MIDTERM FOR GEOMETRY

Date: Wednesday, April 25, 2001
Instructor: Shu-Yen Pan
No credit will be given for an answer without reasoning.

1. Consider the curve $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$.
(i) [5\%] Find the unit tangent vector \mathbf{t} at $(0,0,0)$.
(ii) [5%] Find an equation of the osculating plane at $(0,0,0)$.
2.

(i) [5\%] Is it possible that a differentiable curve whose curvature is zero in some interval but its torsion is not zero in that interval? Why or Why not? On the other hand, is it possible that a differentiable curve whose torsion is zero in some interval but its curvature is not zero in that interval? Why or Why not?
(ii) [5\%] Give examples of two curves with the same curvature but different torsion in some interval.
3. Knowing that $g_{11}=1, g_{12}=g_{21}=0$ and $g_{22}=\cos ^{2}\left(u^{1}\right)$. Compute:
(i) $[5 \%] g_{i j} g^{j k}$
(ii) $[5 \%]\left(\frac{\partial}{\partial u^{j}} g_{k l}\right) g^{j k}$
4. [10\%] Let f and h be two differentiable functions of one variable. Compute the first fundamental form of the surface of revolution:

$$
x=f(u) \cos v, \quad y=f(u) \sin v, \quad z=h(u) .
$$

5. $[10 \%]$ Compute the area of the helicoid

$$
x=u \cos v, \quad y=u \sin v, \quad z=2 v
$$

for $0 \leq u \leq 1$ and $0 \leq v \leq 2 \pi$.
6. Let the helicoid be as in problem 5. Compute:
(i) $[5 \%] b_{2}^{1}$ at $(1,0,0)$.
(ii) $[5 \%] \Gamma_{122}$ at $(1,0,0)$.
7. $[10 \%]$ Let the helicoid be as in problem 5. Find an equation of the tangent plane at $(1,0,4 \pi)$
8. $[10 \%]$ Let $\mathbf{r}\left(u^{1}, u^{2}\right)$ be a regular surface. Let \mathbf{m} be the unit normal vector of the surface. Show that \mathbf{m}_{i} can be written as a linear combination of \mathbf{r}_{1} and \mathbf{r}_{2}.
9.
(i) [5\%] What is the Gaussian curvature K at the point $(0,0,1)$ on the surface $x^{2}+y^{2}+z^{2}=1$?
(ii) [5\%] What is the Gaussian curvature K at the point $(\sqrt{3}, \sqrt{3}, \sqrt{3})$ on the surface $x^{2}+y^{2}+z^{2}=9$?
10. [10\%] Give an example of a differentiable curve whose curvature (as a function of a parameter) can take any positive real values.

