PhD Qualify Exam in Numerical Analysis

March 16, 2017

1. (2011 Spring, Average) (10%) A forward-difference formula for $f'(x_0)$ can be expressed by

$$f'(x_0) = \frac{1}{h} \left[f(x_0 + h) - f(x_0) \right] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3)$$

Use extrapolation to derive an $O(h^3)$ formula for $f'(x_0)$.

- 2. (2015 Spring, Average) Let $A = \begin{bmatrix} 400 & 399 \\ 802 & 800 \end{bmatrix}$.
 - (a) (10%) Compute A^{-1} and the condition number of A in the maximum norm, $\kappa_{\infty}(A)$.
 - (b) (10%) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is small, but $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is large.

(c) (5%) Choose b, δb , x and δx such that

$$Ax = b,$$
 $A(x + \delta x) = b + \delta b,$

and $\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}}$ is small, but $\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}}$ is large.

3. (10%) Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular and that we have solutions to linear systems Ax = b and Ay = g where $b, g \in \mathbb{R}^n$ are given. Show how to solve the system

$$\left[\begin{array}{cc} A & g \\ h^T & \alpha \end{array}\right] \left[\begin{array}{c} x \\ \mu \end{array}\right] = \left[\begin{array}{c} b \\ \beta \end{array}\right]$$

in O(n) flops, where $\alpha, \beta \in \mathbb{R}$ and $h \in \mathbb{R}^n$ are given and the enlarged matrix $\begin{bmatrix} A & g \\ h^T & \alpha \end{bmatrix}$ is nonsingular.

and write the equations in the form AU = F. Show that $||A^{-1}||_2$ is uniformly bounded as $h \to 0$ and the numerical scheme is stable in the **2-norm**.

7. (2007 Spring, Easy) (15%) The following formulae are equivalent mathematically

$$\left(\sqrt{2} - 1\right)^6 = \left(3 - 2\sqrt{2}\right)^3 = 99 - 70\sqrt{2}$$
$$= \frac{1}{\left(\sqrt{2} + 1\right)^6} = \frac{1}{\left(3 + 2\sqrt{2}\right)^3} = \frac{1}{99 + 70\sqrt{2}}.$$

Please point out which one formula gives a minimal round-off error and explain why?