MIDTERM 1 FOR ALGEBRA

Date: 1999, October 25, 10:10-11:00AM
Each Problem is worth 15 points.

1. Let F be the set of all real-valued functions having the set \mathbf{R} of all real numbers as domain. Define the operation "०" on F by $(f \circ g)(x)=f(g(x))$ for $f, g \in F$. Show that the operation "०" is associative.
2. Let $\langle S, *\rangle,\left\langle S^{\prime}, *^{\prime}\right\rangle\left\langle S^{\prime \prime}, *^{\prime \prime}\right\rangle$ be three sets with binary operations. Suppose that $\phi: S \rightarrow S^{\prime}$ and $\psi: S^{\prime} \rightarrow S^{\prime \prime}$ are both isomorphisms. Show that $\psi \circ \phi$ is an isomorphism of $\langle S, *\rangle$ and $\left\langle S^{\prime \prime}, *^{\prime \prime}\right\rangle$.
3. Let G be a group and let a be a fixed element of G. Show that the subset

$$
H_{a}=\{x \in G \mid x a=a x\}
$$

is a subgroup of G.
4. Let H be the subgroup of \mathbf{Z}_{30} generated by 25 . Find $|H|$.
5. Let $\sigma=(1245)(36)$ in S_{6}. Find the index of $\langle\sigma\rangle$ in S_{6}.
6. Let G be a group of order $p q$, where p and q are prime number. Show that every proper subgroup of G is cyclic.
7. Let $\langle G, \cdot\rangle$ be a group. Consider the new binary operation $*$ on G defined by

$$
a * b=b \cdot a
$$

for $a, b \in G$. Then $\langle G, *\rangle$ is a group (you don't need to check this). Show that $\langle G, *\rangle$ is isomorphic to $\langle G, \cdot\rangle$.

