1. (10 points) Let \(g_n : I = [0, 1] \to \mathbb{R} \) be defined by \(g_n(x) = \frac{1}{nx+1} \). Determine whether \(g_n \) converge on \(I = [0, 1] \) and, if it converges, determine whether the convergence is uniform.

2. (10 points) Let \(f : I = [a, b] \to \mathbb{R} \) be (Riemann) integrable on \(I \) and assume that \(f \) is continuous at \(c \in (a, b) \). Prove that \(\lim_{r \to 0} \frac{1}{2r} \int_{c-r}^{c+r} f(x)dx = f(c) \).

3. (10 points) Let \(D \) be the rectangle in \(\mathbb{R} \times \mathbb{R} \) given by \(D = \{ (x, t) | a \leq x \leq b, c \leq t \leq d \} \). Let \(f \) and its partial derivative \(f_t \) be continuous functions defined on \(D \), and \(F \) be a function defined on \([c, d]\) given by \(F(t) = \int_a^b f(x, t)dx \). Prove that \(F \) has a derivative on \([c, d]\) and \(F'(t) = \int_a^b f(x, t)dx \).

4. Let \(\sup S \) denotes the supremum (or the least upper bound) of \(S \), and \(\inf S \) denotes the infimum (or the greatest lower bound) of \(S \).

 (a) (6 points) Let \(I = (a, b) \) be an open interval in \(\mathbb{R} \), and let \(f \) and \(g \) be continuous functions defined on \(I \). Prove that the function \(h : I \to \mathbb{R} \) defined by \(h(x) = \sup \{ f(x), g(x) \} \) is continuous on \(I \).

 (b) (6 points) Let \(X \) and \(Y \) be non-empty sets and let \(f : X \times Y \to \mathbb{R} \) have bounded range in \(\mathbb{R} \). Prove that \(\sup_{x, y} f(x, y) \leq \inf_y \inf_x f(x, y) \).

5. Let \(F : \mathbb{R}^5 \to \mathbb{R}^2 \) be defined by \(F(u, v, w, x, y) = (ux + vx + w + x^2,uvw + x + y + 1) \), and note that \(F(2, 1, 0, -1, 0) = (0, 0) \).

 (a) (6 points) Show that we can solve \(F(u, v, w, x, y) = (0, 0) \) for \((x, y)\) in terms of \((u, v, w)\) near \((2, 1, 0)\).

 (b) (6 points) If \((x, y) = \Phi(u, v, w)\) is the solution of the preceding part, show that \(D\Phi(2, 1, 0) \) is given by the matrix \(\begin{pmatrix} -1 & 2 & 0 & -1 & 1 \\ 1 & 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix} \).

6. (10 points) Define a sequence of real numbers \((x_n) \) by \(x_0 = 1 \), and \(x_{n+1} = \frac{1}{2 + x_n} \), for \(n \geq 0 \). Show that \((x_n) \) converges and compute its limit. [Hint: Use the contraction principle.]

7. Let \(f : \mathbb{R} \to \mathbb{R} \) be a differentiable function with \(\lim_{x \to \infty} f(x) = 0 \).

 (a) (10 points) Show that there exists a sequence \(x_n \to \infty \) with \(\lim_{n \to \infty} f(x_n) = 0 \).

 (b) (6 points) Show that it is not necessarily true that \(f'(x) \) is bounded.

8. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be differentiable for each \(n \), so that \(|f_n'(x)| \leq 1 \), for all \(x \in \mathbb{R}, n = 1, 2, \ldots \).

 (a) (6 points) Prove that the set \(\{ f_n \} \) is uniformly equicontinuous on \(\mathbb{R} \). [Hint: A set \(\mathcal{F} \) of functions on \(K \) to \(\mathbb{R}^d \) is said to be uniformly equicontinuous on \(K \) if, for each \(\varepsilon > 0 \) there is a \(\delta(\varepsilon) > 0 \) such that if \(x, y \in K \) and \(|x - y| < \delta(\varepsilon) \) and \(f \in \mathcal{F} \), then \(||f(x) - f(y)|| < \varepsilon. \)]

 (b) (6 points) For each \(n \), let \(\tilde{f}_n(x) = f_n(x) - f_n(0) \). Prove that \(\{ \tilde{f}_n \} \) is uniformly bounded on any closed interval \([a, b] \subseteq \mathbb{R} \).

 (c) (8 points) Suppose that \(g : \mathbb{R} \to \mathbb{R} \) is such that for each \(x \in \mathbb{R} \), \(\lim_{n \to \infty} f_n(x) = g(x) \). Prove that \(g \) is continuous.