Time: 8:10–9:55 AM, Friday, December 15, 2000
Instructor: Shu-Yen Pan

No calculator is allowed. No credit will be given for an answer without reasoning.

1. Find
 (1) [4%] \(\int \frac{1}{x^2 + 4x + 3} \, dx \).
 (2) [4%] \(\int \frac{1}{x^2 + x} \, dx \).

2. (1) [4%] Evaluate \(\int_{-1}^{2} |2x + 1| \, dx \).
 (2) [4%] Integrate \(\int \tan^4 x \sec^4 x \, dx \).

3. (1) [4%] Find \(f' \) if \(f(x) = (x^2)^x \).
 (2) [4%] Integrate \(\int \coth x \, dx \).

4. (1) [4%] Find the exact value of the expression \(\sin(\cos^{-1} \frac{3}{5}) \).
 (2) [4%] Find the area of the region bounded by the curves \(y = 20 - x^2 \) and \(y = x^2 - 12 \).

5. [6%] Use Newton method with the specified initial approximation \(x_1 = -1 \) to find \(x_2 \), the second approximation to the root of the equation \(x^3 + x + 1 = 0 \).

6. [6%] Suppose that \(f \) is differentiable, \(f(0) = 0 \), \(f(1) = 1 \), \(f'(x) > 0 \) and \(\int_0^1 f(x) \, dx = \frac{1}{4} \). Find the value of the integral \(\int_0^1 f^{-1}(y) \, dy \).

7. [8%] Let \(f(x) = \int_2^x \sqrt{1 + t^2} \, dt \).
 Prove that \(f(x) \) has an inverse and find \(f'(0) \).

8. [8%] Find the integral \(\int_0^2 \frac{x^2}{(x+4)^2} \, dx \).

9. [8%] Find the limit \(\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \sqrt{\frac{3}{n}} + \cdots + \sqrt{\frac{n}{n}} \right) \).

10. [8%] A fence 3 meters tall runs parallel to a tall building at a distance of 2 meters from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?

11. [8%] If \(x \sin x = \int_0^x f(t) \, dt \), where \(f \) is a continuous function, find \(f(4) \).

12. [8%] Find the limit \(\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{2x} \).

13. [8%] Let \(f \) be a function such that \(f' \) is continuous on \([a, b]\). Prove that \(\int_a^b f(t)f'(t) \, dt = \frac{1}{2} \left(f(b) - f(a) \right) \left(f(b) + f(a) \right) \).