FINAL FOR ADVANCED CALCULUS

Date: Monday, Jun 17, 2002
Instructor: Shu-Yen Pan
No credit will be given for an answer without reasoning.

1. $[10 \%]$
(i) Give an example of a set $A \subset \mathbb{R}^{n}$ such that A is of measure zero but not of volume zero.
(ii) Give an example of a function f on $[-\pi, \pi]$ such that the Fourier series of f converges uniformly.
(iii) Give an example of a function f on $[-\pi, \pi]$ such that the Fourier series of f converges to f at every point x in $[-\pi, \pi]$ but not uniformly on $[-\pi, \pi]$.
2. $[10 \%]$ Integrate the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over the set $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$.
3. $[10 \%]$ Suppose that $A \subset \mathbb{R}^{n}$ and A has zero volume. Suppose $f: A \rightarrow \mathbb{R}$ is a bounded function. Prove that f is integrable and $\int_{A} f=0$.
4. $[10 \%]$ Let $f_{n}(x)=\sum_{k=1}^{n} \frac{1}{2^{k}} \sin k x$ for $x \in \mathbb{R}$.
(i) Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all x.
(ii) Show that the sequence converges uniformly on the whole real line.
(iii) Show that $\int_{0}^{2 \pi}\left(\lim _{n \rightarrow \infty} f_{n}(t)\right) d t=0$
5. $[10 \%]$ Let $\varphi_{n}(x)=\frac{1}{\sqrt{\pi}} \sin n x$. Check that $\left\{\varphi_{n}(x) \mid n \in \mathbb{N}\right\}$ is an orthonormal family of functions on $[0,2 \pi]$.
6. [10\%] Compute the Fourier series $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ of the function $f(x)=x$ on the interval $[-\pi, \pi]$.
7. $[10 \%]$ Let \mathcal{V} be a Hilbert space and let $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$ be a complete orthonormal set. Let $c_{0}, c_{1}, c_{2}, \ldots$ be complex numbers and suppose that $\sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<\infty$. Let $f_{n}=\sum_{k=0}^{n} c_{k} \varphi_{k}$.
(i) Show that $\left\|f_{n}-f_{m}\right\|^{2}=\sum_{k=m+1}^{n}\left|c_{k}\right|^{2}$.
(ii) Show that f_{n} is a Cauchy sequence in \mathcal{V}.
(iii) Show that $\sum_{k=0}^{\infty} c_{k} \varphi_{k}$ is the Fourier series of some f.
8. $[10 \%]$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ exist at $(0,0)$ but are not equal.
9. $[10 \%]$ Let $f(x)=\frac{\cos x}{x}$. Show that $\int_{1}^{\infty} f(x) d x$ converges but $\int_{1}^{\infty}|f(x)| d x$ does not converge.
10. [10\%] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be of class C^{1} and $u=f(x), v=-y+x f(x)$. If $f^{\prime}\left(x_{0}\right) \neq 0$, show that this transformation is invertible near $\left(x_{0}, y_{0}\right)$ and the inverse has the form $x=f^{-1}(u), y=-v+u f^{-1}(u)$.

