Show all your work. Explanation is required for each problem.

1. [10%] Compute the surface integral \(\iint_S x^2 \, dS \) where \(S \) is the unit sphere \(x^2 + y^2 + z^2 = 1 \).

2. A set \(A \subset \mathbb{R}^n \) is said to be dense in a set \(B \subset \mathbb{R}^n \) if \(A \subset B \) and \(B \subset \text{cl}(A) \) (the closure of \(A \)).
 (i) [6%] If \(A \) is dense in \(\mathbb{R}^n \) and \(U \subset \mathbb{R}^n \) is open, prove that \(A \cap U \) is dense in \(U \).
 (ii) [6%] Give an example of a set \(A \subset \mathbb{R}^n \) and a closed set \(V \subset \mathbb{R}^n \) such that \(A \) is dense in \(\mathbb{R}^n \) but \(A \cap V \) is not dense in \(V \).

3. (i) [6%] Give an example of a bounded function \(f : [0, 1] \to \mathbb{R} \) such that \(|f| \) is Riemann-integrable on \([0, 1]\) but \(f \) is not Riemann-integrable on \([0, 1]\).
 (ii) [6%] Give an example of a function which is bounded and continuous but not uniformly continuous.

4. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by

 \[
 f(x, y) := \begin{cases}
 0, & \text{if } (x, y) = (0, 0); \\
 \frac{x^3}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0).
 \end{cases}
 \]

 (i) [6%] Prove that \(f \) is continuous.
 (ii) [6%] Prove that \(f \) is not differentiable at \((0, 0)\).

5. For \(n = 1, 2, 3, \ldots \) and \(x \in \mathbb{R} \), we define
 \[
 f_n(x) := \frac{x}{1 + nx^2}.
 \]

 (i) [6%] Prove that the sequence \(\{f_n\} \) converges uniformly on \(\mathbb{R} \) to a differentiable function \(f \).
 (ii) [6%] Prove that \(f' \neq \lim_{n \to \infty} f'_n \) at some point in \(\mathbb{R} \).

6. Define \(\ln(x) := \int_1^x \frac{1}{t} \, dt \) for \(x > 0 \).
 (i) [6%] Prove (from above definition) that \(\ln(ab) = \ln(a) + \ln(b) \) for any \(a, b > 0 \).
 (ii) [6%] Prove that \(\lim_{x \to 0} \ln(x) = -\infty \).
 (iii) [6%] Prove that \(\ln(x) \) has a differentiable inverse function (denoted by \(\exp(x) \)) and prove that \(\frac{d}{dx} \exp(x) = \exp(x) \).

7. Let \(A \) be a subset of \(\mathbb{R} \). We define \(\lambda(A) \in \mathbb{R} \cup \{\infty\} \) as follows. First, if \(A \) is an open interval \((a, b)\), then we define \(\lambda(A) := b - a \). Second, if \(A \) is an open set, we know that \(A \) is a union of countable (including finite) disjoint open intervals: \(\bigcup_{k=1}^{\infty} (a_k, b_k) \) (or \(\bigcup_{k=1}^{n} (a_k, b_k) \)). Then we define \(\lambda(A) := \sum_{k=1}^{\infty} (b_k - a_k) \) (or \(\sum_{k=1}^{n} (b_k - a_k) \)). Finally, if \(A \) is any subset of \(\mathbb{R} \), we define \(\lambda(A) := \inf \{ \lambda(X) \mid A \subset X, X \subset \mathbb{R} \text{ and } X \text{ is open} \} \).

 (i) [6%] Show that \(\lambda([a, b]) = b - a \).
 (ii) [6%] If \(A \subset B \subset \mathbb{R} \), prove that \(\lambda(A) \leq \lambda(B) \).
 (iii) [6%] Suppose we know that \(\lambda(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \lambda(A_k) \) for subsets \(A_1, A_2, A_3, \ldots \) of \(\mathbb{R} \). Compute \(\lambda(Q) \).
 (iv) [6%] Give an example of subsets \(A_1, A_2, A_3, \ldots \) of \(\mathbb{R} \) such that \(A_1 \supset A_2 \supset A_3 \supset \cdots \) and \(\lambda(\lim_{k \to \infty} A_k) \neq \lim_{k \to \infty} \lambda(A_k) \).