No credit will be given for an answer without reasoning.

1.
 (i) [5\%] Give an example of a nondegenerate symmetric bilinear form of Witt index 1 on a two-
dimensional real vector space.
 (ii) [5\%] Give an example of nonzero quadratic form on a two-dimensional real vector space.

2. Let H be the quaternion algebra over \mathbb{R} and let $M_2(\mathbb{R})$ be the matrix algebra of two by two real matrices.
 (i) [5\%] Is H isomorphic to $M_2(\mathbb{R})$ as vector spaces over \mathbb{R}? Why or why not?
 (ii) [5\%] Is H isomorphic to $M_2(\mathbb{R})$ as \mathbb{R}-algebras? Why or why not?

3. Let $V = F^2$ be a two-dimensional vector space over a field F. Define two unit vectors $i = (1, 0)$ and $j = (0, 1)$. It is obvious that $\{i, j\}$ is a basis for V. Define $f: V \times V \to F$ by
 $f((a_1, b_1), (a_2, b_2)) = 2b_1b_2$
 for $a_1, a_2, b_1, b_2 \in F$.
 (i) [5\%] What is the radical of V?
 (ii) [5\%] Suppose that the characteristic of F is not 3. Find the matrix presenting the form f with respect to the basis $\{9i, 3j\}$.

4. [10\%] Find the Jordan canonical form of the matrix
 \[
 \begin{bmatrix}
 0 & 1 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 0
 \end{bmatrix}
 \]

5. Let $V = \mathbb{R}^2$ be a two-dimensional real vector space. Fix a basis $\{i, j\}$ for V where $i = (1, 0)$ and $j = (0, 1)$. Define
 $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1x_2 + y_1y_2$
 for $x_1, x_2, y_1, y_2 \in \mathbb{R}$.
 (i) [5\%] Show that the linear transformation
 \[
 \begin{bmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{bmatrix}
 \]
 where θ is a real number is an isometry of V.
 (ii) [5\%] Suppose that $\tau: V \to V$ is an isometry. Show that $a\tau$ for $a \in \mathbb{R}$ is an isometry if and only if $a = \pm 1$.

6. Let F be a field and V be a vector space over F. Suppose that f is a bilinear form on V.
 (i) [5%] Show that if f is alternating, then f is skew-symmetric.
 (ii) [5%] Show that if f is skew-symmetric and the characteristic of F is not 2, then f is alternating.

7. Let $V = \mathbb{C}^2$ be a two-dimensional vector space over \mathbb{C}. Define a symmetric bilinear form f on V by
 \[f((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_2y_2 \]
 for $x_1, x_2, y_1, y_2 \in \mathbb{C}$.
 (i) [5%] Show that f is isotropic.
 (ii) [5%] Show that V is a hyperbolic plane.

8. Let $V = \mathbb{R}^2$ be a two-dimensional vector space over a field \mathbb{R} with a nondegenerate skew-symmetric bilinear form $\langle \cdot, \cdot \rangle$ defined by
 \[\langle (x_1, y_1), (x_2, y_2) \rangle = x_1y_2 - y_1x_2 \]
 for $x_1, x_2, y_1, y_2 \in \mathbb{R}$.
 (i) [5%] Suppose that f is a linear functional on V. The Riesz representation theorem tells us that there is a unique element $x \in V$ such that $f = \phi_x$ where $\phi_x \in V^*$ is defined by $\phi_x(v) = \langle v, x \rangle$.
 Find x for the linear functional f defined by $f((x, y)) = 2x + 3y$ for $x, y \in \mathbb{R}$.
 (ii) [5%] Let S be the subspace spanned by the vector $(1, 0)$. Is $V = S \perp S^\perp$? Why or why not?

9. [10%] Let $P_2 \subset \mathbb{R}[x]$ be the space of polynomials of degree less than or equal to 2. Define
 \[\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx \]
 for $f, g \in P_2$. We know that $\{1, x, x^2\}$ is a basis for P_2. Apply Gram-Schmidt orthogonalization process to $\{1, x, x^2\}$ to find an orthogonal basis for P_2.

10. Let ℓ^2 be the set of all real infinite sequences (a_n) such that $\sum_{n=1}^{\infty} |a_n|$ is finite. Define $(a_n) + (b_n) = (a_n + b_n)$ and $r(a_n) = (ra_n)$ for $(a_n), (b_n) \in \ell^2$ and $r \in \mathbb{R}$.
 (i) [5%] Show that ℓ^2 is a vector space over \mathbb{R}.
 (ii) [5%] Show that ℓ^2 is an inner product space under the inner product $\langle \cdot, \cdot \rangle$ defined by
 \[\langle (a_n), (b_n) \rangle = \sum_{n=1}^{\infty} a_nb_n. \]