication

Two $d \times d$ matrices A and B
Cost of $A \times B$ using conventional algorithm is $O\left(d^{3}\right)$.
Strassen: $O\left(d^{\log _{2}(7)}\right)$
Coppersmith \& Winograd (1990): $O\left(d^{2.37}\right)$
Where do we notice improvements?

Cost of matrix multiplication

Two $d \times d$ matrices A and B
Cost of $A \times B$ using conventional algorithm is $O\left(d^{3}\right)$.
Strassen: $O\left(d^{\log _{2}(7)}\right)$
Coppersmith \& Winograd (1990): $O\left(d^{2.37}\right)$
Where do we notice improvements? Perhaps for $d \geq 100$.

Membership

Given $G \leq \operatorname{GL}(d, \mathbb{Z})$, and $x \in \operatorname{GL}(d, \mathbb{Z})$: is $x \in G$?

Membership

Given $G \leq \mathrm{GL}(d, \mathbb{Z})$, and $x \in \mathrm{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.

Membership

Given $G \leq G L(d, \mathbb{Z})$, and $x \in \operatorname{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.
$\operatorname{GF}(q):|\operatorname{GL}(d, q)|=O\left(q^{d^{2}}\right)$

Membership

Given $G \leq \mathrm{GL}(d, \mathbb{Z})$, and $x \in \mathrm{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.
$\mathrm{GF}(q):|\mathrm{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Membership decidable from exhaustive search.

Membership

Given $G \leq G L(d, \mathbb{Z})$, and $x \in \operatorname{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.
$\operatorname{GF}(q):|\operatorname{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Membership decidable from exhaustive search.
Even for $\ldots 1 \times 1$ matrices over GF(q):
membership related to

Membership

Given $G \leq \mathrm{GL}(d, \mathbb{Z})$, and $x \in \mathrm{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.
$\mathrm{GF}(q):|\mathrm{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Membership decidable from exhaustive search.
Even for $\ldots 1 \times 1$ matrices over GF(q):
membership related to
Discrete log problem
$F=\operatorname{GF}(q), \omega \in F$ primitive.
Given $\alpha \in F$, determine k so that $\alpha=\omega^{k}$.

Membership

Given $G \leq \operatorname{GL}(d, \mathbb{Z})$, and $x \in \operatorname{GL}(d, \mathbb{Z})$: is $x \in G$?
Mihailova (1958): membership problem is undecidable for $d \geq 4$.
$\operatorname{GF}(q):|\operatorname{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Membership decidable from exhaustive search.
Even for $\ldots 1 \times 1$ matrices over GF(q):
membership related to
Discrete log problem
$F=\mathrm{GF}(q), \omega \in F$ primitive.
Given $\alpha \in F$, determine k so that $\alpha=\omega^{k}$.
No polynomial-time algorithm known.

Challenge Problem I: Order of a matrix

Let $g \in \operatorname{GL}(d, q)$.
Find $n \geq 1$ such that $g^{n}=1$.

Challenge Problem I: Order of a matrix

Let $g \in \operatorname{GL}(d, q)$.
Find $n \geq 1$ such that $g^{n}=1$.
$\mathrm{GL}(d, q)$ has elements of order $q^{d}-1$ (Singer cycles)

Challenge Problem I: Order of a matrix

Let $g \in \operatorname{GL}(d, q)$.
Find $n \geq 1$ such that $g^{n}=1$.
$\mathrm{GL}(d, q)$ has elements of order $q^{d}-1$ (Singer cycles)
To find $|g|$: probably requires factorisation of numbers of form $q^{i}-1$, a hard problem.

Challenge Problem I: Order of a matrix

Let $g \in \operatorname{GL}(d, q)$.
Find $n \geq 1$ such that $g^{n}=1$.
$\mathrm{GL}(d, q)$ has elements of order $q^{d}-1$ (Singer cycles)
To find $|g|$: probably requires factorisation of numbers of form $q^{i}-1$, a hard problem.

Babai \& Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for $|g|$ is known, then the precise value of $|g|$ can be determined in polynomial time.

Celler \& Leedham-Green (1995): compute order in time $O\left(d^{3} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

Celler \& Leedham-Green (1995): compute order in time $O\left(d^{3} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

- Compute a "good" multiplicative upper bound E for $|g|$.

Celler \& Leedham-Green (1995): compute order in time $O\left(d^{3} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

- Compute a "good" multiplicative upper bound E for $|g|$.

Determine and factorise minimal polynomial for g as

$$
m(x)=\prod_{i=1}^{t} f_{i}(x)^{m_{i}}
$$

where $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\beta=\left\lceil\log _{p} \max m_{i}\right\rceil$.

Celler \& Leedham-Green (1995): compute order in time $O\left(d^{3} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

- Compute a "good" multiplicative upper bound E for $|g|$.

Determine and factorise minimal polynomial for g as

$$
m(x)=\prod_{i=1}^{t} f_{i}(x)^{m_{i}}
$$

where $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\beta=\left\lceil\log _{p} \max m_{i}\right\rceil$.
$E=\operatorname{lcm}\left(q^{d_{i}}-1\right) \times p^{\beta}$

Celler \& Leedham-Green (1995): compute order in time $O\left(d^{3} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

- Compute a "good" multiplicative upper bound E for $|g|$.

Determine and factorise minimal polynomial for g as

$$
m(x)=\prod_{i=1}^{t} f_{i}(x)^{m_{i}}
$$

where $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\beta=\left\lceil\log _{p} \max m_{i}\right\rceil$.
$E=\operatorname{lcm}\left(q^{d_{i}}-1\right) \times p^{\beta}$
$|g|$ divides E.

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.
If $t=1$, then compute $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}$.

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.
If $t=1$, then compute $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}$.
Otherwise write $E=u v$ where u, v are coprime and have approximately same number of distinct prime factors.

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.
If $t=1$, then compute $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}$.
Otherwise write $E=u v$ where u, v are coprime and have approximately same number of distinct prime factors.

Now g^{u} has order k say, dividing v;

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.
If $t=1$, then compute $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}$.
Otherwise write $E=u v$ where u, v are coprime and have approximately same number of distinct prime factors.

Now g^{u} has order k say, dividing v; and g^{k} has order ℓ say, dividing u.

How can we use E?

If $E=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$ then we can determine $|g|$ in $O(\log t \log n)$ multiplications.
If $t=1$, then compute $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}$.
Otherwise write $E=u v$ where u, v are coprime and have approximately same number of distinct prime factors.

Now g^{u} has order k say, dividing v; and g^{k} has order ℓ say, dividing u.
The order of g is $k \ell$.

So cost is $O\left(d^{3} \log q \log t\right)$ field operations if we can factorise E.

So cost is $O\left(d^{3} \log q \log t\right)$ field operations if we can factorise E. If we don't complete the factorisation, then obtain pseudo-order [order \times some large primes] of g

So cost is $O\left(d^{3} \log q \log t\right)$ field operations if we can factorise E. If we don't complete the factorisation, then obtain pseudo-order [order \times some large primes] of g suffices for most theoretical and practical purposes.

So cost is $O\left(d^{3} \log q \log t\right)$ field operations if we can factorise E. If we don't complete the factorisation, then obtain pseudo-order [order \times some large primes] of g suffices for most theoretical and practical purposes.

Implementations in both GAP and Magma use databases of factorisations of numbers of the form $q^{i}-1$, prepared as part of the Cunningham Project.

Variation on this theme

Task: Determine if g has even order.

Variation on this theme

Task: Determine if g has even order.
If we just know E, then we can learn in polynomial time the exact power of 2 (or of any specified prime) which divides $|g|$.

Variation on this theme

Task: Determine if g has even order.
If we just know E, then we can learn in polynomial time the exact power of 2 (or of any specified prime) which divides $|g|$.

By repeated division by 2 , we write $E=2^{m} b$ where b is odd.

Variation on this theme

Task: Determine if g has even order.
If we just know E, then we can learn in polynomial time the exact power of 2 (or of any specified prime) which divides $|g|$.
By repeated division by 2 , we write $E=2^{m} b$ where b is odd.
Now we compute $h=g^{b}$, and determine (by powering) its order which divides 2^{m}.

Randomness

$|\mathrm{GL}(d, q)|=O\left(q^{d^{2}}\right)$

Randomness

$|\mathrm{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Many algorithms are randomised: use random search in G to find elements having prescribed property \mathcal{P}.

Example

- Characteristic polynomial having factor of degree $>d / 2$.
- Order divisible by prescribed prime.

Randomness

$|\mathrm{GL}(d, q)|=O\left(q^{d^{2}}\right)$
Many algorithms are randomised: use random search in G to find elements having prescribed property \mathcal{P}.

Example

- Characteristic polynomial having factor of degree $>d / 2$.
- Order divisible by prescribed prime.

Common feature: algorithms depend on detailed analysis of proportion of elements of finite simple groups satisfying \mathcal{P}.

Assume we determine a lower bound, say $1 / k$, for proportion of elements in G satisfying Property \mathcal{P}.

Assume we determine a lower bound, say $1 / k$, for proportion of elements in G satisfying Property \mathcal{P}.

To find element satisfying \mathcal{P} by random search with a probability of failure less than given $\epsilon \in(0,1)$: choose a sample of uniformly distributed random elements in G of size at least $\left\lceil-\log _{e}(\epsilon)\right\rceil k$.

Challenge Problem II: Generate random elements

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach Independent nearly uniformly random distributed elements of finite group $G=\langle X\rangle$ can be found after a preprocessing stage consisting of $O\left(\log ^{5}|G|\right)$ group operations.

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach Independent nearly uniformly random distributed elements of finite group $G=\langle X\rangle$ can be found after a preprocessing stage consisting of $O\left(\log ^{5}|G|\right)$ group operations.
Preprocessing proceeds in $O(\log |G|)$ phases.

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach Independent nearly uniformly random distributed elements of finite group $G=\langle X\rangle$ can be found after a preprocessing stage consisting of $O\left(\log ^{5}|G|\right)$ group operations.
Preprocessing proceeds in $O(\log |G|)$ phases.
In each phase, random walk of random length between 1 and $O\left((\log |G|)^{4}\right)$ performed on Cayley graph of G.

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach Independent nearly uniformly random distributed elements of finite group $G=\langle X\rangle$ can be found after a preprocessing stage consisting of $O\left(\log ^{5}|G|\right)$ group operations.
Preprocessing proceeds in $O(\log |G|)$ phases.
In each phase, random walk of random length between 1 and $O\left((\log |G|)^{4}\right)$ performed on Cayley graph of G.
Element found when walk finished is added to generators of G.

Challenge Problem II: Generate random elements

Babai (1991): Vertex-transitive graph approach Independent nearly uniformly random distributed elements of finite group $G=\langle X\rangle$ can be found after a preprocessing stage consisting of $O\left(\log ^{5}|G|\right)$ group operations.
Preprocessing proceeds in $O(\log |G|)$ phases.
In each phase, random walk of random length between 1 and $O\left((\log |G|)^{4}\right)$ performed on Cayley graph of G.

Element found when walk finished is added to generators of G.
Walk is repeated $O(\log |G|)$ times.

Final list S of $O(\log |G|)$ elements input to construction phase.

Final list S of $O(\log |G|)$ elements input to construction phase. Random element is random subproduct of S :

$$
g_{1}^{\epsilon_{1}} \ldots g_{m}^{\epsilon_{m}}
$$
where $S=\left\{g_{1}, \ldots, g_{m}\right\}$ and $\epsilon_{i} \in\{0,1\}$ (chosen independently).

Final list S of $O(\log |G|)$ elements input to construction phase. Random element is random subproduct of S :

$$
g_{1}^{\epsilon_{1}} \ldots g_{m}^{\epsilon_{m}}
$$

where $S=\left\{g_{1}, \ldots, g_{m}\right\}$ and $\epsilon_{i} \in\{0,1\}$ (chosen independently).
For $G \leq \mathrm{GL}(d, q), \log |G|<d^{2} \log q$.

Final list S of $O(\log |G|)$ elements input to construction phase. Random element is random subproduct of S :

$$
g_{1}^{\epsilon_{1}} \ldots g_{m}^{\epsilon_{m}}
$$

where $S=\left\{g_{1}, \ldots, g_{m}\right\}$ and $\epsilon_{i} \in\{0,1\}$ (chosen independently).
For $G \leq \mathrm{GL}(d, q), \log |G|<d^{2} \log q$.
Initialisation phase $O\left(d^{10} \log ^{5} q\right)$.

Final list S of $O(\log |G|)$ elements input to construction phase.
Random element is random subproduct of S :

$$
g_{1}^{\epsilon_{1}} \ldots g_{m}^{\epsilon_{m}}
$$

where $S=\left\{g_{1}, \ldots, g_{m}\right\}$ and $\epsilon_{i} \in\{0,1\}$ (chosen independently).
For $G \leq \mathrm{GL}(d, q), \log |G|<d^{2} \log q$.
Initialisation phase $O\left(d^{10} \log ^{5} q\right)$.
Cost per random element is $O(\log |G|)$.

CLMNO (1995): Product replacement algorithm

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.
Basic step:

- Select at random i, j where $1 \leq i, j \leq m$.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.
Basic step:

- Select at random i, j where $1 \leq i, j \leq m$.
- Replace g_{i} by either $g_{i} g_{j}$ or $g_{j} g_{i}$.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.
Basic step:

- Select at random i, j where $1 \leq i, j \leq m$.
- Replace g_{i} by either $g_{i} g_{j}$ or $g_{j} g_{i}$.
- Multiply r by g_{i}.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.
Basic step:

- Select at random i, j where $1 \leq i, j \leq m$.
- Replace g_{i} by either $g_{i} g_{j}$ or $g_{j} g_{i}$.
- Multiply r by g_{i}.

Basic step repeated a number, say t, of times.

CLMNO (1995): Product replacement algorithm

Input: ordered list of generators $\left[g_{1}, \ldots, g_{m}\right]$ for G.
Accumulator: r initialised to be identity of G.
Basic step:

- Select at random i, j where $1 \leq i, j \leq m$.
- Replace g_{i} by either $g_{i} g_{j}$ or $g_{j} g_{i}$.
- Multiply r by g_{i}.

Basic step repeated a number, say t, of times.
Now to obtain random element: execute basic operation once, and return r as random element.

Cost: after initialisation, two matrix multiplications.

Cost: after initialisation, two matrix multiplications.
MARKOV Chain: a discrete random process with a finite number of states and it satisfies the property that the next state depends only on the current state.

Cost: after initialisation, two matrix multiplications.
MARKOV Chain: a discrete random process with a finite number of states and it satisfies the property that the next state depends only on the current state.

Aperiodic: all states occur with equal probability.

Cost: after initialisation, two matrix multiplications.
MARKOV Chain: a discrete random process with a finite number of states and it satisfies the property that the next state depends only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G. Then the algorithm constructs a Markov chain over state space T, and if m is at least twice the size of a minimal generating set of generators for G, this Markov chain is connected and aperiodic.

Cost: after initialisation, two matrix multiplications.
MARKOV Chain: a discrete random process with a finite number of states and it satisfies the property that the next state depends only on the current state.

Aperiodic: all states occur with equal probability.

Theorem

Let T be set of all m-tuples of generators of G. Then the algorithm constructs a Markov chain over state space T, and if m is at least twice the size of a minimal generating set of generators for G, this Markov chain is connected and aperiodic.

The random walk approaches a limiting distribution at exponential rate $O\left((1-\delta)^{t}\right)$ where t is number of steps taken.

Mixing time

What can we say about the "mixing time", t ?

Mixing time

What can we say about the "mixing time", t ?
Variety of statistical tests applied to test outcome of algorithm. Practical: excellent.

Mixing time

What can we say about the "mixing time", t ?
Variety of statistical tests applied to test outcome of algorithm. Practical: excellent.

- Diaconis \& Saloff-Coste $(1997,1998)$:
$t=O\left(\delta^{2}(G, S) \cdot m\right)$, where $\delta(G, S)$ is the maximal diameter for the Cayley graph of G wrt generating set S.
Comparison of two Markov chains on different but related state spaces and combinatorics of random paths.

Mixing time

What can we say about the "mixing time", t ?
Variety of statistical tests applied to test outcome of algorithm. Practical: excellent.

- Diaconis \& Saloff-Coste (1997, 1998):
$t=O\left(\delta^{2}(G, S) \cdot m\right)$, where $\delta(G, S)$ is the maximal diameter for the Cayley graph of G wrt generating set S.
Comparison of two Markov chains on different but related state spaces and combinatorics of random paths.
- Pak (2001): Mixing time is polynomial. Multi-commodity flow technique.

Mixing time

What can we say about the "mixing time", t ?
Variety of statistical tests applied to test outcome of algorithm. Practical: excellent.

- Diaconis \& Saloff-Coste $(1997,1998)$:
$t=O\left(\delta^{2}(G, S) \cdot m\right)$, where $\delta(G, S)$ is the maximal diameter for the Cayley graph of G wrt generating set S.
Comparison of two Markov chains on different but related state spaces and combinatorics of random paths.
- Pak (2001): Mixing time is polynomial. Multi-commodity flow technique.
- Lubotzky \& Pak (2002):

Does the group of automorphisms of a free group of rank >3 have Kazhdan's property (T)? If so, then "graph of states" is well-behaved, giving excellent mixing time.

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS). G acts faithfully on $\Omega=\{1, \ldots, n\}$
$G_{\epsilon}=\left\{g \in G \mid \epsilon^{g}=\epsilon\right\}$.

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS). G acts faithfully on $\Omega=\{1, \ldots, n\}$
$G_{\epsilon}=\left\{g \in G \mid \epsilon^{g}=\epsilon\right\}$.
Base: sequence of points $B=\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right]$ where $G_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}}=1$.

Permutation groups

Sims (1970, 1971): base and strong generating set (BSGS).
G acts faithfully on $\Omega=\{1, \ldots, n\}$
$G_{\epsilon}=\left\{g \in G \mid \epsilon^{g}=\epsilon\right\}$.
Base: sequence of points $B=\left[\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right]$ where $G_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}}=1$.
This determines chain of stabilisers

$$
G=G^{(0)} \geq G^{(1)} \geq \cdots \geq G^{(k-1)} \geq G^{(k)}=1
$$

where $G^{(i)}=G_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{i}}$.
S strong generating set: $G^{(i)}=\left\langle S \cap G^{(i)}\right\rangle$
Example

$$
\begin{aligned}
& G=\langle(1,5,2,6),(1,2)(3,4)(5,6)\rangle \\
& B=[1,3] \\
& G>G_{1}>G_{1,3}=1 \\
& S=\{(1,5,2,6),(1,2)(3,4)(5,6),(3,4)\}
\end{aligned}
$$

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

$$
\left|G^{(i)}: G^{(i+1)}\right|=\# B_{i}
$$

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

$$
\left|G^{(i)}: G^{(i+1)}\right|=\# B_{i}
$$

Schreier's Lemma gives generating set for each $G^{(i)}$.

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

$$
\left|G^{(i)}: G^{(i+1)}\right|=\# B_{i}
$$

Schreier's Lemma gives generating set for each $G^{(i)}$.
Base image $B^{g}=\left[\epsilon_{1}^{g}, \ldots \epsilon_{k}^{g}\right]$ uniquely determines g :

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

$$
\left|G^{(i)}: G^{(i+1)}\right|=\# B_{i}
$$

Schreier's Lemma gives generating set for each $G^{(i)}$.
Base image $B^{g}=\left[\epsilon_{1}^{g}, \ldots \epsilon_{k}^{g}\right]$ uniquely determines g :
if $B^{g}=B^{h}$ then $B^{g h^{-1}}=B$, so $g h^{-1}=1$. Hence g can be represented as $|B|$-tuple.

Central task: construct basic orbits - orbit B_{i} of the base point ϵ_{i+1} under $G^{(i)}$.

$$
\left|G^{(i)}: G^{(i+1)}\right|=\# B_{i}
$$

Schreier's Lemma gives generating set for each $G^{(i)}$.
Base image $B^{g}=\left[\epsilon_{1}^{g}, \ldots \epsilon_{k}^{g}\right]$ uniquely determines g :
if $B^{g}=B^{h}$ then $B^{g h^{-1}}=B$, so $g h^{-1}=1$. Hence g can be represented as $|B|$-tuple.

Variations underpin both theoretical and practical approaches to permutation group algorithms.

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$
Compute BSGS for G, viewed as permutation group on the vectors.
Base points: standard basis vectors for V.

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$
Compute BSGS for G, viewed as permutation group on the vectors.
Base points: standard basis vectors for V.
Central problem: basic orbits B_{i} large. Usually $\left|B_{1}\right|$ is $|G|$.

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$
Compute BSGS for G, viewed as permutation group on the vectors.
Base points: standard basis vectors for V.
Central problem: basic orbits B_{i} large. Usually $\left|B_{1}\right|$ is $|G|$.
Butler (1979): action of G on one-dimensional subspaces of V.

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$
Compute BSGS for G, viewed as permutation group on the vectors.
Base points: standard basis vectors for V.
Central problem: basic orbits B_{i} large. Usually $\left|B_{1}\right|$ is $|G|$.
Butler (1979): action of G on one-dimensional subspaces of V.
Murray \& O'Brien (1995): heuristic algorithm to select base points.

Schreier-Sims for matrix groups

G acts faithfully on $V=F^{d}: v \cdot g$, for $v \in V$
Compute BSGS for G, viewed as permutation group on the vectors.
Base points: standard basis vectors for V.
Central problem: basic orbits B_{i} large. Usually $\left|B_{1}\right|$ is $|G|$.
Butler (1979): action of G on one-dimensional subspaces of V.
Murray \& O'Brien (1995): heuristic algorithm to select base points.
Neunhöffer et al. (2000s): use "helper subgroups" to construct large orbits

Critical for success: index of one stabiliser in its predecessor.

Critical for success: index of one stabiliser in its predecessor.
$\left|S_{n}: S_{n-1}\right|=n$

Critical for success: index of one stabiliser in its predecessor.
$\left|S_{n}: S_{n-1}\right|=n$
"Optimal" subgroup chain for $\operatorname{GL}(d, q)$?

$$
\mathrm{GL}(d, q) \geq q^{d-1} \cdot \mathrm{GL}(d-1, q) \geq \mathrm{GL}(d-1, q) \geq \ldots
$$

Leading index: $q^{d}-1$.

Critical for success: index of one stabiliser in its predecessor.
$\left|S_{n}: S_{n-1}\right|=n$
"Optimal" subgroup chain for $\operatorname{GL}(d, q)$?

$$
\mathrm{GL}(d, q) \geq q^{d-1} \cdot \mathrm{GL}(d-1, q) \geq \mathrm{GL}(d-1, q) \geq \ldots
$$

Leading index: $q^{d}-1$.

Example

Largest maximal subgroup $2^{11}: M_{24} \leq J_{4}$ index 173067389.

Geometry following Aschbacher

Aschbacher (1984)
G maximal subgroup of $\operatorname{GL}(d, q)$, let V be underlying vector space

Geometry following Aschbacher

Aschbacher (1984)
G maximal subgroup of $\operatorname{GL}(d, q)$, let V be underlying vector space

- G preserves some natural linear structure associated with the action of G on V, and has normal subgroup related to this structure,

Geometry following Aschbacher

Aschbacher (1984)
G maximal subgroup of $\operatorname{GL}(d, q)$, let V be underlying vector space

- G preserves some natural linear structure associated with the action of G on V, and has normal subgroup related to this structure,
- or G is almost simple modulo scalars: $T \leq G / Z \leq \operatorname{Aut}(T)$ where T is simple.

Basic strategy

(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, recognise N and G / N recursively, ultimately obtaining a composition series for the group.

Basic strategy

(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, recognise N and G / N recursively, ultimately obtaining a composition series for the group.

7 categories giving normal subgroup

Basic strategy

(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, recognise N and G / N recursively, ultimately obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V, preserving r blocks, so $V=\oplus_{i=1}^{r} V_{i}$.

Basic strategy

(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, recognise N and G / N recursively, ultimately obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V, preserving r blocks, so $V=\oplus_{i=1}^{r} V_{i}$.
Then $\phi: G \rightarrow S_{r}$ where $r \mid d$ and $N=\operatorname{ker} \phi$.

Basic strategy

(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, recognise N and G / N recursively, ultimately obtaining a composition series for the group.

7 categories giving normal subgroup

Example

G acts imprimitively on V, preserving r blocks, so $V=\oplus_{i=1}^{r} V_{i}$.
Then $\phi: G \rightarrow S_{r}$ where $r \mid d$ and $N=\operatorname{ker} \phi$.

CompositionTree: exploits geometry to produce composition series for G, factors are leaves of tree.

