General Algebra 2021 Fall Qualify Examination

October 8, 2021

Work out all of the eight problems. Show correct and clear arguments to get full credits.

- 1. (15 points) ** Suppose that G is an nonabelian group of order p^3 . Show that the center of G is is of order p.
- 2. (10 points) *** Let p and q be distinct primes. Show that no groups of order p^2q are simple.
- 3. (10 points) *** Let G be a group. We set $G^{(1)} = G'$, the derived subgroup of G. For i > 1, define $G^{(i)} = (G^{(i-1)})'$. Show that each $G^{(i)}$, $i \ge 1$, is normal in G.
- 4. (15 points) * Describe all ring homomorphisms from $\mathbb{Z} \oplus \mathbb{Z}$ to \mathbb{Z} .
- 5. (10 points) * Let *R* be a finite ring with $|R| \ge 2$. If for $a, b \in R$, ab = 0 implies a = 0 or b = 0. Show that *R* is a division ring.
- 6. (15 points) ** Let *R* be a commutative ring and suppose that the subring *A* of *R* is contained in a finite union of prime ideals $P_1 \cup P_2 \cup ... \cup P_n$. Show that $A \subseteq P_i$ for some $1 \le i \le n$.
- 7. (15 points) ** Let $f(x) = x^3 6x^2 + 9x + 3 \in \mathbb{Q}[x]$, and let $K = \mathbb{Q}(u)$, where *u* is the real root of f(x). Show that $\{1, u, u^2\}$ is a basis of *K* over *Q*, and express elements u^4 , $(u + 1)^{-1}$ in terms of this basis.
- 8. (10 points) *** Let K be a field with |K| = q, and let $f \in K[x]$ be irreducible. Prove that f divides $x^{q^n} x$ if and only if deg(f) divides n.

Total number of points: 100