FINAL FOR CALCULUS

Time: 8:10–10:00 AM, Friday, January 12, 2000
Instructor: Shu-Yen Pan

No calculator is allowed. No credit will be given for an answer without reasoning.

1. (1) [4%] Find \(y' \) for \(y = \sqrt{x + \sqrt{x}} \).
 (2) [4%] Is \(\frac{d}{dx}|x^2 + x| = |2x + 1|? \) Why or why not?

2. (1) [4%] Evaluate \(\int e^{x+x^2} \, dx \).
 (2) [4%] Evaluate \(\int_0^1 \ln x \, dx \).

3. (1) [4%] Differentiating the equation \(\tan y = x \) implicitly to find \(\frac{dy}{dx} \).
 (2) [4%] One model for the spread of a rumor is that the rate of the spread is proportional to the product of the fraction \(y \) of the population who have heard the rumor and the faction who have not heard the rumor. Write a differential equation that is satisfied by \(y \).

4. A spinner from a board game randomly indicates a real number between 0 and 10. The spinner is fair in the sense that it indicates a number in a given interval with the same probability as it indicates a number in any other interval of the same length.
 (1) [4%] Explain why the function \(f(x) = \begin{cases} 0.1 & \text{if } 0 \leq x \leq 10; \\ 0 & \text{if } x < 0 \text{ or } x > 10 \end{cases} \) is a probability density function for the spinner’s values.
 (2) [4%] What does your intuition tell you about the value of the mean? Check your answer by evaluating an integral.

5. [6%] Find the arc length function for the curve \(y = 2x^{3/2} \) with starting point \(P_0(1, 2) \).

6. [6%] If \(\lim_{x \to 1} (f(x) + g(x)) = 2 \) and \(\lim_{x \to 1} (f(x) - g(x)) = 6 \), find \(\lim_{x \to 1} f(x)g(x) \).

7. [8%] If \(f \) is a positive function and \(f''(x) > 0 \) for \(a \leq x \leq b \), show that \(M_n \leq \int_a^b f(x) \, dx \leq T_n \) where \(M_n \) is the approximation by midpoint rule and \(T_n \) is the approximation by trapezoidal rule.

8. [8%] Find \(A \) and \(B \) given that the function \(y = Ax^{-1/2} + Bx^{1/2} \) has a minimum value 6 at \(x = 9 \).

9. [8%] Let \(f \) be a one-to-one function and \(f''(x) \) exists for all \(x \). Let \(g = f^{-1} \). Show that \(g''(x) = -\frac{f''(g(x))}{(f'(g(x)))^2} \).

10. [8%] Show that the area of a sphere of radius \(r \) is \(4\pi r^2 \).

11. [8%] Find all functions \(f \) that satisfy the equation \(\left(\int f(x) \, dx \right) \left(\int \frac{1}{f(x)} \, dx \right) = -4 \).

12. [8%] A student forgot the product rule for differentiation and made the mistake of thinking that \((fg)' = f'g' \). However, she was lucky and got the correct answer. The function \(f \) that she used was \(f(x) = e^{x^2} \) and the domain of her problem was the interval \((\frac{1}{2}, \infty) \). What was the function \(g \)?

13. [8%] Evaluate \(\lim_{x \to 2} \left(\frac{x}{x-2} \int_2^x e^t \, dt \right) \).