Each of the following problems worth 10 points.

1. (i) Give an example of a group of order 4 which is not cyclic.
 (ii) Give an example of an infinite non-abelian group.
 (iii) Give an example of a non-abelian solvable group.
 (iv) Give an example of a non-commutative division ring.
 (v) Give an example of an ideal \(I \) of a commutative ring \(R \) such that \(I \) is prime but not maximal.

2. (i) What is the characteristic of the ring \(\mathbb{Z}_6 \times \mathbb{Z}_7 \)? Why?
 (ii) What is the commutator subgroup of a simple non-abelian group? Why?
 (iii) What is the order of the element \((12)(345)(12)\) in \(S_8 \)? Why?

3. Suppose that \(H \) is a normal subgroup of a group \(G \) and \(K \) is a normal subgroup of \(H \). Let \(a \) be an element in \(G \).
 (i) Show that \(aKa^{-1} \subseteq H \).
 (ii) Show that \(aKa^{-1} \) is a normal subgroup of \(H \).

4. (i) Find all prime number \(p \) such that \(x + 2 \) is a factor of \(x^4 + x^3 + x^2 - x + 1 \) in \(\mathbb{Z}_p[x] \).
 (ii) Show that for \(p \) a prime, the polynomial \(x^p + a \) in \(\mathbb{Z}_p[x] \) is not irreducible for any \(a \in \mathbb{Z}_p \).

5. Show that \(\phi: \mathbb{C} \rightarrow M_2(\mathbb{R}) \) given by
 \[
 \phi(a + bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}
 \]
 for \(a, b \in \mathbb{R} \) gives an isomorphism of \(\mathbb{C} \) with the subring \(\phi[\mathbb{C}] \) of \(M_2(\mathbb{R}) \) where \(M_2(\mathbb{R}) \) is the ring of two by two matrices over \(\mathbb{R} \).

6. (i) Is \(\mathbb{Q}[x]/\langle x^2 - 5x + 6 \rangle \) a field? Why?
 (ii) Is \(\mathbb{Q}[x]/\langle x^2 - 6x + 6 \rangle \) a field? Why?

7. Let \(A \) and \(B \) be ideals of a ring \(R \). The product \(AB \) of \(A \) and \(B \) is defined by
 \[
 AB = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in A, \ b_i \in B, \ n \in \mathbb{Z}^+ \right\}.
 \]
 (i) Show that \(AB \) is an ideal of \(R \).
 (ii) Show that \(AB \subseteq (A \cap B) \).

8. Let \(R \) be a commutative ring and \(N \) be an ideal of \(R \). Define
 \[
 \sqrt{N} = \{ a \mid a^n \in N \text{ for some } n \in \mathbb{Z}^+ \}.
 \]
 (i) Show that \(N \subseteq \sqrt{N} \) and \(\sqrt{N} \) is an ideal of \(R \).
 (ii) Give an example of \(N \) such that \(\sqrt{N} = N \).
(ii) Give an example of N such that $\sqrt{N} \neq N$.

9.
(i) Let K be a subgroup of index 2 of a group G. Suppose that $a \in G - K$ and $b \in G - K$ i.e., a, b are in G but not in K. Show that $ab \in K$.
(ii) Let G be a finite abelian group. Suppose that G has two distinct elements of order 2. Show that 4 divides $|G|$.

10. Let $\phi: \mathbb{R} \to \mathbb{R}$ be a nontrivial ring homomorphism.
 (i) Show that $\phi(a) = a$ if $a \in \mathbb{Z}$.
 (ii) Show that $\phi(a) = a$ if $a \in \mathbb{Q}$.
 (iii) Show that $\phi(\mathbb{R}^+) \subseteq \mathbb{R}^+$ where $\mathbb{R}^+ = \{ a \in \mathbb{R} \mid a > 0 \}$. (Hint: a square is positive.)
 (iv) Show that $\phi(a) > \phi(b)$ if $a, b \in \mathbb{R}$ and $a > b$.
 (v) Show that $\phi(a) = a$ for all $a \in \mathbb{R}$.