MIDTERM 1 FOR NUMBER THEORY

Date: Thursday, Nov 23, 2000
Instructor: Shu-Yen Pan

No credit will be given for an answer without reasoning.
1.
(i) [5\%] Prove that $n^{2}-1$ is divisible by 8 if n is odd.
(i) $[5 \%]$ Prove that $n^{3}-n$ is divisible by 6 for every integer n.
2. [10\%] Suppose that m is odd. Show that

$$
\frac{-(m-1)}{2}, \frac{-(m-3)}{2}, \ldots \ldots, \frac{m-3}{2}, \frac{m-1}{2}
$$

is a complete residue system modulo m.
3. $[10 \%]$ Solve the congruence equation $x^{2}+x+7 \equiv 0(\bmod 27)$.
4. $[10 \%]$ Let p be a prime and let $\operatorname{gcd}(a, p)=\operatorname{gcd}(b, p)=1$. Suppose that $x^{2} \equiv a(\bmod p)$ and $x^{2} \equiv b(\bmod p)$ are not solvable. Show that $x^{2} \equiv a b(\bmod p)$ is solvable.
5.
(i) $[5 \%]$ Evaluate the Legendre symbol $\left(\frac{-35}{101}\right)$.
(ii) [5\%] Find the number of integers in the set $S=\{1,2, \ldots, 2100\}$ that are divisible by neither 3 nor 5.
6. [10\%] If n is an even integer, show that $\sum_{d \mid n} \mu(d) \phi(d)=0$ where $\mu(d)$ is the Möbius function and $\phi(d)$ is the number of elements in a reduced residue system modulo d.
7. [10\%] Suppose that f and g are multiplicative arithmetic functions. Show that $f * g$ is also multiplicative.
8. [10\%] Prove that if $x^{2}+y^{2}=z^{2}$, then one of x, y is a multiple of 3 and one of x, y, z is a multiple of 5.
9. [10\%] Two quadratic forms $f(x, y)$ and $g(X, Y)$ are said to be equivalent if there is an integral transformation with determinant ± 1 that carries $f(x, y)$ to $g(X, Y)$. Prove that the following quadratic forms

$$
a x^{2}+b x y+c y^{2}, \quad a x^{2}-b x y+c y^{2}, \quad c x^{2}+b x y+a y^{2}
$$

are equivalent.
10. $[10 \%]$ Let p be a prime and k be an integer. Prove that

$$
1^{k}+2^{k}+\cdots+(p-1)^{k} \equiv\left\{\begin{aligned}
0(\bmod p), & \text { if } k \text { is not divisible by } p-1 \\
-1(\bmod p), & \text { if } k \text { is divisible by } p-1
\end{aligned}\right.
$$

