Department of Mathematics, National Cheng Kung University Oct. 2022

Qualifying Exam: Algebra

Answer all 7 questions, including all sub-parts. Show all your work and properly justify your answers.

Notations: *G*: a group, *R*: a ring with unity, \mathbb{Z} : the set of integers, \mathbb{Q} : the field of rational numbers.

Problem 1: [Easy]. (10pts) Suppose *G* is simple and |G| = 168. How many elements of order 7 are there in *G*?

Problem 2: [Easy]. (10pts) Show that the set of nilpotent elements in a commutative ring *R* forms an ideal of *R*. (Recall $r \in R$ is nilpotent if $r^n = 0$ for some n > 0 in \mathbb{Z})

Problem 3: [Easy]. (10pts) Prove that an Artinian integral domain is a field.

Problem 4: [Mid].(10pts) Determine all of the intermediate fields of the splitting field over \mathbb{Q} of the polynomial $x^4 - 5x + 6 \in \mathbb{Q}[x]$.

Problem 5: [Mid]. Let Z(G) denote the center of *G*.

- a. (15pts) Prove that if G/Z(G) is cyclic, then G is abelian.
- b. (10pts) Suppose *G* is a non-abelian group of order p^3 for some prime *p*. Show that |Z(G)| = p.

Problem 6: [Mid]. (15pts) Suppose *R* is commutative. Let *J* be an ideal of *R*. Prove that for any *R*-module *M*, we have the following *R*-module isomorphism:

 $(R/J) \otimes_R M \cong M/JM$

Problem 7: [Hard]. (20pts) Describe all prime ideals of the integral domain $\mathbb{Z}[x]$.

1 (10)	2 (10)	3 (10)	4 (10)	5 (25)	6 (15)	7(20)	Total (100)