PhD qualifying exam on Mathematical Programming March the 2nd, 2023

1. (30 points, Revised from March the 1st 2013) Consider the bilinear program to minimize $f(x, y)=c^{T} x+d^{T} y+x^{T} H y$ subject to $x \in X \subset \mathbb{R}^{n}, y \in Y \subset \mathbb{R}^{m}$, where X and Y are bounded polyhedral sets and H is a $n \times m$ matrix, $c \in \mathbb{R}^{n} ; d \in \mathbb{R}^{m}$. Let \hat{x} and \hat{y} represent extreme points (vertices) of the polyhedral sets X and Y , respectively.
(a) (3 points, old) Verify that the objective function is neither quasiconvex nor quasiconcave.
(b) (5 points, new) Show that, the bilinear program is equivalent to a piecewise linear concave minimization problem with linear constraints.
(c) (5 points, old. See also from September 28th, 2012) Show that, the optimum for minimizing a concave function over a bounded polyhedral set P must be achieved at least on one of the extreme points of P.
(d) (5 points, old) Prove that there exists an extreme point (\bar{x}, \bar{y}) that solves the bilinear program.
(e) (7 points, new) When can a quadratic minimization problem $\phi(x)=x^{T} Q x+2 q^{T} x+q_{0}$ be reduced to a bilinear problem? Verify your answer and show the reduction. (Q is a $n \times n$ symmetric matrix; $q \in \mathbb{R}^{n}, q_{0} \in \mathbb{R}$.)
(f) (5 points, old) Prove that the point (\hat{x}, \hat{y}) is a local minimum of the bilinear program if and only if the following are true:
(i) $(\forall x \in X, \forall y \in Y) c^{T}(x-\hat{x}) \geq 0$ and $d^{T}(y-\hat{y}) \geq 0$.
(ii) $c^{T}(x-\hat{x})+d^{T}(y-\hat{y})>0$, whenever $(x-\hat{x})^{T} H(y-\hat{y})<0$.
2. (15 points, new, comprehensive) Show that, any concave minimization problem with a piecewise linear separable objective function can be reduced to a bilinear program. You may set up the objective function as $\Psi(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ where $\psi_{i}\left(x_{i}\right)$ is a concave piecewise linear function of only one component x_{i}. You also need to show that, an optimal solution to the reduced equivalent bilinear program (of your own design) provides an optimal solution to minimize $\Psi(x)$.
3. (15 points, old, from September 28th, 2012) Recall that linear programming (LP) is a special case of the following conic optimization model

$$
\begin{array}{cl}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{K},
\end{array}
$$

where $\mathcal{K} \subseteq E^{n}$ is a prescribed closed convex cone. For example, $\mathcal{K}=\{x \mid x \geq 0\}$. Here we assume that A, b, c are of proper dimensions and the rows in A are linearly independent.

When $\mathcal{K} \triangleq \mathcal{K}_{L}$, the conic optimization model becomes the so-called "Second Order Cone Programming (SOCP)." When $\mathcal{K} \triangleq \operatorname{PSD}(n)$, the conic optimization model becomes the
so-called "Semidefinite Programming (SDP)." The popularity of SOCP is also due to that it is a generalized form of convex QCQP (Quadratically Constrained Quadratic Programming). To be precise, consider the following convex QCQP:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} Q_{0} x+2 b_{0}^{T} x \\
\text { subject to } & x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i=1, \ldots, m,
\end{array}
$$

where $Q_{i} \succeq 0$, i.e., Q_{i} is positive semidefinite for $i=0,1, \cdots, m$.
(a) (5 points) Given that $t \in E^{1}$ and $x \in E^{n}$, prove that

$$
t \geq x^{T} x \text { if and only if }\left\|\binom{\frac{t-1}{2}}{x}\right\| \leq \frac{t+1}{2} .
$$

(b) (10 points) Using the result of (a), please formulate a convex QCQP as an SOCP problem (P).
4. (10 points, new, comprehensive) Compute the optimal value of the following convex QCQP, where $x_{1}, x_{2} \in \mathbb{R}^{n}$.

$$
\begin{array}{ll}
\min & f_{0}(x)=x_{1}^{2}+x_{2} \\
\text { s.t. } & f_{1}(x)=x_{1}^{2}-x_{1} x_{2}+2 x_{2}^{2}-x_{3} \leq 0, \\
& f_{2}(x)=x_{1}^{2}-x_{2}-1 \leq 0 .
\end{array}
$$

5. (7 points, old, from September 28th, 2007) Let

$$
f(x)=\frac{1}{p}\|x\|^{p}, p>1, x \in \mathbb{R}^{n}
$$

Compute the conjugate function f^{*} and verify that $f^{* *}=f$.
6. (23 points, new, standard) Given that n is a positive integer, let us denote the n dimensional Euclidean space by E^{n}. A subset \mathcal{K} of E^{n} is called a pointed convex cone in E^{n} if the following conditions are satisfied:
i. The origin of the space, i.e., vector 0 , belongs to \mathcal{K}.
ii. If $x \in \mathcal{K}$ and $-x \in \mathcal{K}$ then $x=0$.
iii. If $x \in \mathcal{K}$ then $t x \in \mathcal{K}$ for all $t>0$.
iv. If $x \in \mathcal{K}$ and $y \in \mathcal{K}$ then $x+y \in \mathcal{K}$.

Let us denote the standard Lorentz cone as follows:

$$
\operatorname{SOC}(n+1)=\left\{\left.\binom{t}{x} \right\rvert\, t \in E^{1}, x \in E^{n}, t \geq\|x\|\right\} .
$$

Given that $d_{1}, d_{2}, \ldots, d_{p}$ are known positive integers, we let $\mathcal{K}_{L} \subseteq E^{\left(\sum_{i=1}^{p} d_{i}+p\right)}$ be the Cartesian product of Lorentz cones, i.e.,

$$
\mathcal{K}_{L}=\operatorname{SOC}\left(d_{1}+1\right) \times \cdots \times \operatorname{SOC}\left(d_{p}+1\right) .
$$

In addition, we denote the set of all n-by- n real symmetric matrices by $S^{n \times n}$ and let $\operatorname{PSD}(n) \subseteq S^{n \times n}$ be the set of positive semidefinite matrices in $S^{n \times n}$. In the following, if C is a subset in E^{p} and C^{*} is its polar cone, then the dual cone C^{0} of C is the negative of C^{*}. That is, $C^{0}=-C^{*}$.
(a) (10 points) Which ones, $\operatorname{SOC}(n+1), \mathcal{K}_{L}$, and $\operatorname{PSD}(n)$ are closed pointed convex cones? Verify your answers.
(b) (13 points) Find the dual cones of the above three sets in their respective domain.

