MIDTERM 3 FOR ALGEBRA

Date: 1999, December 27, 10:10-11:00AM
Each of Problems 1-5 is worth 14 points, each of problems 6-7 is worth 15 points.
1.
(i) Let G be a group of order 540 . What is the order of a Sylow 3-subgroup of G ?
(ii) Find the characteristic of the ring $\mathbf{Z}_{3} \times \mathbf{Z}_{4}$.
2.
(i) Let φ denote the Euler phi-function. Compute $\varphi(24)$.
(ii) Use Fermat's theorem to find the remainder of 37^{48} when it divided by 7 .
3. Show that a Sylow 5 -subgroup of a group G of order 15 is normal.
4. What is the free group $F[\{a\}]$? Show that $\left(a: a^{7}\right)$ is a presentation of \mathbf{Z}_{7}.
5. Show that if U is the collection of all units in a ring $\langle R,+, \cdot\rangle$ with unity, then $\langle U, \cdot\rangle$ is a group.
6. An element a of a ring R is idempotent if $a^{2}=a$. Show that a division ring contains exactly two idempotent elements.
7. Prove that if D is an integral domain, then the ring of polynomials $D[x]$ is also an integral domain.

