FINAL FOR NUMBER THEORY

Date: Thursday, January 18, 2001
Instructor: Shu-Yen Pan
No credit will be given for an answer without reasoning.

1. $[10 \%]$ Prove that $\sqrt{2}+\sqrt{3}$ is a root of $x^{4}-10 x^{2}+1=0$, and hence establish that it is irrational.
2. $[10 \%]$ Suppose that p is an odd rational prime. Show that

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
1, & \text { if } p \equiv 1(\bmod 3) \\
-1, & \text { if } p \equiv 2(\bmod 3) .
\end{aligned}\right.
$$

where $\left(\frac{a}{p}\right)$ denotes the Legendre symbol.
3. $[10 \%]$ Recall that the function μ is defined by

$$
\mu(n)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } a^{2} \mid n \text { for some rational integer } a>1 \\ (-1)^{r}, & \text { if } n=p_{1} p_{2} \cdots p_{r} \text { where } p_{1}, \ldots, p_{r} \text { are distinct rational primes }\end{cases}
$$

Find a positive rational integer n such that $\mu(n)+\mu(n+1)+\mu(n+2)=3$.
4. $[10 \%]$ Show that the primitive solutions of $x^{2}+y^{2}=z^{2}$ with y even are $x=r^{2}-s^{2}, y=2 r s$, $z=r^{2}+s^{2}$, where r and s are arbitrary integers of opposite parity with $r>s>0$ and $\operatorname{gcd}(r, s)=1$.
5. [10\%] Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be increasing sequences of real numbers. We say that a_{i} is asymptotic to b_{i}, write $a_{i} \sim b_{i}$, if and only if $\lim _{i \rightarrow \infty} a_{i} / b_{i}=1$. Prove that $a_{i} \sim b_{i}$ implies $\ln a_{i} \sim \ln b_{i}$, but the converse is not true.
6. $[10 \%]$ Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of rational integers, all positive except perhaps a_{0}. Recall that we define the sequence of rational integers $\left\{k_{n}\right\}$ by $k_{-2}=1, k_{-1}=0$ and $k_{i}=a_{i} k_{i-1}+k_{i-2}$ for $i \geq 0$. Show that $k_{n} / k_{n-1}=\left\langle a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right\rangle$ for $n \geq 1$.
7. [10\%] Let k and r be positive rational integers with $k>1$ and $r>1$. Prove that there is a rational prime whose digital representation to base r has exactly k digits.
8. $[10 \%]$ Show that 3 is a prime in $\mathbb{Q}(\sqrt{-1})$, but not a prime in $\mathbb{Q}(\sqrt{6})$.
9. $[10 \%]$ The rational prime 13 can be factored in two ways in $\mathbb{Q}(\sqrt{-3})$,

$$
13=\frac{7+\sqrt{-3}}{2} \cdot \frac{7+\sqrt{-3}}{2}=(1+2 \sqrt{-3})(1-2 \sqrt{-3}) .
$$

Explain why this does not conflict with the fact that $\mathbb{Q}(\sqrt{-3})$ has the unique factorization property.
10. $[10 \%]$ Let $p(n)$ denote the number of partitions of n. Compute $p(9)$.

