PhD qualifying exam on Mathematical Programming March the 2nd, 2023

- 1. (30 points, Revised from March the 1st 2013) Consider the bilinear program to minimize $f(x,y) = c^T x + d^T y + x^T H y$ subject to $x \in X \subset \mathbb{R}^n$, $y \in Y \subset \mathbb{R}^m$, where X and Y are bounded polyhedral sets and H is a $n \times m$ matrix, $c \in \mathbb{R}^n$; $d \in \mathbb{R}^m$. Let \hat{x} and \hat{y} represent extreme points (vertices) of the polyhedral sets X and Y, respectively.
 - (a) (3 points, old) Verify that the objective function is neither quasiconvex nor quasiconcave.
 - (b) (5 points, new) Show that, the bilinear program is equivalent to a piecewise linear concave minimization problem with linear constraints.
 - (c) (5 points, old. See also from September 28th, 2012) Show that, the optimum for minimizing a concave function over a bounded polyhedral set P must be achieved at least on one of the extreme points of P.
 - (d) (5 points, old) Prove that there exists an extreme point (\bar{x}, \bar{y}) that solves the bilinear program.
 - (e) (7 points, new) When can a quadratic minimization problem $\phi(x) = x^T Q x + 2q^T x + q_0$ be reduced to a bilinear problem? Verify your answer and show the reduction. (*Q* is a $n \times n$ symmetric matrix; $q \in \mathbb{R}^n$, $q_0 \in \mathbb{R}$.)
 - (f) (5 points, old) Prove that the point (\hat{x}, \hat{y}) is a local minimum of the bilinear program if and only if the following are true:

(i)
$$(\forall x \in X, \forall y \in Y) c^T(x - \hat{x}) \ge 0$$
 and $d^T(y - \hat{y}) \ge 0$.

(ii)
$$c^T(x - \hat{x}) + d^T(y - \hat{y}) > 0$$
, whenever $(x - \hat{x})^T H(y - \hat{y}) < 0$.

- 2. (15 points, new, comprehensive) Show that, any concave minimization problem with a piecewise linear separable objective function can be reduced to a bilinear program. You may set up the objective function as $\Psi(x) = \sum_{i=1}^{n} \psi_i(x_i)$, $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ where $\psi_i(x_i)$ is a concave piecewise linear function of only one component x_i . You also need to show that, an optimal solution to the reduced equivalent bilinear program (of your own design) provides an optimal solution to minimize $\Psi(x)$.
- 3. (15 points, old, from September 28th, 2012) Recall that linear programming (LP) is a special case of the following *conic optimization* model

$$\begin{array}{ll}\text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \in \mathcal{K}, \end{array}$$

where $\mathcal{K} \subseteq E^n$ is a prescribed closed convex cone. For example, $\mathcal{K} = \{x | x \ge 0\}$. Here we assume that A, b, c are of proper dimensions and the rows in A are linearly independent.

When $\mathcal{K} \triangleq \mathcal{K}_L$, the conic optimization model becomes the so-called "Second Order Cone Programming (SOCP)." When $\mathcal{K} \triangleq \text{PSD}(n)$, the conic optimization model becomes the so-called "Semidefinite Programming (SDP)." The popularity of SOCP is also due to that it is a generalized form of convex QCQP (Quadratically Constrained Quadratic Programming). To be precise, consider the following convex QCQP:

> minimize $x^T Q_0 x + 2b_0^T x$ subject to $x^T Q_i x + 2b_i^T x + c_i \leq 0, \ i = 1, \dots, m,$

where $Q_i \succeq 0$, i.e., Q_i is positive semidefinite for $i = 0, 1, \dots, m$.

(a) (5 points) Given that $t \in E^1$ and $x \in E^n$, prove that

$$t \ge x^T x$$
 if and only if $\left\| \begin{pmatrix} \frac{t-1}{2} \\ x \end{pmatrix} \right\| \le \frac{t+1}{2}$.

- (b) (10 points) Using the result of (a), please formulate a convex QCQP as an SOCP problem (P).
- 4. (10 points, new, comprehensive) Compute the optimal value of the following convex QCQP, where $x_1, x_2 \in \mathbb{R}^n$.

min
$$f_0(x) = x_1^2 + x_2$$

s.t. $f_1(x) = x_1^2 - x_1 x_2 + 2x_2^2 - x_3 \le 0$,
 $f_2(x) = x_1^2 - x_2 - 1 \le 0$.

5. (7 points, old, from September 28th, 2007) Let

$$f(x) = \frac{1}{p} ||x||^p, \ p > 1, \ x \in \mathbb{R}^n.$$

Compute the conjugate function f^* and verify that $f^{**} = f$.

- 6. (23 points, new, standard) Given that n is a positive integer, let us denote the *n*-dimensional Euclidean space by E^n . A subset \mathcal{K} of E^n is called a *pointed convex cone* in E^n if the following conditions are satisfied:
 - i. The origin of the space, i.e., vector 0, belongs to \mathcal{K} .
 - ii. If $x \in \mathcal{K}$ and $-x \in \mathcal{K}$ then x = 0.
 - iii. If $x \in \mathcal{K}$ then $tx \in \mathcal{K}$ for all t > 0.
 - iv. If $x \in \mathcal{K}$ and $y \in \mathcal{K}$ then $x + y \in \mathcal{K}$.

Let us denote the standard Lorentz cone as follows:

$$SOC(n+1) = \left\{ \left(\begin{array}{c} t \\ x \end{array} \right) \middle| t \in E^1, \ x \in E^n, \ t \ge ||x|| \right\}.$$

Given that d_1, d_2, \ldots, d_p are known positive integers, we let $\mathcal{K}_L \subseteq E^{\left(\sum_{i=1}^p d_i + p\right)}$ be the Cartesian product of Lorentz cones, i.e.,

$$\mathcal{K}_L = \mathrm{SOC}(d_1 + 1) \times \cdots \times \mathrm{SOC}(d_p + 1).$$

In addition, we denote the set of all *n*-by-*n* real symmetric matrices by $S^{n \times n}$ and let $PSD(n) \subseteq S^{n \times n}$ be the set of positive semidefinite matrices in $S^{n \times n}$. In the following, if C is a subset in E^p and C^* is its polar cone, then the dual cone C^0 of C is the negative of C^* . That is, $C^0 = -C^*$.

- (a) (10 points) Which ones, SOC(n + 1), \mathcal{K}_L , and PSD(n) are closed pointed convex cones? Verify your answers.
- (b) (13 points) Find the dual cones of the above three sets in their respective domain.