MIDTERM FOR ADVANCED CALCULUS

Time: 13:10-15:00, Monday, Apr 22, 2002
Instructor: Shu-Yen Pan
No credit will be given for an answer without reasoning.

1. Brief explanation is required for this problem.
(1) [5\%] Give an example of a bounded function f such that $|f|$ is (Riemann) integrable on a bounded set A but f is not integrable on A.
(2) [5\%] Give an example of a subset of \mathbf{R}^{n} which has measure zero but whose boundary has positive measure.
2. [10\%] Let A be an open set in \mathbf{R}^{n} and f, g are differentiable function from A to \mathbf{R}^{m}. Prove that $f+g$ is also differentiable and

$$
\mathbf{D}(f+g)=\mathbf{D} f+\mathbf{D} g
$$

3. [10\%] A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is called homogeneous of degree m if $f(t x)=t^{m} f(x)$ for all $x \in \mathbf{R}^{n}$ and $t \in \mathbf{R}$. If f is also differentiable, show that for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$,

$$
\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=m f(x) .
$$

(Hint: the chain rule)
4. [10\%] Compute the second-order Taylor formula for $f(x, y)=e^{x} \cos y$ around $(0,0)$.
5. [10\%] Let $f(x)=x+2 x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$. Show that $f^{\prime}(0) \neq 0$ but that f is not locally invertible near 0 . Why does this not contradict the inverse function theorem?
6. $[10 \%]$ Compute the index of $2 x^{2}+6 x y-y^{2}-y^{4}$ at $(0,0)$.
7. $[10 \%]$ Find the extrema of $f(x, y, z)=x-y$ subject to the condition $x^{2}-y^{2}=2$.
8. $[10 \%]$ Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{1-e^{-n x}}{\sqrt{x}} d x$.
9. $[10 \%]$ Suppose that A is a bounded set in \mathbf{R} and f is a bounded function on A. By the Lebesgue's theorem we know that if f is (Riemann) integrable on A, then the discontinuities of f have measure. Now we assume B is a subset of \mathbf{R} (i.e., not necessarily bounded) and the function g is improper integrable on B. Show that the discontinuities of g also have measure zero.
10.
(1) $[8 \%]$ Show that $\int_{0}^{1} \ln x d x$ converges.
(2) [7\%] Show that $\int_{1}^{\infty} \frac{1}{\ln x} d x$ diverges.

