Question:	1	2	3	4	5	6	7	Total
Points:	15	15	10	15	15	15	15	100
Score:								

Easier: 3,6 Medium: 1,2,5 Harder: 4,7

- 1. (15 points) Let $p \neq q$ be primes. Prove that any group of order p^2q is not simple.
- 2. (15 points) Prove that the symmetric group S_5 is not solvable.
- 3. Let $f: R \to S$ be a homomorphism between commutative rings with identity.
 - (a) (5 points) Prove that $f^{-1}(P)$ is a prime ideal in R for any prime ideal P in S.
 - (b) (5 points) Give an example to show that there exists a ring homomorphism $f: R \to S$ and a maximal ideal M of S such that $f^{-1}(M)$ is not a maximal ideal of R.
- 4. (15 points) Describe all the prime ideals of the polynomial ring $\mathbb{Z}[x]$ over the ring of integers.
- 5. (15 points) Let F be a finite field of order p^n where p is a prime and n a positive integer. Prove that there is exactly one subfield of order p^m for each divisor m of n.
- 6. (15 points) Let E be the splitting field of $x^3 2$ over \mathbb{Q} . Describe the subgroup lattice of the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ and the subfield lattice of E.
- 7. (15 points) Let M be a finite generated module over a commutative ring R with identity and $\phi: M \to M$ be an R-module homomorphism. Prove that there exists a polynomial p(x) in R[x] such that $p(\phi) = 0$ as an element in the R-algebra $Hom_R(M, M)$ of R-module homomorphisms.