MIDTERM 2 FOR ALGEBRA

Date: 1999, November 29, 10:10-11:00AM
Each of Problems 1-5 is worth 14 points, each of problems 6-7 is worth 15 points.

1. Give an example of a group G such that $|G|=12$ and G is not abelian.
2. Let G, H be two groups. Suppose that M is a normal subgroup of G and N is a normal subgroup of H. Show that $M \times N$ is a normal subgroup of $G \times H$.
3. Find kernel of ϕ and $\phi(14)$ for $\phi: \mathbf{Z}_{24} \rightarrow S_{8}$ where $\phi(1)=(25)(1467)$.
4. Show that the commutator subgroup of S_{n} is contained in A_{n}. (Hint: consider the homomorphism $\phi: S_{n} \rightarrow \mathbf{Z}_{2}$ by $\phi(\sigma)=1$ if σ is odd and $\phi(\sigma)=0$ if σ is even.)
5. Find a composition series of $S_{3} \times \mathbf{Z}_{2}$.
6. Let G be the group $\langle\mathbf{R},+\rangle$ and $X=\mathbf{R}^{2}$. Let $\phi: G \times X \rightarrow X$ be defined by

$$
\phi(t,(r \cos \theta, r \sin \theta))=(r \cos (\theta+t), r \sin (\theta+t))
$$

Show that X is a G-set via the map ϕ. Let $P=(1,0) \in X$. Find the isotropic subgroup G_{P}.
7. Let K and L be normal subgroups of G with $K \vee L=G$ and $K \cap L=\{e\}$. Show that $G / K \simeq L$.

