(1) When the tangent line exists at an inflection point, does it definitely cross the graph of the function? Why? 10%

(2) Let \(f(x) = \sqrt{|x - 1|} \). Discuss whether \(f \) is continuous or differentiable at \(x = 1 \)? 10%

(3) Find the slope of the tangent at \((-2, 2)\) of a curve \(y^2 = \frac{20 - x^2}{2x} \). 10%

(4) The demand equation is given by \(p = \sqrt[3]{9 - x^3} \) where \(p \) is the unit price at which \(x \) units of the product are demanded. Define the price elasticity of demand as \(\eta = \frac{p}{x} \frac{dp}{dx} \).

 (i) Is the demand elastic (\(|\eta| > 1 \)), inelastic (\(|\eta| < 1 \)), or of unit elastic (\(|\eta| = 1 \)) at \(x = 1 \)? Give an economic interpretation for your answer. 10%

 (ii) Find the expression for the total revenue and compute the values of \(x^* \) and \(p^* \) that maximize the total revenue. 10%

 (iii) Show that the demand at \(x^* \) is of unit elastic. Moreover, on the interval \((x^*, 3)\) the demand is inelastic and the total revenue is decreasing. 10%

(5) The concentration \(C \) (in milligrams per milliliter) of a drug in a patient’s bloodstream \(t \) hours after injection into muscle tissue is modeled by \(C = \frac{3t}{27 + t^3} \).

 (i) Find the change in the concentration when \(t \) changes from \(t = 1.5 \) to \(t = 2 \). 5%

 (ii) Use differentials to approximate the change. 5%

(6) Let \(f(x) = \frac{1}{x^2 + 1} \).

 (i) Find all critical numbers, relative extrema and points of inflection. 10%

 (ii) Determine (with reasons) whether \(f \) has vertical or horizontal asymptotes. 10%

 (iii) Sketch the graph of \(f \). 10%