FINAL FOR ADVANCED CALCULUS

Instructor: Shu-Yen Pan

No credit will be given for an answer without reasoning.

1.

- (i) Find a sequence a_n with $\limsup a_n = 5$ and $\liminf a_n = -3$.
- (ii) Give an example of a contraction map $\Phi \colon \mathbf{R}^2 \to \mathbf{R}^2$ with fixed point (1,1).

2. Let A, B be two non-empty subsets of **R**.

- (i) Is $\sup(A \cup B) \ge \sup\{\sup(A), \sup(B)\}$? Prove it or give a counterexample.
- (ii) Is $\sup(A \cup B) = \sup\{\sup(A), \sup(B)\}$? Prove it or give a counterexample.

3. Suppose that $f: [0,1] \to [0,1]$ is continuous and onto. Show that there exists an $x_0 \in [0,1]$ such that $f(x_0) = x_0$.

4. Suppose that $\sum_{k=1}^{\infty} a_k = \alpha$ (C, 1) and $\sum_{k=1}^{\infty} b_k = \beta$ (C, 1). Show that $\sum_{k=1}^{\infty} (a_k + b_k) = \alpha + \beta$ (C, 1).

5. Let $f: A \to N$ be continuous and let $K \subseteq A$ be a compact set. Prove that f is uniformly continuous on K.

6. A subset A of \mathbf{R}^2 is called *convex* if $x, y \in A$ implies $tx + (1-t)y \in A$ for all $t \in [0, 1]$. Show that a convex subset of \mathbf{R}^2 is connected.

7. Show that the following set

$$A = \{ f \in \mathcal{C}([0,1], \mathbf{R}) \mid 0 \le \int_0^1 f(x) \, dx \le 3 \}$$

is closed in $\mathcal{C}([0,1],\mathbf{R})$.

8.

- (i) Is the set A in problem 7 bounded? Why or Why not?
- (ii) Let $f(x) = x^2 + 1$ and g(x) = x. Compute d(f,g) in $\mathcal{C}([0,1], \mathbf{R})$.

9. Suppose that f is a differentiable function and α is a constant. Use definition to show that cf is also differentiable and $\mathbf{D}(\alpha f) = \alpha \mathbf{D} f$.

10. Suppose that $a_k \ge 0$ for all k and $\sum_{k=0}^{\infty} a_k = \alpha$. Prove that $\sum_{k=0}^{\infty} a_k x^k$ converges for |x| < 1 and $\lim_{x\to 1^-} \sum_{k=0}^{\infty} a_k x^k = \alpha$ by using the Weierstrass *M*-test.