PhD Qualify Exam General Analysis

Mar, 2021

- 1. (15 pts) For $f:[0,1] \to \mathbb{R}$, let $E \subset \{x | f'(x) \text{ exists}\}$. If m(E) = 0, show that m(f(E)) = 0
- (15 pts) Let (X, μ) be a measure space, {f_n}[∞]_{n=1}, {g_n}[∞]_{n=1} are two sequences of measurable functions on X. Assume that g_n converges in measure to some g, and that for any fixed ε > 0, lim_{n→∞} μ({x ∈ X | |f_n(x) − g_n(x)| > ε}) = 0. Show that f_n converges in measure to g.
- 3. (15 pts) Suppose f_n is a sequence of measurable functions on [0, 1] with $||f_n||_{L^2([0,1])} \leq M$ for all $n \in \mathbb{N}$ and for some M > 0 and $f_n \to 0$ a.e. on [0, 1]. Prove that $||f_n||_{L^1([0,1])} \to 0$ as $n \to \infty$.
- 4. (15 pts) Prove the following generalization of Hölder's inequality. If $\sum_{i=1}^{k} 1/p_i = 1/r$, $p_i, r \ge 1$, then

$$||f_1 \cdots f_k||_{L^r} \le ||f_1||_{L^{p_1}} \cdots ||f_k||_{L^{p_k}}.$$

5. (20 pts) Let $f \in L([0,\infty))$ and a > 0. Show that

$$\int_0^\infty \int_0^\infty \sin(ax) f(y) e^{-xy} dy dx = a \int_0^\infty \frac{f(y)}{a^2 + y^2} dy.$$

- 6. (20 pts, 2014) Let $\phi(x) \ge 0$ be a bounded measurable function in \mathbb{R}^n . $\phi(x) = 0$ for $|x| \ge 1$ and $\int \phi dx = 1$. for $\varepsilon > 0$, let $\phi_{\varepsilon}(x) = \varepsilon^{-n} \phi(x/\varepsilon)$.
 - (a) If $f \in L^1(\mathbb{R}^n)$, show that $\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x)$ a.e..
 - (b) If $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, show that $\|(f * \phi_{\varepsilon})(x) f(x)\|_p \to 0$ as $\varepsilon \to 0$.

Recall that $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$.