## FINAL FOR ALGEBRA

Date: 2000, January 17, 9:10-11:00AM
Each of the following problems worth 10 points.
1.
(i) Give an example of a group of order 4 which is not cyclic.
(ii) Give an example of a infinite non-abelian group.
(iii) Give an example of a non-abelian solvable group.
(iv) Give an example of a non-commutative division ring.
(v) Give an example of an ideal $I$ of a commutative ring $R$ such that $I$ is prime but not maximal.
2.
(i) What is the characteristic of the ring $\mathbf{Z}_{6} \times \mathbf{Z}$ ? why?
(ii) What is the commutator subgroup of a simple non-abelian group? Why?
(iii) What is the order of the element (12)(345)(12) in $S_{8}$ ? Why?
3. Suppose that $H$ is a normal subgroup of a group $G$ and $K$ is a normal subgroup of $H$. Let $a$ be an element in $G$.
(i) Show that $a K a^{-1} \subset H$.
(ii) Show that $a K a^{-1}$ is a normal subgroup of $H$.
4.
(i) Find all prime number $p$ such that $x+2$ is a factor of $x^{4}+x^{3}+x^{2}-x+1$ in $\mathbf{Z}_{p}[x]$.
(ii) Show that for $p$ a prime, the polynomial $x^{p}+a$ in $\mathbf{Z}_{p}[x]$ is not irreducible for any $a \in \mathbf{Z}_{p}$.
5. Show that $\phi: \mathbf{C} \rightarrow M_{2}(\mathbf{R})$ given by

$$
\phi(a+b i)=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
$$

for $a, b \in \mathbf{R}$ gives an isomorphism of $\mathbf{C}$ with the subring $\phi[\mathbf{C}]$ of $M_{2}(\mathbf{R})$ where $M_{2}(\mathbf{R})$ is the ring of two by two matrices over $\mathbf{R}$.
6.
(i) Is $\mathbf{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$ a field? Why?
(i) Is $\mathbf{Q}[x] /\left\langle x^{2}-6 x+6\right\rangle$ a field? Why?
7. Let $A$ and $B$ be ideals of a ring $R$. The product $A B$ of $A$ and $B$ is defined by

$$
A B=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B, n \in \mathbf{Z}^{+}\right\}
$$

(i) Show that $A B$ is an ideal of $R$.
(ii) Show that $A B \subseteq(A \cap B)$.
8. Let $R$ be a commutative ring and $N$ be an ideal of $R$. Define

$$
\sqrt{N}=\left\{a \mid a^{n} \in N \text { for some } n \in \mathbf{Z}^{+}\right\} .
$$

(i) Show that $N \subseteq \sqrt{N}$ and $\sqrt{N}$ is an ideal of $R$.
(ii) Give an example of $N$ such that $\sqrt{N}=N$.
(ii) Give an example of $N$ such that $\sqrt{N} \neq N$.
9.
(i) Let $K$ be a subgroup of index 2 of a group $G$. Suppose that $a \in G-K$ and $b \in G-K$ i.e., $a, b$ are in $G$ but not in $K$. Show that $a b \in K$.
(ii) Let $G$ be a finite abelian group. Suppose that $G$ has two distinct elements of order 2. Show that 4 divides $|G|$.
10. Let $\phi: \mathbf{R} \rightarrow \mathbf{R}$ be a nontrivial ring homomorphism.
(i) Show that $\phi(a)=a$ if $a \in \mathbf{Z}$.
(ii) Show that $\phi(a)=a$ if $a \in \mathbf{Q}$.
(iii) Show that $\phi\left[\mathbf{R}^{+}\right] \subseteq \mathbf{R}^{+}$where $\mathbf{R}^{+}=\{a \in \mathbf{R} \mid a>0\}$. (Hint: a square is positive.)
(iv) Show that $\phi(a)>\phi(b)$ if $a, b \in \mathbf{R}$ and $a>b$.
(v) Show that $\phi(a)=a$ for all $a \in \mathbf{R}$.

