Qualifying Examination: Partial Differentiation Equations

Oct., 2022

Do all the problems and show all your work. (E: easy, M: moderate, D:difficult)

1. (E, 20 points)

Consider the transport equation:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial y}=0, \quad(x, y) \in R^{2}, t>0 \\
& u(x, y, 0)=u_{0}(x, y)
\end{aligned}
$$

where u_{0} is a continuous function with $u_{0}(x, y)=0$ for $|x|+|y| \geq 1$.
(a) Please solve the initial value problem.
(b) Please prove that for fixed $t_{0}>0$ and $x_{0} \in R$,

$$
\lim _{y \rightarrow \infty} u\left(x_{0}, y, t_{0}\right)=0 .
$$

2. (M, 20 points)

Please use the Fourier transform method to solve the initial value problem

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad-\infty<x<\infty, \quad t>0, \\
u(x, 0) & =f(x), \quad-\infty<x<\infty
\end{aligned}
$$

And prove that $u(x, t)$ satisfies the following inequality

$$
\|u\|_{p}(t) \leq \frac{1}{\left.(4 \pi t)^{\frac{1}{2}\left(\frac{1}{q}-\frac{1}{p}\right.}\right)}\|f\|_{q}, \quad t>0
$$

for $1 \leq q \leq p \leq \infty$. (Note that the L^{p}, L^{q} norms are with respect to x.)
3. (D, 20 points)

Let $u(x)$ be a real-valued function defined in $R^{3} . x=\left(x_{1}, x_{2}, x_{3}\right)$ and $D u(x)=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \frac{\partial u}{\partial x_{3}}\right)$.
Assume that $p \in[1,3) . p^{*}$ is defined as $p^{*}=\frac{1}{p}-\frac{1}{3}$.
Please prove that there exists a constant C, depending only on p, such that

$$
\|u\|_{L^{p^{*}}\left(R^{3}\right)} \leq C\|D u\|_{L^{p}\left(R^{3}\right)}
$$

for all $u \in C_{c}^{1}\left(R^{3}\right)$.
4. (M, 20 points)

Let D be a connected bounded open set in $R^{2} . u(x, y)$ is a harmonic function in D that is continuous on \bar{D}.
(a) Please state the Maximum Principle and prove it.
(b) Let $u(x, y)$ and $v(x, y)$ be harmonic functions in D that are continuous on \bar{D}. And $u(x, y) \geq v(x, y)$ on ∂D. Please show that either $u>v$ in D or $u=v$ on \bar{D}.
5. (E, 20 points)

Please solve the initial value problem:

$$
\begin{aligned}
u_{t t} & =u_{x x}+\cos x, \quad-\infty<x<\infty, \quad t>0, \\
u(x, 0) & =\sin x, \quad-\infty<x<\infty . \\
u_{t}(x, 0) & =1+x .
\end{aligned}
$$

