MIDTERM 1 FOR ADVANCED LINEAR ALGEBRA

Date: Wednesday, Nov 8, 2000
Instructor: Shu-Yen Pan

No credit will be given for an answer without reasoning.
1.
(i) [5\%] Give an example of a nondegenerate symmetric bilinear form of Witt index 1 on a twodimensional real vector space.
(ii) [5\%] Give an example of nonzero quadratic form on a two-dimensional real vector space.
2. Let \mathbf{H} be the quaternion algebra over \mathbf{R} and let $M_{2}(\mathbf{R})$ be the matrix algebra of two by two real matrices.
(i) [5\%] Is \mathbf{H} isomorphic to $M_{2}(\mathbf{R})$ as vector spaces over \mathbf{R} ? Why or why not?
(ii) [5\%] Is \mathbf{H} isomorphic to $M_{2}(\mathbf{R})$ as \mathbf{R}-algebras? Why or why not?
3. Let $V=F^{2}$ be a two-dimensional vector space over a field F. Define two unit vectors $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$. It is obvious that $\{\mathbf{i}, \mathbf{j}\}$ is a basis for V. Define $f: V \times V \rightarrow F$ by

$$
f\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=2 b_{1} b_{2}
$$

for $a_{1}, a_{2}, b_{1}, b_{2} \in F$.
(i) $[5 \%]$ What is the radical of V ?
(ii) $[5 \%]$ Suppose that the characteristic of F is not 3 . Find the matrix presenting the form f with respect to the basis $\{9 \mathbf{i}, 3 \mathbf{j}\}$.
4. [10\%] Find the Jordan canonical form of the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

5. Let $V=\mathbf{R}^{2}$ be a two-dimensional real vector space. Fix a basis $\{\mathbf{i}, \mathbf{j}\}$ for V where $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$. Define

$$
\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=x_{1} x_{2}+y_{1} y_{2}
$$

for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R}$.
(i) $[5 \%]$ Show that the linear transformation

$$
\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

where θ is a real number is an isometry of V.
(ii) [5\%] Suppose that $\tau: V \rightarrow V$ is an isometry. Show that $a \tau$ for $a \in \mathbf{R}$ is an isometry if and only if $a= \pm 1$.
6. Let F be a field and V be a vector space over F. Suppose that f is a bilinear form on V.
(i) $[5 \%]$ Show that if f is alternating, then f is skew-symmetric.
(ii) [5\%] Show that if f is skew-symmetric and the characteristic of F is not 2 , then f is alternating.
7. Let $V=\mathbf{C}^{2}$ be a two-dimensional vector space over \mathbf{C}. Define a symmetric bilinear form f on V by

$$
f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+x_{2} y_{2}
$$

for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{C}$.
(i) $[5 \%]$ Show that f is isotropic.
(ii) $[5 \%]$ Show that V is a hyperbolic plane.
8. Let $V=\mathbf{R}^{2}$ be a two-dimensional vector space over a field \mathbf{R} with a nondegenerate skew-symmetric bilinear form \langle,$\rangle defined by$

$$
\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=x_{1} y_{2}-y_{1} x_{2}
$$

for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbf{R}$.
(i) $[5 \%]$ Suppose that f is a linear functional on V. The Riesz representation theorem tells us that there is a unique element $x \in V$ such that $f=\phi_{x}$ where $\phi_{x} \in V^{*}$ is defined by $\phi_{x}(v)=\langle v, x\rangle$. Find x for the linear functional f defined by $f((x, y))=2 x+3 y$ for $x, y \in \mathbf{R}$.
(ii) [5\%] Let S be the subspace spanned by the vector (1,0). Is $V=S \perp S^{\perp}$? Why or why not?
9. $[10 \%]$ Let $P_{2} \subset \mathbf{R}[x]$ be the space of polynomials of degree less than or equal to 2 . Define

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

for $f, g \in P_{2}$. We know that $\left\{1, x, x^{2}\right\}$ is a basis for P_{2}. Apply Gram-Schmidt orthogonalization process to $\left\{1, x, x^{2}\right\}$ to find an orthogonal basis for P_{2}.
10. Let ℓ^{2} be the set of all real infinite sequences $\left(a_{n}\right)$ such that $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is finite. Define $\left(a_{n}\right)+\left(b_{n}\right)=$ $\left(a_{n}+b_{n}\right)$ and $r\left(a_{n}\right)=\left(r a_{n}\right)$ for $\left(a_{n}\right),\left(b_{n}\right) \in \ell^{2}$ and $r \in \mathbf{R}$.
(i) $[5 \%]$ Show that ℓ^{2} is a vector space over \mathbf{R}.
(ii) $[5 \%]$ Show that ℓ^{2} is an inner product space under the inner product \langle,$\rangle defined by$

$$
\left\langle\left(a_{n}\right),\left(b_{n}\right)\right\rangle=\sum_{n=1}^{\infty} a_{n} b_{n}
$$

