FINAL FOR ADVANCED LINEAR ALGEBRA

Date: Wednesday, January 17, 2001
Instructor: Shu-Yen Pan
No credit will be given for an answer without reasoning.
1.
(i) [5\%] Give an example of an algebra over \mathbf{C} of dimension 5.
(ii) [5\%] Let V be a three-dimensional vector space over \mathbf{R}. Give an example of a nonzero skewsymmetric bilinear form on V.
(iii) [5\%] Give an example of a degree two representation of the group \mathbf{Z}_{3}.
2. [10\%] Let V be an inner product space over \mathbf{R}. Suppose that S, T are subspaces of V such that V is the orthogonal direct sum of S and T. Show that the radical of V is the orthogonal direct sum of the radical of S and the radical of T i.e., prove that $\operatorname{rad}(V)=\operatorname{rad}(S) \perp \operatorname{rad}(T)$ if $V=S \perp T$.
3. $[10 \%]$ Let V, W be vector spaces over a field F. Show that $V \otimes W$ and $W \otimes V$ are isomorphic.
4. [10\%] Find an example of a bilinear map $\tau: V \times V \rightarrow W$ whose image $\operatorname{Im}(\tau)=\{\tau(u, v) \mid u, v \in V\}$ is not a subspace of W.
5. Let R be a commutative ring with identity.
(i) $[5 \%]$ Show that any two nonzero elements in R are not linearly independent.
(ii) [5\%] Using (i) conclude that an ideal I of R is a free R-module if and only if I is generated by an element of R that is not a zero divisor.
6. $[10 \%]$ Suppose that V, W are vector spaces over a field F. Let $f: V \times V \rightarrow W$ be a map from $V \times V$ to W. Suppose that f is both linear and bilinear. Show that f is a zero map.
7. $[10 \%]$ Let ρ denote the regular representation of the group \mathbf{Z}_{5}. Decompose ρ as a direct sum of irreducible representations.
8. [10\%] Let $\rho_{1}: G_{1} \rightarrow \mathrm{GL}\left(V_{1}\right)$ and $\rho_{2}: G_{2} \rightarrow \mathrm{GL}\left(V_{2}\right)$ be representations of finite groups G_{1}, G_{2} respectively. Define $\rho_{1} \otimes \rho_{2}: G_{1} \oplus G_{2} \rightarrow \mathrm{GL}\left(V_{1} \otimes V_{2}\right)$ by

$$
\left(\rho_{1} \otimes \rho_{2}\right)\left(g_{1}, g_{2}\right)\left(\sum_{\text {finite }} v_{i} \otimes w_{i}\right)=\sum_{\text {finite }} \rho_{1}\left(g_{1}\right)\left(v_{i}\right) \otimes \rho_{2}\left(g_{2}\right)\left(w_{i}\right)
$$

for $g_{1} \in G_{1}, g_{2} \in G_{2}, v_{i} \in V_{1}$ and $w_{i} \in V_{2}$. Check that $\rho_{1} \otimes \rho_{2}$ is a representation of $G_{1} \oplus G_{2}$.
9. Let G be the group S_{3} i.e., G is a non-abelian group of order 6 with elements $\left\{1, a, a^{2}, b, b a, b a^{2}\right\}$ and the relations $a^{3}=1, b^{2}=1$ and $a b=b a^{2}$. Let ρ be the regular representation of G, ρ_{1} be the trivial representation of G. Define $\rho_{2}: G \rightarrow \mathbf{C}^{*}$ by defining $\rho_{2}(a)=1$ and $\rho_{2}(b)=-1$.
(i) $[5 \%]$ Check that ρ_{2} can be made into a representation of G.
(ii) [5\%] We know that there is a representation ρ_{3} of G such that $\rho=\rho_{1} \oplus \rho_{2} \oplus \rho_{3}$. Is ρ_{3} irreducible? Why or why not?
(iii) [5\%] Find $\rho_{3}(a)$.

