E: Easy; M: Moderate; D: Difficult

1(E, 15%, 2019, Spring). A sequence $\{f_n\}$ of Lebesgue measurable functions is called Cauchy sequence in measure if given $\varepsilon > 0$ there is N such that

Leb
$$(\{x \mid |f_n(x) - f_m(x)| \ge \varepsilon\}) < \varepsilon$$

for all m, n > N, where Leb(·) represents the Lebesgue measure. (a) Write down the definition of the convergence in measure. (b) Prove that $\{f_n\}$ converges in measure.

2(M, 15%, 2018, Spring). Suppose that $f_k \to f$ in $L^3(\mathbb{R}^n)$, $g_k \to g$ a.e., and there exists M > 0 such that $||g_k||_{L^{\infty}(\mathbb{R}^n)} < M$ for all k. Prove that $f_k g_k \to f g$ in $L^3(\mathbb{R}^n)$.

3(E, 15%, 2019, Fall). Let k(x,y) be a measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying that

$$\int_{\mathbb{R}^n} |k(x,y)| dy \le C \text{ for a.e. } x \text{ and } \int_{\mathbb{R}^n} |k(x,y)| dx \le C \text{ for a.e. } y,$$

where C > 0 is a universal constant. Prove that

$$(Tf)(x) := \int_{\mathbb{R}^n} k(x, y) f(y) dy$$

is a bounded operator on $L^p(\mathbb{R}^n)$ with $||Tf||_p \leq C||f||_p$ for $1 \leq p \leq \infty$.

4(E, 15%, 2018, Fall). Let $\{f_k\}$ and f be Lebesgue measurable functions on a measurable set $E \subset \mathbb{R}^n$, where Leb(E) $< \infty$. Prove that

$$f_k \to f$$
 in measure if and only if $\int_E \frac{|f_k(x) - f(x)|}{1 + |f_k(x) - f(x)|} dx \to 0$ as $k \to \infty$.

5(E, 15%). The total variation function of a function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$T_f(x) = \sup \left\{ \sum_{j=1}^n |f(x_j) - f(x_{j-1})| : n \in \mathbb{N}, -\infty < x_0 < \dots < x_n = x \right\}, x \in \mathbb{R}.$$

If $\lim_{x\to\infty} T_f(x)$ exists and is finite, prove that the function T_f+f is increasing.

6(E, 10%). Let (X, \mathcal{M}) be a measurable space. Suppose that μ and ν are measures on (X, \mathcal{M}) with $\nu \ll \mu$. Define a new measure λ by $\lambda = 2\mu + \nu$. Denote the Radon-Nikodym derivative of ν with respect to λ by f. Express the Radon-Nikodym derivative of ν with respect to μ in terms of f.

7(M, 15%). Suppose f_k , $f \in L^1(\mathbb{R}^n)$ and $f_k \to f$ a.e. Prove or disprove that $\int_{\mathbb{R}^n} |f_k(x)| dx \to \int_{\mathbb{R}^n} |f(x)| dx$ implies $\int_{\mathbb{R}^n} |f_k(x)| dx \to 0$.