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Option

@ Vanilla options are classified either as a call option or a put
option.

@ A call (or put) option is a contract which gives the holder the
right to buy (or sell) a prescribed asset, known as underlying
asset, by a certain date (expiration date) for a predetermined
price (commonly called the exercise price or the strike price).

@ Payoff of a call option (with strike K) = (S — K)™
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Black-Scholes model

@ Assume the price of the underlying asset follows the SDE

dS:

?t :Mdt+Uth

w: expected return, o: volatility (1 and o are constants)
dW': standard Brownian motion

@ For each time t, S; is lognormally distributed. More precisely,

S ~ Spexp Kp, - ";) t+oVtN(0, 1)]

where N(0, 1) is the standard normal distribution.
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What is the fair price?

Assume the price of a call option C is a (smooth enough) function
of the calendar time t and the underlying asset S. Consider the
portfolio I consists of selling a call option and holding A amounts
of S.

@ The value of 1 at time t is

I_It - C(t, St) - ASt
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What is the fair price?

Assume the price of a call option C is a (smooth enough) function
of the calendar time t and the underlying asset S. Consider the
portfolio I consists of selling a call option and holding A amounts
of S.

@ The value of 1 at time t is

I_It - C(t, St) - ASt

@ the infinitesimal change of I1 reads

dl_lt - dCt - AdSt
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[to's formula

@ Itd’s formula yields
1
dC(t,S;) = Cedt+ CsdS; + ECss(dst)2
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[to's formula

@ Itd’s formula yields
1
dC(t,S;) = Cedt+ CsdS; + ECss(dst)2
1

@ Hence the infinitesimal change of I1 at time t becomes

dl_lt = dCt - AdSt
1
= |C+ §0252c55 + 1S(Cs — A)} dt + 0S(Cs — A)dW;
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Delta hedge

Let A = Cg, i.e., hold this amount Cs(t, S;) of underlying assets
in the portfolio IN. Then the infinitesimal change of 1 becomes

1
o dl, = (Ct + 202526"55) dt
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Delta hedge

Let A = Cg, i.e., hold this amount Cs(t, S;) of underlying assets
in the portfolio IN. Then the infinitesimal change of 1 becomes

1
o dl, = (Ct + 202526"55) dt

@ On the other hand, with this choice of A, I is riskless
(non-random) hence must be like cash in bank account
(Arbitrage Pricing Theory), i.e.,

dNy = rMydt = r(C — AS)dt = r(C — CsS)dt,

where r is the interest rate (assumed constant).
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Black-Scholes terminal-boundary value problem

Hence we conclude that the price C of a call option satisfies

oC 02 _,0C? oC
- = t
t+25 52+r55 rC=0,for0<S<oo, 0<t<T

with terminal condition
C(T,S)=(S-K)"
and boundary conditions

C(t,0) =0
C(t,S)~S—Ke T as § — 0
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Black-Scholes equation

oc , o 2ac2 G0C

eT=T-t )
8C O' 20C oc
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Black-Scholes equation

aC  o? ,0C%  _aC

eT=T-—t ) )
oC o° _,0C oC
E—7SW+I’5£—I’C
e&=1InS
oC  a20C? a2\ oC
o 202 T\ )ae
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Black-Scholes equation

e c(&,T)=¢e"C(&T)

gc _o*0c (o) 0c
or 202 \"7 2 ) b
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Black-Scholes equation

e c(&,T)=¢e"C(&T)

gc _o*0c (o) 0c
or 202 \"7 2 ) b

0.2
ox:€+(r—7>7 o
dc  o0°0°c
or 2 0x?
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Black-Scholes equation

In total, we have done the transformation
T=T-—1t
o2
x=InS+ (r—2>(T—t)
c=eT70¢C

which transforms Black-Scholes equation to heat equation.



Black-Scholes formula

Hence the price C(t,S) of a call option is found to be
C(t,S) = SN(dy) — Ke (T N(dy),

where N(-) is the distribution function of the standard normal
random variable, i.e.,

N(x) = \/%/j e € /2d¢

and
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Merton

Merton's arguments in his 1973 paper imply more generally that
the arbitrage-free value C of many derivatives satisfies

0C  a?(S,t) ,0C?
ot P gsr T
with three variable coefficients o (S, t), u(S, t) and r(S, t).

However, closed form solutions as explicit as in Black-Scholes
model is in general not available.

p 57t)8C

%—r(s,t)CZO
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Implied volatility

@ In Black-Scholes’ world, to compute the price of a call option, the
only unknown parameter is o, which is termed as volatility.
Therefore, if we assume the underlying asset follows a geometric
Brownian motion and somehow we manage to estimate the volatility
o, then the option price is given by the Black-Scholes’ formula.
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other parameters stays the same. (Exercise: Black-Scholes’ formula
as a function of ¢ is strictly increasing.) This is termed as implied
volatility.
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Implied volatility

@ In Black-Scholes’ world, to compute the price of a call option, the
only unknown parameter is o, which is termed as volatility.
Therefore, if we assume the underlying asset follows a geometric
Brownian motion and somehow we manage to estimate the volatility
o, then the option price is given by the Black-Scholes’ formula.

@ On the other hand, if we are given a call price, we can invert the
Black-Scholes’ formula to fetch out the volatility o, assuming all the
other parameters stays the same. (Exercise: Black-Scholes’ formula
as a function of ¢ is strictly increasing.) This is termed as implied
volatility.

@ Therefore, should the market quotes behave as Black-Scholes
postulated, the implied volatility would have been flat, i.e., no
matter what K and T are, their implied volatilities would be more
or less the same. In real world, this is not the case, such nonflat
implied volatilities phenomena is dubbed volatility skew/smile.
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A 3D plot of the SPX volatility surface as of September
15, 2005

‘lon payduy

k := log K/F is the log-strike and t is time to expiry.
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Slices of the SPX volatility surface

. T=0.18 T=0.25 T=0.50
< 0 °
S ° b3
0
B
<« 3
3 3
3 g
S S0 Sl N
N IR 8° BN 3o AR
58 5 2% o N
Es b E . EY g3
° M o §, S Ty
¥ % S o.\ © P,
\\ N 4 s ty
e veer| - N 1 e 12,
S . S s2ae b
g3 02 o1 00 o 05 04 03 02 01 00 01 06 T4 02 00
Log-Strike Log-Strike Log-Strike
T=0.75 T=1.25 T=1.75
w 9
S 2 5
8
3 ° I
s <8l ¢ 5
S, Se e 2,
23 ¢ 5 % s [
E b E E %
o * © © .
P 2 S ¥
S iy
5 2 e i
s s S
08 06 04 02 00 0 06 04 02 00 02 06 04 02 00 02
Log-Strike Log-Strike Log-Strike

Orange lines are from PDE computations,
empirical bid and offered vols respectively.

red and blue points are



Introduction
©00000

Objective
Given a local volatility process
d
; == O'(S, t) th,

with o(S, t) depending only on the underlying level S and the time
t, we want to compute implied volatilities ops(K, T) such that

Cbs(S, t,K, T, Jbs(K, T)) =E [(ST — K)+|5t = 5]

or in words, we want to efficiently compute implied volatility from
local volatility.
@ Knowing how to get implied volatility from local volatility
helps us get accurate approximations to implied volatility in

more complex models such as SABR.
o Efficient calibration of complex models becomes practical.
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Call price

Let p(t,s;t’,s’) be the transition probability density. Then
C(s,t,K, T) = E[(ST—K)"|S:=5]

= /(s’ — K)Tp(t,s; T,s)ds'

As a function of t and s, p satisfies the backward Kolmogorov
equation:
1
Lp = p; + 55202(5, t)pss = 0,

Subindices refer to respective partial derivatives.
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Two to approximate

C(s,t,K, T) = /(s’ — K)Tp(t,s; T,s')ds’

@ Approximate transition density by heat kernel expansion.
@ Approximate the integral.
e Two approaches for approximating the integral lead to one
expansion.
@ The smaller the time to maturity, the better the
approximation, for both approximations.



Introduction
000800

Heat kernel expansion

Heat kernel expansion for transition density p(t,s; t’, s’) when
t' — t is small:

_d2(s,s/,t)
e 2t'-p)

2n(t — t)s'o (s, t')

p(t,s;t',s') ~

> Hi(t,s,s')(t - t)k]

k=0

e d(s,s,t) =

s' d¢
fs Ea(g,t)
o Holt.s.s') = \/ 2] exp [ [ 40 gy

) / HO(t75>Sl) S diil(n7sl7t)LHl'71
° Hilt,s,s') = sty Js Fotmeatn.d

. geodesic distance between s to s’
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Heat kernel expansion for Black-Scholes

Heat kernel expansion for Black-Scholes transition density
pos(t,s; t',s’) when t' — t is small:

_dbs(s ')

k
e 9 (—1)% [op,(t' — 1)
Pb t/_t7575/ = |: =
o ) 27(t' — t)opss’ Z 8
" d ’
° db5(575,) = fss O’bff = U]t;s logs?

o HE(t,s,s')= /3

S
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Main idea

Implied volatility ops is defined as the unique solution to

C(S7 t, K, T) = Cbs(s, t, K, T, Ubs)

@ Substitute the transition density by the heat kernel expansion
for both the model price C and the Black-Scholes price Cps

@ Expand in terms of T — t on both sides of the resulting
equation

@ Further expand on Black-Scholes side the implied volatility
Obs(K, T) & bso + 0bs 1 (T — t) + 0bs o T — t)?

@ Match the corresponding coefficients
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Two approaches

@ Directly substitute the transition density by heat kernel
expansion to call price. Use Laplace asymptotic formula to
approximate the resulting integral.

@ Rewrite call price as intrinsic value 4 time value. Further
rewrite time value as an integral of transition density over
time, i.e., the Carr-Jarrow formula:

T
C(s,t,K, T)=(s— K)" —i—/ K20%(K, u)p(s, t; K, u)du

t
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Laplace asymptotic formula

Asymptotic expansion of the integral as 7 — 0T

[ e e e ¢ ([qsff/((xx**))]i%H

Assumptions:
o f is identically zero when 0 < x < x*.

@ ¢ is increasing in [x*, 00).
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Laplace asymptotic for call price

Let 7 =T —t.

C(s,t,K,T):/ (s — K)"p(t,s; T,s')ds'
0

d2(s,s/ ,t)
2T

n
———— Hi(t,s,s)Tkds'
7 Z k(L5
\2TT S U(S , T) =0
= Z - Gi(t,s, T,s')ds' - ¥
B \/ﬁ B

¢ 6T - R
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Laplace asymptotic for call price

Assume s < K.

SSt

Gk(t,s, T,s')ds'

\/ﬁ /
- \/% [(dfm i ((df;P) ] |

o d=4d(s,K,t), d = 99(s,K,t), and d" = ?C;(sKt)

° G = Gek(t.s. T.K) = ®oGem)
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Laplace asymptotic for call price
Laplace asymptotic for model price:
3
2 G §(K)Y | Gi(K)
C(S,t,K,T)N /7271'6 27 |:(dd/)2+{<(dd/)3 +(dd/)2 T .

o d=d(s,K,t), d' = 99(s,K,t), and d" = ?‘;(sKt)

8G H 9 7K
o G| = 9C(t,5, T,K) = Kg((f;j))

Laplace asymptotic for Black-Scholes: k = log %

k 2
Ke ™ - o3 72 1 3
Cps(s, t, K, T, ops) ~ \/e% e 2%bsT Jb;;— [1 — ( + k2> 0,2357'}
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Match the coefficients

Let ops = Ops,0 + Obs 1T + Ubs,27'2 + -+ and set
_2[ G} G{(K)\' = Gl(K)
© [(dd/)z i { ((dd')3 T a2 7

K2 3
552 4 KU 1 3
= e 2 bs 7k2eb§ |:1 — (8 + k2> 0'[2357':|

. 2 k log K—log s
e Exponential term: d2 = & = Opsg = = = £ T8S
P UES,O bs,0 d d(vart)

@ Zeroth order term:
k“ops,1

G! o3 KO’?) 0 k 4
@ap =8 ™ % T 01T g log Kk (@)
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Time value

Recall

-
C(s, t,K, T)=(s— K)T +/ K2c?(K, u)p(s, t; K, u)du
t

(s K ﬂ

+Z/ N e

Moreover, denote d = d(s, K, t),

u)(u — t)<du - Hi(t, s, K)

T o2 1
/ e 0 0g(K,u)(u—t)<2du
t

~ /T e T [o(K, £) + oo (K, £)(u — D)](u — )< S du
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Expansion for call price

Let ®y(d,7) = [y u* ~$e % du.
C(s t, K, T)—(s—K)"
~ {KO’(K t)q)o(d T)Ho(t S, K)

2f
+K[o:(K, t)Ho(t, s, K) + o(K, t)Hi(t, s, K)]|P1(d, )}

Moreover, on Black-Scholes side,

Cos(s, t, K, T) — (s — K)©

vsK o3
Do (dps, 7) — ~22D1(dps, T
2\/% Op 0( b. T) 3 1( b. )

~
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Auxiliary expansion and matching

Expanding the ®;'s:

3|1 _ &2

(] qDO(Ci,7-) ~ 272 [(12 3(14_] e 27
2 2 2 23 g2
o (Dl(d,T) = 57'%6_‘217 — ?q)o(d T) ;—22 e_%

Matching

d2(s,K, 1) {KO’HO |:KO'tH0—|-KUH1 3K(7Ho] }
e 2T —|— — T
d? d? d*

d2 (s.K.1)

3
= e Tz \/R |:Ub5¢0(db5, T) - 0-8bs¢1(db57 7)]
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Asymptotic expansion once again

Obs = Ops,0 + O'bs,l(T — t) + O'bsgz(T — t)2 + O(T — t)3.
K d
ds. K.0) = [, &éa

Ho(s, K. 1) = /22ty exp | [1€ 40 gy

"0 gk )
k dHov Ko (K, t
® Obs1= 13 log O\C\;s(j) , where k = log K — log s.

@ 0ps2? Too complicated to reproduce here.
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Henry-Labordere's approximation

Henry-Labordeére also presents a heat kernel expansion based
approximation to implied volatility in equation (5.40) on page 140
of his book [4]:

7os(K. T) oK) {1+ 5 g oo(K)? + Q6 + 3 60 |}

318
1)
with )
c(r [y 1 ()
A= [cm‘z(cm)]
and

) L 0co(f,t)
G(f) =20, log C(f) = 2= o=~

where C(f) = f o(f, t) in our notation, f,, = (So + K)/2 and the
term oo(K) is the BBF approximation from [1].



How well do these approximations work?

We consider the following explicit local volatility models:

@ The square-root CEV model:
dS; = e Mo /S, dW,
@ The quadratic model:
dS; = e Mo {1 F(Se—1) + %(st - 1)2} dW,

@ Parameters are: 0 = 0.2, ¢ = —0.5 and 7 = 0.1. In each case
50 =land T =1.

@ A\ = 0 gives a time-homogeneous local volatility surface and
A =1 a time-inhomogeneous one.

@ We compare implied volatilities from the approximations and
the closed-form solution.
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Time-homogeneous Square Root CEV
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Time-homogeneous Quadratic Model
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Time-inhomogeneous Square Root CEV
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Time-inhomogeneous Quadratic Model

o o
N N
<} o
2z z
R g o
S s | S o |
o el
1] ]
a 3
E E
o o
o o
v w0
o o 4
e T T T T T T T S T T T
0.7 0.8 0.9 1.0 1.1 1.2 1.3 0.5 1.0 1.5 2.0

Strike Strike



Conclusion
®00

Summary

@ Small-time expansions are useful for generating closed-form
expressions for implied volatility from simple models.

@ Direct substitute approach is easier for generalization to
higher dimensions, e.g., stochastic volatility models.

log K — log s

Tbs d/\/](S7 V)
where dp(s, v) is the “distance to the money”, i.e., shortest
geodesic distance from the spot (s, v) to the line {s = K} in
the price-volatility plane.
e Application: Short time implied vol in delta is flat!
(Joint work with Carr and Lee).
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Summary |

@ Time value approach is easier for getting higher order terms.

o Refinement of o0 (joint work with Gatheral):

VT —t /T
Obs ™~ |77 7 -
|log K —logs| \ J;

where the integral is along the “most I|ke|y path” s(7).
o If we take the “I|ke|y path” as s(7) = ¢f (T‘Pf ), where

oi(x) = fsx 3(5 5y then BBF s recovered.

-1

2
dr
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